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Abstract

Energy plays a key factor in the advancement of humanity. As energy demands

are mostly met by fossil fuels, the world-wide consciousness grows about their

negative impact on the environment. Therefore, it becomes necessary to de-

sign sustainable energy systems by introducing renewable energies. Because of

the intermittent availability of different renewable resources, the designing of

a sustainable energy system should find an optimal mix of different resources.

However, the optimization of this combination has to deal with a number of

possibly contradictory objectives.

Multi-objective evolutionary algorithms (MOEA) are widely used to solve

this kind of problems. As optimizing an energy system by using a MOEA is

computationally costly, it is necessary to solve the problem efficiently. For this

purpose, we propose the incorporation of domain knowledge related to energy

systems into different phases (i.e., initialization and mutation) of a MOEA run.

The proposed approaches are implemented for two widely used MOEAs and

evaluated on the Danish Aalborg test problem. The experimental results show

that each approach individually achieves significant improvements of the energy

systems, which is expressed in better trade-off sets. Moreover, a state-of-the-

art stopping criterion is adapted to detect the convergence in order to save
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computational resources. Finally, all proposed techniques are merged within

two MOEAs with the result that our combined approaches yield significantly

better results in less time than generic approaches.
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evolutionary algorithm

1. Introduction

Most energy generated all over the world is based on fossil fuels [1]. As

energy generated by fossil fuels has harmful effects on the environment, recent

interest is directed towards the employment of green or renewable sources to

generate energy [2]. However, due to their intermittent availability, it is not

easy to integrate renewable energy into a larger energy system [3].

In order to solve the integration problem, two optimization phases can be

considered [4], i.e., (i) operational optimization and (ii) capacity/sizing opti-

mization. While the day-to-day operations of resources of a given energy sys-

tem are optimized in the first phase, the second phase is mainly concerned with

the design of future energy scenarios to integrate renewable energies. For the

first phase, many optimization models such as energy system simulation models

are available (e.g., see the comprehensive review article by Connolly et al. [5]).

For the second phase, however, only few attempts have been made when the

considered energy system consists of inter-connected sub-systems from electric,

thermal and transportation sectors [6]. Of the existing approaches, several con-

sider the optimization of the second phase as a multi-objective optimization

problem [7, 8, 9], where the different objectives can be total cost, unmet load

and fuel emission (i.e., CO2 emission) [8]. In this article, we focus on the opti-

mization of energy systems in the second phase. Capacity/sizing optimization

is an active research topic in the energy domain, where it is possible to leverage

synergies between different energy sub-systems [10].

The objectives of real-world problems can often be in conflict with each
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other. The goal of solving a multi-objective optimization (MOO) problem is to

find a (not too large) set of compromise solutions. The Pareto front of a MOO

problem consists of the function values representing the different trade-offs with

respect to the given objective functions. In practice, it is computationally in-

feasible to compute the whole Pareto front, and MOO problems often can only

be solved approximately by heuristic approaches. Evolutionary algorithms have

been widely used to tackle multi-objective problems, and recently, efforts have

been made to employ multi-objective evolutionary algorithm (MOEA) to solve

the problem of optimizing energy systems [11, 12]. In addition, as the energy

system optimization problem we want to tackle is non-linear and discontinu-

ous in nature [10], we apply stochastic method such as evolutionary algorithm

instead of gradient-based methods (such as used in [13]).

Figure 1: Energy system optimization model

Figure 1 presents our model for optimizing energy systems. The upper part

of the model illustrates the steps undertaken by classical MOEAs such as Non-
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dominated Sorting Genetic Algorithm (NSGA-II) [14] and Strength Pareto Evo-

lutionary Algorithm (SPEA2) [15]. MOEAs are bio-inspired algorithms, which

mimic some fundamental aspects of the neo-Darwinian evolutionary process.

