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ABSTRACT
The traveling thief problem (TTP) is fast gaining attention
for being a challenging combinatorial optimization problem.
A number of algorithms have been proposed for solving this
problem in the recent past. Despite being a challenging
problem, it is often argued if TTP is realistic enough be-
cause of its formulation, which only allows a single thief to
travel across hundreds or thousands of cities to collect (steal)
items. In addition, the thief is required to visit all cities, re-
gardless of whether an item is stolen there or not. In this
paper we discuss the shortcomings of the current formulation
and present a relaxed version of the problem which allows
multiple thieves to travel across different cities with the aim
of maximizing the group’s collective profit. A number of fast
heuristics for solving the newly proposed multiple traveling
thieves problem (MTTP) are also proposed and evaluated.

CCS Concepts
•Computing methodologies → Heuristic function
construction; Randomized search;

Keywords
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1. INTRODUCTION
The traveling thief problem (TTP) [3] is fast gaining at-

tention for being a challenging combinatorial optimization
problem. The NP-Hard optimization problem combines two
well-known combinatorial optimization problems, namely
the traveling salesman problem (TSP) and the knapsack
problem. The two components have been merged in such
a way that the optimal solution for both does not necessar-
ily correspond to an optimal TTP solution. The motivation
for the TTP is to have a problem where the interactions of
problem components can be investigated systematically.
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Despite being a challenging problem, the TTP formulation
is often criticized for not being realistic enough since there
is only one thief who is responsible for traveling a number
of cities to steal items. This is especially important since
the TTP is supposed to be considered as an artificial repre-
sentation of similar real world problems encountered within
the domain of delivery, scheduling and routing.

In this paper we propose a new variant of the TTP called
the multiple traveling thieves problem (MTTP). The MTTP
is an extension of the present TTP formulation to include
multiple thieves. This not only makes the problem more re-
alistic as it considers groups of moving entities, but it also
adds additional difficulty since there will be multiple tours
and packing plans which will need to be simultaneously op-
timized. There also exists an interdependence between the
different thieves’ tours and packing plans which means that
optimizing the components in isolation does not necessarily
yield the best results.

The formulation differs from the problems within the ve-
hicle routing domain in that not all cities have to be visited,
and even for cities which are visited not all items have to
be picked up. Also our formulation allows for a city to be
visited by multiple thieves. The formulation is also done in
such a way that the problem can be easily transitioned into
a single thief TTP. This also means that the current set
of benchmark instances can also be used for evaluating the
performance of algorithms designed for solving MTTP.

We also propose a number of heuristic approaches for solv-
ing the MTTP. These approaches utilize some simple and
intuitive operators for efficiently solving the given problem.
Some operators, such as the Cross Thief Mutation operator,
are designed in such a way that they can easily be used on
the single thief TTP as well.

The rest of the paper is organized as follows. Section 2
gives a detailed description of the original TTP formulation.
Section 3 discusses the short comings of the current problem
and gives details of the newly proposed multiple traveling
thieves problem. Sections 4 and 5 discuss the details of
the heuristics used for solving the MTTP and the results
obtained. The paper concludes with an overall summary and
discussion on possible future research directions in Section 6.

2. TRAVELING THIEF PROBLEM
In the following, we first define the TTP. Then, we pro-

vide an overview of current state-of-the-art approaches.

2.1 Problem Description
We use the definition of the TTP by Polyakovskiy et



al. [14]. Given is a set of cities N = {1, . . . , n} and a set
of items M = {1, . . . ,m} distributed among the cities. For
any pair of cities i, j ∈ N , we know the distance dij be-
tween them. Every city i, except the first one, contains a
set of items Mi = {1, . . . ,mi}, M = ∪

i∈N
Mi. Each item k

positioned in the city i is characterized by its profit pik and
weight wik, thus the item Iik ∼ (pik, wik). The thief must
visit all cities exactly once starting from the first city and
returning back to it in the end. Any item may be selected in
any city as long as the total weight of collected items does
not exceed the specified capacity W . A renting rate R is
to be paid per each time unit taken to complete the tour.
υmax and υmin denote the maximal and minimum speeds
that the thief can move. The goal is to find a tour, along
with a packing plan, that results in the maximal profit.

The objective function uses a binary variable yik ∈ {0, 1}
that is equal to one when the item k is selected in the city i,
and zero otherwise. Also, let Wi denote the total weight of
collected items when the thief leaves the city i. Then, the
objective function for a tour Π = (x1, . . . , xn), xi ∈ N and
a packing plan P = (y21, . . . , ynmi) has the following form:

Z(Π, P ) =
n∑
i=1

mi∑
k=1

pikyik −R

(
dxnx1

υmax − νWxn

+

n−1∑
i=1

dxixi+1

υmax − νWxi

)

where ν = υmax−υmin
W

is a constant value defined by input
parameters. The minuend is the sum of all packed items’
profits and the subtrahend is the amount that the thief pays
for the knapsack’s rent equal to the total traveling time along
Π multiplied by R.

We provide a brief example in the following (see Fig-
ure 1 [14]). Each city but the first has an assigned set of
items. Let us assume that the maximum weight W = 3,
the renting rate R = 1 and υmax and υmin are set as 1
and 0.1, respectively. Then the optimum objective value is
Z(Π, P ) = 50 for Π = (1, 2, 4, 3) and P = (0, 0, 0, 1, 1, 0).
This means that the thief collects no items traveling from
city 1 to city 3 via cities 2 and 4. Therefore, this part of
the tour has a cost of 15. In the city 3 only items I32 and
I33 are picked up, resulting in a total profit of 80. However,
on the way from city 3 back to city 1 the thief’s knapsack
has a weight of 2. This reduces the speed and results in an
increased cost of 15. Consequently, the final objective value
is Z(Π, P ) = 80− 15− 15 = 50.

Figure 1: Illustrative example for a TTP instance [14].

2.2 Current State-of-the-Art
Polyakovskiy et al. [14] proposed the first set of heuris-

tics for solving the TTP. Their approach was to solve the
problem using a two-step procedure. The first step involved
generating a good TSP tour by using the classical Chained

Lin-Kernighan heuristic. The second step involved keeping
the tour fixed and applying a packing heuristic for improv-
ing the solution. Their first approach was a simple heuristic
(SH) which constructed a solution by processing and pick-
ing items that maximized the objective value according to
a given tour. Items were picked based on a score value that
was calculated for each item to estimate how good it is ac-
cording to the given tour. They also proposed two iterative
heuristics, namely the Random Local Search and (1+1)-
EA, which based on certain probabilistic calculations flipped
a number of packing bits. After each iteration the solution
was evaluated and if an improvement was noted, the changes
were kept else they were ignored.

Bonyadi et al. [4] investigated experimentally the inter-
dependency between the TSP and Knapsack components of
the TTP. They proposed two heuristic approaches named
Density-based Heuristic (DH) and CoSolver. DH is again
a two-phased approach similar to the SH from [14]. Co-
Solver is a method inspired by coevolution based approaches,
which divides the problem into sub-problems where each
sub-problem is solved by a different module of CoSolver.
The communication between the different modules and sub-
problems allows for the interdependencies to be considered.
DH was outperformed by CoSolver on larger instances.

Mei et al. [11] analyzed the mathematical formulation to
show that the TTP problem is not additively separable. The
authors also used two separate approaches for solving the
TTP. First a cooperative coevolution based approach similar
to CoSolver, and then a memetic algorithm which solves the
problem as a whole. The memetic algorithm outperformed
cooperative coevolution. The work by Bonyadi et al. [4]
and Mei et al. [11] highlight the importance of considering
interdependencies between the TTP components as this will
allow for the generation of more competitive solutions.

Faulkner et al. [6] investigated multiple operators and did
a comprehensive comparison with existing approaches. They
proposed a number of operators, such as Bitflip and Pack-
Iterative, for optimizing the packing plan given a particu-
lar tour. They also proposed an insertion operator for itera-
tively optimizing the tour given a particular packing. They
combined these operators in a number of simple and com-
plex heuristics. The main observation was that there does
not yet seem to be a single best algorithmic paradigm for
the TTP. The operators, however, were quite beneficial in
improving the quality of results.

Wagner [20] recently investigated the use of swarm intel-
ligence approaches. These focus less on short TSP tours,
but more on good TTP tours, which can be longer. On
small instances with up to 250 cities and 2000 items, these
approaches are the best fast approaches known to us to date.