They simultaneously search with a population of candidate solutions and asso-

ciate objective scores as fitness values for each candidate solution. The algo-

rithms then select among the population to favor those solutions that are more

fit. The next generation (i.e. a new population) consists of replicates of the

fitter solutions that have been genetically mutated and crossed over in a bio-

logical metaphor: the decision variables were perturbed such that they inherit

characters of their parents, as well as change in random ways. NSGA-II and

SPEA2 are nearly identical, but differ in the way they rank solutions within

the set of trade-offs, and in the way the individuals for next generations are

selected.

The lower part of Figure 1 shows our steps of evaluating individuals. The

core component is the simulator for energy systems, and Connolly et al. [5]

provide a detailed review of different computer tools for performing such simu-

lations. The classification of tools mainly depends on the simulated time step

and the modeled energy sub-systems. Time steps are important when modeling

the intermittent availability of renewable resources. There are several simula-

tion models that consider different time step sizes: HOMER [16, 17] for minutes,

EnergyPLAN and H2RES [18, 19] for hours, and INFORSE [20] and LEAP [21]

for years. However, very few models (e.g., EnergyPLAN, INFORSE) are capa-

ble of simulating different levels of penetration of a renewable energy system

(electricity, thermal and transportation). We choose EnergyPLAN because it

is freely available and it provides fairly detailed (i.e., hourly) analyses of op-

erations of different energy generating sources. It is capable of simulating all

the main inter-connected sub-systems of an energy system. In addition, En-

ergyPLAN also optimizes the operations of a given system (i.e., capacities of

different power generations components, demands, efficiencies, and other rele-

vant data) and produces annual indicators (e.g., total emission, primary energy

consumption, cost and others).
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Generally, simulation models are computationally costly, therefore, we want

to optimize energy systems more efficiently. In particular, we want to achieve

this by generating a high-quality approximation of the Pareto front [22] at re-

duced computational cost. To reach this goal, we investigate the incorporation

of domain knowledge related to energy systems into the different phases of a

MOEA. Firstly, we propose a smart initialization technique and secondly, incor-

porate a smart mutation [23]; both exploit domain knowledge. Additionally, to

detect convergence of the algorithm, we apply the stopping criterion proposed

by Mahbub et al. [24] that has proven to work reliably when used in the op-

timization of a real-world problem (i.e., energy system optimization problem).

This way the MOEA stops when no improvements are achieved, which saves

computational resources that would otherwise be wasted. We integrate smart

initialization, mutation and stopping criterion into MOEAs to form informed

MOEAs and compare them with generic MOEAs. The results clearly show that

all these individual methods work together and have an overall very good im-

pact on the optimization of an energy system. To the best of our knowledge,

this is the first attempt to incorporate energy system domain knowledge into

different operators of MOEAs.

In this study, we focus on the Danish Aalborg energy system [25] to demon-

strate the feasibility of our approach. It is a well-understood problem, and the

details are readily available. It is important to note that more and more as-

pects have been investigated in the recent past, giving rise to a large number

of optimization problems about renewable energy management and electricity

market operation. For instance, energy bidding and reservation [26], economic

dispatch [27] and microgrids management [28] have been considered in the last

few years. As our proposed improvements are independent of the particular

framework used (i.e., as the approach is generic), we conjecture that they can

be applied to these problems as well to improve the outcomes.

The paper is organized as follows. Most of Section 2 discusses how domain

knowledge is represented and how it can be incorporated into a MOEA through

problem-specific initialization. A brief description of smart mutation and stop-
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ping criterion is presented in Sections 2.3 and 3. We present our test problem

in Section 4. Then, we describe in Section 5 the details of all experiments and

the corresponding discussions of the results. Finally, we draw our conclusions

in Section 6.

2. Incorporating Domain knowledge

In general, a typical MOEA cannot perform well for all classes of problems,

as this would be contradictory to the No Free Lunch Theorem [29]. According to

this theorem, the average performance of an algorithm over all possible classes of

problems is constant. Hence, the good performance of an optimization algorithm

on one class of problems is balanced out by the bad performance of the algorithm

on another class of problems. However, this also means that problem-specific

algorithms with above-average performance are possible. Bonissone et al. [29]

define two different ways to achieve this by incorporating domain knowledge:

implicitly and explicitly. Encoding, design of data structures and constraints

representation are categorized as an implicit incorporation of domain knowledge.