3. PROPOSING A NEW VARIANT OF THE
TRAVELING THIEF PROBLEM

3.1 Criticism of TTP
While the TTP is a challenging problem it is often criti-

cized for not being realistic. One thief traveling across 500,
1000 and sometimes even 10000+ cities to collect items may
result in an enticing computer science problem, but in reality
this would most likely be a very inefficient way of collect-
ing items. In reality if there is an organization or entity
working in a similar line of business, profit would be an



important factor, and they would definitely want to invest
resources (e.g. using additional transporting entities) in try-
ing to make the collection of items more efficient.

3.2 Multiple-Traveling Thief Problem
In response to the above criticism we propose the multiple-

traveling thieves problem (MTTP). To the best of our knowl-
edge there currently does not exist any variant to the origi-
nal TTP problem. Given that a single thief’s profit depends
on the time traveled, which depends on the distance trav-
eled and the items packed, it is to be expected that in some
situations multiple thieves can yield a higher total profit if
they travel lighter. While this does increase the possibil-
ity of greater total profit it also introduces some challenges:
now that there are multiple thieves, the optimization algo-
rithm will need to simultaneously optimize several tours and
packing plans.

In its most basic form the MTTP consists of t thieves
traveling m cities with the goal of collecting items of value
that are situated at each of these locations. There are a total
of q items which are located across the m cities. All thieves
have to start and end their tour at a common location which
for this problem is the very first city as it is assumed that
the thieves are all working together and they need to return
to the initial city to divide the loot. Each thief can visit a
set of j cities, given that j ≤ m. Multiple thieves can visit
the same city but each item can only be picked up by one
thief. A thief can choose to visit a city and pick up one or
multiple items or not pick up any items at all. Visiting all
cities is not mandatory.

Each thief can pick up as many items as possible as long
as he/she respects the total knapsack capacity, which means
that the thieves do not get assigned individual knapsack ca-
pacities. A real-world motivation for this can look as follows.
Let us assume that the thieves want to transport the stolen
goods via ship to some other country and the ship has a ca-
pacity limit. Since the thieves know the routes and packing
plans before starting the journey they can pick appropriate
vehicles among themselves: so a thief with smaller route
might pick a smaller truck and another might pick a big-
ger one. Also, this design decision allows us to seamlessly
transition between different number of thieves. For example,
one thief might use almost all the capacity, whereas another
thief just briefly goes to one city, picks one item, and then
comes back. While this strategy might sound a bit artifi-
cial and not very much real-world like, it is allowed in our
formulation. This ability to transition is important, as the
MTTP should, just like the TTP, be as well-structured and
general as possible: the core motivation behind the TTP
and the MTTP is to facilitate the investigation of the dif-
ferent interacting components of the Knapsack Problem and
the Traveling Salesperson Problem.

3.3 Similarities with Other Problems
The closest problem within literature to our MTTP is the

vehicle routing problem (VRP). The VRP is concerned with
finding optimal routes for a fleet of vehicles delivering or
collecting items from different locations [8]. Often, all ve-
hicles have a common starting and end point (depot). In
addition, it is common that each city is to be visited ex-
actly once and by only one vehicle. The VRP first appeared
in the paper by Dantzig and Ramser [5] who were inter-
ested in finding optimal routes for gasoline delivery trucks.

Since then a number of variants have been proposed. The
capacitated VRP extends the classical VRP by imposing a
constraint such that the total load transported by a vehicle
cannot exceed its capacity. The multi-depot VRP [7, 12, 16]
considers multiple points from which clients can be serviced.
The VRP with time windows [18] adds another layer of real-
ism as there exist time windows within which service should
be made to a particular city and arriving early or late can
result in penalties. There also exist other variants such as
stochastic VRP [16], dynamic VRP [15], VRP with time-
dependent prize collection [2], and with selective pickup and
delivery [19], among countless other extensions.

It is important to note that our MTTP, just like the orig-
inal TTP, is unlike many capacitated vehicle-routing prob-
lems in the area of Green Logistics (see, e.g., the survey
article [9]). In our case, we consider in addition to the rout-
ing problem not only a load-dependent feature, but also the
NP-hard optimization problem of deciding which items are
to be stolen by the thieves.