Our article mainly focuses on the explicit incorporation (i.e., smart seeding of

initial population, mutation exploiting domain knowledge) for the energy system

optimization problem. In the following sections, we will discuss how we represent

domain knowledge of energy systems and how we incorporate this knowledge

into initialization and mutation.

2.1. Domain knowledge related to energy systems

Typically, experts of a field can provide detailed domain knowledge about

the field, and laypeople can at times provide very basic knowledge or ”rules of

thumb”. In the following, we will use such basic knowledge.

Our goal in this research is to minimize CO2 emissions and the total annual

cost of a system. In this context, it is obvious that some decision variables have

influence on some objectives. For example, increasing the capacities of renewable

resources can reduce CO2 emissions. At the same time, decreasing the capacities
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of renewable resources can minimize the annual cost. To encode such basic

knowledge, we will use the following method: we mark each decision variable

with true, false or null for each objective. True and false indicate increasing

and decreasing, respectively, of the value of a decision variable to minimize an

objective. Null indicates that there is no domain knowledge available for the

decision variable for the objective.

A real-life example of DK representation in the context of energy systems

is given in Table 1. WCoff
and WCon

represent off-shore and on-shore wind

power capacities, respectively. PVC is the photovoltaic’s and PPC is the power

plant’s capacity. CS , OS and NGS represent the coal, oil and natural gas

shares, respectively, to fire power plants. Finally, DKOEM and DKOAC are

the domain knowledge associated with the minimization of emission and annual

cost, respectively. The first row of the table can be interpreted as increasing

(i.e., off-shore, on-share wind, PV capacities; natural gas share to fuel power

plants) and decreasing (i.e., coal share to fuel power plants) of some decision

variables that could minimize the objective emissions. The second row can be

interpreted in similar fashion.

Table 1: A real-life domain-knowledge representation example

DKObj

DVs
WCoff

WCon
PVC PPC CS OS NGS

DKOEM true true true null false null true

DKOAC
false false false null true null false

2.2. Smart Initialization

Most experimental studies on MOEAs use random initialization to initialize

the first population. There, the initial values of the decision variables are drawn

from a uniform distribution within the lower and upper bounds of the variables.

In practice, however, optimizers can typically be seeded with good candidate

solutions either previously known or created according to some problem-specific

method. This seeding has been studied extensively for single-objective problems.
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For multi-objective problems, however, very little literature is available on the

approaches to seeding and their individual benefits and disadvantages.

Friedrich et al. [30] provide a recent overview on MOEA seeding, and also

a comprehensive study on 48 artificial MOO problems for five different MOO

algorithms. Their generic seeding approaches are based on linear combinations

of the objectives, and the individual seeds are computed by a single-objective

optimizer that solves a particular linear combination. These linear combina-

tions are quite ”evenly spread out” in order to achieve an unbiased but close

initial population. They observe that some problems benefit significantly from

their seeding strategies, while others profit less. The advantage of seeding also

depends on the examined algorithm.

In contrast to their problem-independent seeding approaches, our method

initializes a decision variable by using actual domain knowledge. We enable

laypersons to provide some domain knowledge in a very basic manner. For

example, ”decreasing coal share could minimize the objective emissions” is en-

coded as ”false” in Table 1. Our method in the following section then translates

this basic knowledge into a diverse set of seeds. We call this process smart

initialization, and we describe the details in the following.

2.2.1. Methodology

The initial value of a decision variable can be defined as follows:

dvi = lbi + (ubi − lbi) ∗ δ̄ (1)

where lbi and ubi are the lower and upper bounds of the decision variable,

respectively. We calculate δ̄ from the probability distributions described below.

Probability Distribution. The following proposed probability distribution is used

when a decision variable is needed to be initialized with higher values:

p(δ) = (β + 1)δβ (2)

and the following probability distribution is used when a decision variable is
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needed to be initialized with lower values:

p(δ) = (β + 1)(1− δ)β (3)

These distributions are valid for δ ∈ (0, 1). β takes a non-negative value that

is used to control the shape of the distribution.