Some obvious differences between the classical VRP and
our proposed MTTP are:

• The classical VRP requires that all cities be visited
exactly once while in the MTTP the thieves can choose
not to visit a city. There can be various reasons for not
visiting a city such as, for example, the city does not
hold high value items, or that the travel time involved
in visiting the city is not worth the gain.

• For the classical VRP all items must be delivered
and/or picked up from all the cities. In the MTTP,
as mentioned in the previous difference, not all cities
have to visited and thus naturally not all items have
to picked up. In addition, even for cities which are
visited it may be possible that not all items are picked
or in some cases none of the items are picked. This is
all part of the profit maximization scheme.

• In the classical VRP the weight of the items does not
play a part in slowing down or speeding up delivery or
pickup. In the MTTP the order in which the items
are picked has a huge impact even if the route taken
is the shortest.

Based on the above discussion it is clear that MTTP not
only makes the TTP problem much more realistic but also
adds an additional layer of difficulty. It also adequately fills
the gap left by the VRP and its variants, as the MTTP is
the systematic combination of two combinatorial problems.

4. MTTP LOCAL SEARCH ROUTINES
In this section, we present a number of local search rou-

tines used to construct packing plans and tours.

4.1 Solution Representation
A single solution for the MTTP can consist of several

tours and packing plans. We use the following representation
for solutions. For consistency all tour vectors are of the
same size and all packing plan vectors are also of the same
size. For a single thief the cityIDs (city identifiers within
the vector) are represented as positive values if the thief is
visiting these cities and as negative values if the thief is not
visiting particular cities. Similarly for the packing plan, if
the thief is picking an item from a city, it is represented by 1
and if no items are picked or if the thief is not visiting that
city then it is represented as 0.



4.2 Initialization
Since this is a new problem it was important that we

experiment with a range of alternative initialization pro-
cedures. We have implemented four alternative initializa-
tion procedures. The tour initialization is based on an op-
timal or near optimal (in terms of shortest overall distance)
tour generated using the Chained Lin-Kernighan heuristic
(CLK) [1].1

The following four approaches cover a range of different
scenarios allowing us to discover a good starting point:

• Init1: Assign complete CLK tour to a single thief. The
initial tours for the remaining thieves do no involve any
travel. All thieves start with an empty packing plan.
This is equivalent to starting with a TTP solution.

• Init2: Iterate through the CLK tour assigning each
city randomly to one thief. Each city is visited by one
thief and all thieves start with an empty packing plan.

• Init3: Iterate through the CLK tour assigning each
city randomly to one thief. A city can be visited by
multiple thieves provided the city has more than one
item. All thieves start with an empty packing plan.

• Init4: Each thief is assigned a chunk of the CLK tour.
Assuming there are n thieves, the size of each chunk
would be (totalCities/n). Each city is only visited
by one thief. Iterative greedy packing using Pack-
Iterative [6] is then applied to the individual tours.
PackIterative considers the profits and weights of
the items, and also their distance to the final city based
on the provided tour.

4.3 Drop City Operator
The DropCity operator is a very simple and intuitive

approach. The aim of the thieves is to maximize the overall
profit so not only would they want to visit cities which are
highly profitable, but they would also want to avoid cities
which have the opposite effect. Visiting some cities may not
be reasonable if the city contains low value items or when
the distance involved in traveling is too high and the cost is
not worth the gain.

Our proposed distance-reducing operator takes in a solu-
tion together with cityID and thiefID. It checks if the thief
is visiting the city specified by the cityID. If it is, then the
city is removed from the tour and the items picked from that
city are flushed out of the thief’s packing plan.

This can then be done iteratively to remove cities which
are not yielding the desired gain to make up for the addi-
tional travel time.

4.4 Cross Thief Mutation
The CrossThiefMutation is used for transferring tour

and packing information between thieves. It takes as input
a cityID and then identifies which thief (if any) is visiting
that city. In case there are multiple thieves visiting that city,
the first thief is selected. This thief is called thiefold The
next step is to randomly choose a new thief (thiefnew) which
may or may not be visiting that city in its current tour.
The packing plan for the corresponding city from thiefold is
then transferred to thiefnew. Once the packing information
has been transferred the corresponding city is removed from

1As available at http://www.tsp.gatech.edu/concorde/
downloads/downloads.htm

thiefold tour. It also means that thiefnew is now visiting that
city.

This can help optimize the tour and packing plans si-
multaneously for multiple thieves. It can also be used as
a crossover operator in the original TTP formulation.

4.5 Additional Routines
In our study we also include operators present within

the current literature. Modification of these approaches for
MTTP was simple as we only added a simple check to en-
sure only active items and tour elements were modified i.e.
those corresponding to the locations the thief was visiting
while other non-visiting locations were left untouched.

4.5.1 Bit Flip
The Bitflip operator was originally proposed in [6]. The

operator iterates through a given packing plan and sequen-
tially flips the packing bits. If an improvement is seen in
fitness the changes are kept else they are ignored. This pro-
cess is then repeated for the next bit. In short, the bit flip
operator optimizes the packing plan given a particular tour.

4.5.2 Insertion
The Insertion operator [6] is used to modify and opti-

mize the tour based on a given packing. The operator works
by removing a city from a given location in the tour and
inserting it at a different location. It may be possible that
some valuable items are picked at the beginning of the tour
due to the order of the cities in the route. Hence the in-
sertion operator tries to delay the pickup of such items by
rearranging the tour such that these items are picked to-
wards the end so that there is minimal impact on the speed
of the thief for the earlier parts of the tour.

A good TTP solution can be characterized by the packing
of fewer or lighter items at the beginning of the tour and the
packing of higher value items at the end of the tour. The
insertion operator tries to achieve exactly this.

4.5.3 1+1 EA
The (1+1)-EA is a simple hill-climber used by

Polyakovskiy et al. [14]. Similar to the Bitflip operator,
the (1+1)-EA also tries to optimize the packing plan given
a particular tour. It iterates through a packing plan and in-
verts each item independently with probability of 1/q. The
updated solution is then evaluated to see if fitness improved.
If an improvement is noted then the changes are kept, else
they are ignored. The above steps are repeated several times
to improve fitness.

5. LOCAL SEARCH ALGORITHMS
In order to isolate the effects of the different search rou-

tines, we first define a set of straight-forward local search
algorithms:

• Heuristic S1: initialize, then Bitflip for each thief;

• Heuristc S2: initialize, then (1+1)-EA for each thief;

• Heuristc S3: initialize, then Insertion for each thief;

• Heuristc S4: initialize, then DropCity for each thief;

• Heuristc S5: initialize, then CrossThiefMutation
once for each city;

The first four procedures are repeated for all thieves allowing
us to optimize each tour and packing plan in a step-by-step



approach. Individual attention is given to each component
of the overall solution. The CrossThiefMutation uses
a more global approach by which a number of tours and
packing plans are optimized simultaneously.

Since we expect the different routines to be able to es-
cape each other’s local optima, we also define the following
slightly more complex heuristics:

• Heuristic C1: repeat initialization until time is up;

• Heuristic C2: initialization, then repeat CrossThief-
Mutation once for each city; DropCity for each thief
until time is up;

• Heuristic C3: initialization, then repeat CrossThief-
Mutation (to distribute cities); Bitflip (to maximize
packing); DropCity (to drop unprofitable cities), In-
sertion (to rearrange cities) until time is up;

The motivation for C1 with its completely independent
initializations without any subsequent hill-climber is that its
equivalent in [6] by far outperformed more complex approx-
imate approaches to the TTP. By considering our MTTP
equivalent, we can investigate the importance of a good ini-
tial CLK tour. The heuristic C2 is based purely on our
new operators. This allows us to collectively establish the
efficiency of the new operators. In heuristic C3 we combine
the search routines available to us. While using multiple
operators may be beneficial, the amount of time spent per
operator will be lower than in the dedicated simple heuristics
due to the rotation.

These heuristics allow us to investigate by how much good
TTP solutions can be improved when considering them in
a MTTP scenario, where multiple thieves are allowed and
where it is not necessary to visit every city.

5.1 Experimental Setup
For our investigations, we use the set of TTP instances

defined by Polyakovskiy et al. [14]2. In these instances, the
two components of the problem have been balanced in such
a way that the near-optimal solution of one sub-problem
does not dominate over the optimal solution of another sub-
problem. The characteristics of the original 9,720 instances
vary widely. In short, they are based on instances from the
TSPlib by Reinelt [17], and on different types of knapsacks
as described by [10]. Also, the knapsack capacities and the
items per city vary. Lastly, for each instance, the renting
rate R that links both subproblems is chosen in such a way
that at least one TTP solution with zero negative objective
value exists.