Note that a uniform distribution cannot be used to incorporate any domain

knowledge. While Gaussian distributions can be used, it is not as easy as with

ours to incorporate domain knowledge. We will see in the following how we can

control the shape of the distribution in order to initialize values closer to either

the lower or upper bounds of the decision variables.
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(β + 1)δβ ,β = 6

(β + 1)(1− δ)β ,β = 4

(β + 1)δβor(β + 1)(1− δ)β ,β = 0

Figure 2: Example of probability distributions

Figure 2 illustrates four examples with two different distributions and dif-

ferent β values. The blue and red curves are the plots of Equation (2), however,

the red curve is steeper than the blue curve due to the larger β value. Hence,

with larger β value, it is more probable that the initial value will be closer to

the upper bound of the decision variable. For lower β values, the distribution

will be flatter, hence, increasing the probability of an initial value to fall within
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the entire range between the upper and lower bounds, rather than near the up-

per bound. Eventually, when β = 0 the distribution will be equivalent to the

uniform distribution (i.e., purple line in Figure 2) that is commonly used for

random initializations. Additionally, the orange curve is an example of a distri-

bution based on Equation (3). In summary, by controlling the β value and by

using the appropriate distribution, one can have a better control over the initial

value of a decision variable than with random initialization. Note that, while we

could manually set exact values for the initial values, domain knowledge is often

a bit ”fuzzy”, and our distributions allow for random but biased variations of

the initial values.

Now, the analytical formula for δ̄ (used in Equation (1)) can be found by

calculating the inverse of the cumulative distribution function [31](also known

as inversion method [32])1. ∫ δ̄

0

p(δ)dδ = t (4)

where t is a random number within [0, 1] drawn from a uniform distribution.

When Equation (2) is used as probability distribution, the analytical formula

for δ̄ is

δ̄ = t
1

β+1 . (5)

When lower values are preferred (Equation (3)), the formula is

δ̄ = 1− (1− t)
1

β+1 (6)

2.2.2. Generating initial populations

As it is not possible to know in advance which combinations of β values

for the decision variables of an individual will be suitable to generate the initial

biased populations, we will consider all possible combinations. If the problem at

hand has d decision variables and if we consider b different values for β, then the

total number of combinations is nc = bd. Therefore, for each of the o objectives,

there are nc combinations of β values, and for each combination we can generate

1a process for generating random variates from a specific probability distribution
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k individuals to achieve some diversity among the biased solutions. Hence, we

generate nDK = o ∗ nc ∗ k individuals in total.

Most evolutionary algorithms, however, only work with populations that

are significantly smaller than nDK for real-world problems. For example, with

o = 3, b = 3, d = 5, and k = 10 the initial population size would be nDK = 7290,

which is about two orders of magnitude above what is typically used in studies.

Populations of this size tend to slow down the actual optimization algorithm

as the computational complexity of the algorithm is typically dependent on the

population size. To solve this problem, we provide a procedure for reducing the

number of individuals down to a fixed number. Algorithm 1 presents our overall

process of generating initial populations that uses domain knowledge.

Algorithm 1 Algorithm for generating initial populations
1: for all domain-knowledge arrays DKoi do

2: for all combinations (c) from nc combinations do

3: Generate k individuals using Algorithm 2

4: end for

5: end for

6: Reduce number of individuals from nDK to np

Algorithm 2 Algorithm for generating a single individual
Require: a combination c of d numbers for β values

1: for all dvj do

2: if DK
dvj
oi

is true then

3: Use Equations (5) and (1) to generate the value of the decision variable; value of

β is taken from the combination c

4: else if DK
dvj
oi

is false then

5: Use Equations (6) and (1) to generate the value of the decision variable; value of

β is taken from the combination c

6: else if DK
dvj
oi

is null then

7: Generate a random value within upper and lower bound from uniform distribution

(i.e., use Equations (5) or (6) with β = 0)

8: end if

9: end for
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Reducing the number of individuals. Due to combinatorial explosion, our previ-

ously proposed methodology generates many individuals. As we want to reduce

the number of individuals, we adapt the concept of decision space diversity to

cover the space efficiently using a fixed number np of individuals.