For our experiments, we use the 72 instances as chosen
by Faulkner et al. [6]. This is a representative subset to
cover small, medium, and large size instances with different
characteristics:

• six different numbers of cities (spread out roughly loga-
rithmically): 195, 783, 3038, 11849, 33810, and 85900;

• two different numbers of items per city: 3, and 10;

• all three different types of knapsacks;

• two different sizes of knapsacks (capacities): 3 and 7
times the size of the smallest knapsack.

For our MTTP study, we can reuse these existing TTP
instances without any modifications.

2As available at http://cs.adelaide.edu.au/˜optlog/
research/ttp.php

We run all algorithms for a maximum of 10 minutes per in-
stance. Due to their randomized nature, we perform 30 inde-
pendent repetitions of the algorithms on each instance. All
computations are performed on machines with Intel Xeon
E5430 CPUs (2.66GHz) and Java 1.8. Note that our code
and results are available online.2

We evaluate the different algorithms and heuristics as fol-
lows. First, we calculate the average objective scores for
each approach on each instance over the independent runs.
We first rank the heuristics for each instance, and then we
average these rankings based on the aspect that we are in-
terested in, e.g., the number of thieves or the algorithm.

5.2 Study I: Initializations
In this first study, we investigate the effects of the number

of thieves involved and of the different initialization strate-
gies. Figure 2 shows the average ranks achieved by the dif-
ferent combinations across all 72 instances. We can observe
that an increase in the number of thieves beyond two results
in a worse rank. This is the case since all traveling thieves
share the same start and end city, and thus the total travel
costs increase. This is also reflected in the study of the ini-
tialization schemes, where Init1 (only one travelling thief)
performs better than Init2 and Init3 (all thieves travel, but
do not pick any items). Init4 performs the best, as it creates
good packing plans for all traveling thieves.
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Figure 2: Study I: Initialization. Shown are the average ranks
and their standard deviations.

5.3 Study II: Local Search Routines
Next, we investigate the benefits of the local search rou-

tines presented in Section 5. Based on the results of our
previous study, we use two thieves and Init4.

In Figure 3 we show again the average ranks of the dif-
ferent approaches across all 72 instances. While all search
routines can improve upon the initial solution, the effect of
the routines presented in [6] (used in our S1–3) is marginal.
In contrast to this, our new problem-specific operators used
in S4 and S5 result in massive improvements.
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Figure 3: Study II: Local Search Routines. All use two thieves
and Init4. Shown are the average ranks and their standard
deviations.



5.4 Study III: Complex Algorithms
Lastly, we investigate our most complex approaches C1–3.

Again, we use Init4 as the initialization scheme.
In Figure 4 we show the results of the algorithms when the

number of thieves is varied. Just as before, we see that the
number of thieves has an important influence on the final
objective scores. Even though using two thieves seems to
be a sweet spot on average, the standard deviation is again
very high. C1 is the best performing algorithm, with a rel-
atively little standard deviation. C3, however, sometimes
outperforms it. Interestingly, the restarting algorithm C1
achieves the lowest rank on average, which is similar to the
observation made in [6], where a comparable simple restart-
ing algorithm performed best on average. We take this as
an indicator that the TSP part of the MTTP still is of very
high importance.
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Figure 4: Study III: Complex Algorithms. All use Init4.
Shown are the average ranks and their standard deviations.

As this is a very compressed view on the outcomes, we
show a decision tree in Figure 5 that classifies the best al-
gorithm for the given instances. For example, we can see
that for larger instances (right half of the tree) C1 should
be used. The more complex C3 with its additional operators
performs better on smaller instances (left half of the tree).
Also, we can see that when the number of items increases,
then additional thieves are of benefit (-4, -5 ).

<C3-2> <C1-2>

<C3-1> <C3-4> <C1-1> <C1-5>

N < 19740.5   

T < 1.5   T < 1.5   

C < 5   Cities < 7443.5   

  N >= 19740.5

  T >= 1.5   T >= 1.5

  C >= 5   Cities >= 7443.5

Figure 5: Decision Tree for the algorithm and thief selection.

For a single solution, we show in Figure 7 how it was
evolved by C3. Firstly, we can see that the green thief’s
tour was reduced significantly in the first iteration and even
further until the final iteration. We conjecture that this thief
could be dropped completely to further increase efficiency,
but the mutation step could not have been performed by
our operators. This conjecture is supported by the fact that
the average objective score for C3 with two thieves is indeed
higher than the score for C3 with three thieves. Secondly, we

can see that often large proportions of the profits available in
a city are stolen (shown as large dots), while the correspond-
ing weight dots remain often small. Thirdly, we can see that
the dot sizes change over time (showing local improvement
of the packing plan), and that the thieves exchanged cities.

To show how the algorithms perform differently on differ-
ent instances, we list the average objective scores achieved
for the smallest and largest instances in Figure 7. We can
see that for the smallest instances the complex algorithm
C3 with two or three thieves dominates the other configu-
rations. For the largest instances, however, the number of
thieves seems to be much more important than the choice of
the algorithm. In addition, we can see that larger number
of thieves are beneficial for the pla85900 instances when the
weights are bounded and strongly correlated. Otherwise,
two to three thieves achieve the best results. Interestingly,
negative scores are achieved four times for five thieves, show-
ing that the algorithm could not transition from the five
thief-setup to the more efficient four thief-setup.

Lastly, we would like to comment that the configuration
C1 with one thief is equivalent to the best-performing TTP
algorithm reported in [6]. That particular algorithm is al-
ways outperformed by our MTTP approaches, regularly by
50% to 100%.

6. CONCLUDING REMARKS
In this paper we proposed the Multiple Traveling Thieves

Problem, which is a variant of the recently proposed Trav-
eling Thief Problem. The motivation for this variant is that
two assumptions were made in the TTP’s definition: the
number of thieves was limited to one and all cities had to
be visited. By removing these constraints, the problem be-
comes more comparable to real-world scenarios. At the core,
the MTTP remains a simple combination of two well-known
combinatorial optimization problems.

The MTTP consists of multiple thieves which can visit a
series of cities containing valuable items in the hope of col-
lectively maximizing their profit. The problem formulation
has been discussed in detail and a number of heuristic ap-
proaches have been used to solve the newly proposed MTTP.
Together with this a number of problem specific operators
have been proposed, which may also be useful for future
research within the domain of the original TTP.

The MTTP has been formulated as such that the existing
TTP instances can be reused for benchmarking the perfor-
mance of algorithms. All code and results presented in this
paper is also available online to encourage further research
within this domain.2

Based on the investigated instances, one observation is
that by introducing additional thieves, the objective score
can be increased significantly, but not arbitrarily. Also, the
restart algorithm that was very successful in the TTP case
was outperformed by MTTP approaches as this time the
problem-specific hill-climbers could mitigate the problem of
the importance of the initial tours.

Future research on problems with interdependent compo-
nents is in need of systematic theoretical and experimental
investigations. For example, Nallaperuma et al. [13] system-
atically investigated and exploited features of TSP instances.
A first step specific to the TTP was recently taken by Wu
et al. [21] who investigated the impact of the renting rate on
instance hardness.
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Figure 6: Evolution of a solution for rat195 n1940 uncorr 03.ttp, using algorithm C3 and three thieves. The objective scores from left
to right are 72294, 151947, and 192556. The best result reported in [6] is 157882. Top row: for each thief the line thickness increases
relative to each thief’s total profit, the diameter of the city dots shows the proportion of the available profit in that city that was stolen.
For example, a thin line shows a light traveling thief, and a small dot means that little or nothing in that city was stolen. The bottom
row shows the same with a focus on the weights of the stolen items.
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Figure 7: Average objective scores achieved. The number of cities is 195 and 85900, the number of items is 582 and 858990, there are
three different types of knapsacks, and the knapsack capacity varies in two instance-specific steps (03 and 07). The cells are formatted
to show the performances from lowest (blue) to highest (red) objective score in each block of 15 cells. Negative values show that it
would have been best not to travel at all—something that was not allowed in the original TTP formulation, but it is now in our MTTP
formulation.