Ulrich et al. [33] categorizes diversity measurements depending on the way

they are calculated. The categorization is based on (i) relative abundances,

(ii) taxonomy, (iii) aggregating the dissimilarities, and (iv) utility of solutions.

In the first class (relative abundance), diversity is calculated by measuring the

relative abundance of each solution within a population set, with one example

being the Shannon entropy [34] metric. The metrics in the second class use

the path length within a taxonomy tree, where the solutions are arranged in a

tree that reflects the taxonomic classification of the solutions. Clustering metrics

belong to this class, and the calculation of metrics from this class typically suffers

from high computational cost. The metrics of the third kind are computed by

summing up all the dissimilarities between all the individuals. For example,

Shir et al. [35] use a metric from this class to enhance diversity in a MOEA.

The last class is based on measuring the utility of solutions. Solow et al. [36]

propose a metric that uses a utilitarian view on solutions. There, each solution

has a pre-defined utility value, and the key idea is that the total utility of a

population does not increase by adding duplicate individuals. Ulrich et al. [33]

has shown that this Solow and Polasky metric (a metric of the forth class) is

the only one to fulfill all the three basic requirements of a diversity measure

(i.e., monotonicity in varieties, twinning and monotonicity in distance). In our

article, we will use the Solow and Polasky metric to measure the diversity of an

initial population.

Let us consider a population P with k individuals (A1, A2, . . . , Ak), and let

d(Ai, Aj) be the Euclidean distance in the decision space between Ai and Aj

(i.e., d(Ai, Aj) =
√

Σdl=1(dvlAi − dv
l
Aj

)2, where dvlAi , dv
l
Aj

are the lth decision

variable of Ai and Aj individuals, respectively.) Then each element mi,j of a

k × k matrix M can be defined as mi,j = exp(−θ ∗ d(Ai, Aj)), where θ is a

normalizing parameter between distance and number of individuals. Finally,
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the Solow and Polasky metric is the summation of all the elements of the M−1

matrix. Algebraically, it can be written as follows:

SP (P ) = vM−1vT (7)

where v = (1, 1, . . . , 1) is a row vector of size 1× k and vT represents the trans-

pose of v. Intuitively, the metric measures the number of different individuals

present in the population. The individuals that are close to each other are

considered as the same individuals, which can be adjusted via the value of θ.

The initial population PDK from our previous approach contains nDK =

o ∗ nc ∗ k individuals. As we need to reduce the number of individuals from

initial population, the idea is to select a subset PI of size np from PDK that

maximizes the population’s diversity. The problem is formulated as follows:

argmax
PI⊆PDK

SP (PI) (8)

As it is not practical to consider all possible subsets, we use the greedy

approach proposed in [33]. This approach iteratively removes the individual

that contributes the least to the Solow and Polasky metric.

2.3. Smart Mutation

While we expect the smarter initialization to give the optimization a “head

start”, we also want to speed up the actual optimization process itself. Mah-

bub et al. [23] developed the idea of smart mutation, which is based on the

same concept of domain knowledge utilization as is our initialization strategy.

In that article, the polynomial mutation as proposed by Deb [22] is modified

to create two additional mutation operators called renewable energy favor mu-

tation (REFM) and conventional energy favor mutation (CEFM). Polynomial

mutation mutates an offspring so that the values of the decision variables can be

increased or decreased depending on a randomly generated value. On the other

hand, both REFM and CEFM use the same domain knowledge representation

as described in Section 2.1. For example, the first and second row of Table 1

can be used for REEM and CEFM, respectively. In addition, REEM mutates
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the decision variables to be increased or decreased based on domain knowledge

represented by the first row of Table 1 and in the same way, the second row can

be interpreted for CEFM. In the following, we will briefly outline the details of

smart mutation.
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Polynomial mutation with ξ=0
Polynomial mutation with ξ=3
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Modified Polynomial mutation for decreasing value with ξ=3
Modified Polynomial mutation for increasing value with ξ=4

Figure 3: Probability distributions for polynomial and modified polynomial mutation.

In polynomial mutation, a probability distribution is used to perturb a de-

cision variable of an offspring solution.

µ̄ = µ+ (µU − µL)γ̄ (9)

where µ̄ is the mutated offspring decision variable, µ is the offspring decision

variable that will be perturbed. µU and µL are the upper and lower bounds of

µ, respectively. γ̄ will be calculated from the following probability distribution.

p(γ) = 0.5(ξ + 1)(1− |γ|)ξ (10)

where ξ is a parameter that takes only non-negative values, called distribution

index. This distribution is valid for γ ∈ (−1, 1). Three black lines of Figure 3

illustrate the distributions with different distribution index values.

When it is required to increase the value of a decision variable (e.g., require

for REFM and CEFM), a modified probability distribution function is used
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instead of Equation (10).

p(γ) = 0.5(ξ + 1)(1− γ)ξ (11)

The distribution is valid for γ ∈ (0, 1). This distribution insures that the value

of an offspring decision variable only can be increased or stay same as before.

The black line with downward triangle in Figure 3 illustrates the probability

distribution used in a polynomial mutation with distribution index 4. Whereas,

the red line with empty rectangles in the figure shows the modified distribution

with same distribution index. The closed/analytical form of γ̄ for the above

distribution is as follows:

γ̄ = 1− [1− r + r(1− γmax)ξ+1]
1
ξ+1 (12)

Where r is a random number within a range of 0 to 1, drawn from an uniform

distribution. And γmax = min {(µ− µL), (µU − µ)}/(µU − µL). This closed

form of γ̄ is used in Equation (9) to calculate the new mutated value.

In the following, the modified probability distribution and the closed form

of γ̄ are presented, when the value of a decision variable of an offspring needs

to be decreased:

p(γ) = 0.5(ξ + 1)(1 + γ)ξ, valid for γ ∈ (−1, 0) (13)

γ̄ = [r + (1− r)(1− γmax)ξ+1]
1
ξ+1 − 1 (14)

At the beginning of an optimization, the probabilities of the problem-specific

mutations (i.e., REFM and CEFM) are maximal and these decrease over time.

As generations pass, the probability of generic mutation (i.e., polynomial mu-

tation) is increased. This dynamic adjustment of the mutation probabilities

ensures that modified mutations are used more in the early stage to better

explore the search space (generate some extreme individuals) and polynomial

mutation is used more in the later stage to maintain the usual exploration and

exploitation behavior of a generic mutation. Mahbub [23] demonstrated the
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successful application of this problem-specific mutation for an energy system

optimization problem, which is why it forms an important component in our

research as well.

3. Stopping Criterion

We use EnergyPLAN (version 11.0, released in September 2013) [37] to as-

sess solutions within a MOEA. As function evaluations using EnergyPLAN are

in general computationally costly, we need to find ways to reduce the computa-

tional time. One way to minimize the computational cost is to stop a MOEA

in the appropriate moment (i.e., when it is converged) to save costly function

evaluations. Interestingly, this is in stark contrast to the usual MOEA use,

where they are stopped after a certain amount of function evaluations.

Setting this particular number efficiently for real-world optimization prob-

lems (where no knowledge specific to the convergence is available) is a difficult

task. Therefore, we adapt the stopping technique that was recently proposed by

Mahbub et al. [24] in this case. The proposed method is based on simultaneously

monitoring the population of the MOEA in the objective and decision space.

The average Hausdorff distance and diversity are used to monitor the objective

and decision spaces, respectively. To detect the stability of these two metrics, a

statistical hypothesis test (i.e., two-sided t-test) is performed on the time-value

slope of the metrics. Mahbub et al. [24] report that the convergence (i.e., ab-

sence of progress) of a MOEA is detected more reliably by this combination

than the way when only objective space metrics are used.

Another advantage of the technique is the simplicity of setting this stopping

criterion. The first parameter α specifies the significance level of the statistical

test. The next parameter nGenLT is the number of previous generations, for

which the metric values are considered to determine the slope. The parameter

nGenUnCh is the number of successive generations for which no significant im-

provement is obtained (i.e., no significant change in metric values). The final

parameter MaxGen is the number of maximum allowable generations for evolv-
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ing a MOEA. Basically, this last parameter specifies the available computational

limit for a problem that always needs to be set.

4. Case Study: Aalborg Energy System

To study the effect of our proposed techniques to use of domain knowledge

in initialization and mutation, and our use of the stopping criterion, we choose

the Aalborg energy system problem [25] as a test problem 2. The reason behind

choosing this particular problem is that it is extensively analyzed, therefore, all

necessary data is available.

Aalborg is the third most populous city in Denmark with approximately

200,000 residents and an area of around 1100 km2. The energy demand of

Aalborg in 2007 was basically met by wind power, fossil fuel-based power plants

(i.e., coal, natural gas), and individual heating. Moreover, the transportation

sector was completely based on fossil fuels. The 100% renewable energy system

based on local renewable resources was developed by the researchers of Aalborg

university [38, 39, 25] and Aalborg is expected to become self-sufficient before

the year of 2050. According to [38, 39, 25], the projected electricity demand

for the 100% renewable energy scenario will be 1.47 TWh/year (electric - 0.7

TWh/year, transport - 0.46 TWh/year, heat pump - 0.12 TWh/year, hydrogen

generation - 0.19 TWh/year). Additionally, the projected thermal demand is

1.45 TWh/year and mainly met by central district heating, combined heat and

power (CHP), and heat pumps. More details on the Aalborg energy system can

be found in [25].

As a case study, we optimize the Aalborg energy system by keeping the same

electric and thermal demands of the 100% renewable system. We optimize

five decision variables (i.e., capacities in MW of: combined heat and power

(CHP), heat pump (HP), on-shore wind (ONW), off-shore wind (OFW) and

2Our framework can be applied to identify future optimization scenarios for other cities,

states and countries. With the availability of specific domain knowledge, we conjecture that

our proposed improvements can solve these problems more efficiently as well.
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photo-voltaic (PV)) in order to minimize CO2 emission (EM) and annual cost

(AC). The lower and upper bounds for the decision variables are presented in

Table 2. The computational cost of about three seconds per evaluation through

EnergyPLAN make this a challenging real-world problem.3

Table 2: Lower and upper bounds of different decision variables for Aalborg energy system

problem

Bounds

DVs
dvCHP dvHP dvONW dvOFW dvPV

Lower (MW) 0 0 0 0 0

Upper (MW) 1000 1000 1500 1500 1500

5. Comprehensive Experiments and Results

We divide our experiments into three parts. The first part reports the impact

of our smart initialization by comparing it against the commonly used random

initialization. In the second part, we investigate the influence of the smart

mutation by comparing it with the commonly used polynomial mutation. The

third part of the experiments assesses our combined approach that uses all

techniques (i.e., smart mutation, smart initialization, and stopping criterion)

into NSGA-II and SPEA2.

5.1. General Experimental Settings

In this section, we present all the experimental settings that are used for

all three phases of the experiments. Specific experimental settings related to a

specific phase will be presented in the corresponding section.

All the proposed methodologies are implemented in jMetal [40], a JAVA-

based multi-objective meta-heuristic framework.4 Table 3 shows the general

3The simulation was performed on a machine having two 2.6 GHz CPUs with six cores

each and 96 GB RAM.
4Our complete source code is available online: https://github.com/shaikatcse/

EnergyPLANDomainKnowledgeEAStep1
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parameter settings that are used in the experiments. Additionally, we use sim-

ulated binary crossover [22], polynomial mutation [22] and binary tournament

selection [22] for both algorithms. For each phase of the experiments, the al-

gorithms are run independently 30 times to facilitate a statistical analysis of

the results. Table 4 presents the domain knowledge used in the experiments

to optimize Aalborg energy system. This knowledge is based on intuitive un-

derstanding. The first row of the table describes that the increasing capacities

of CHP, HP On-, off-shore wind and PV can decrease the emission of Aalborg

energy system. In addition, the second row represents that the decreasing of

the capacities can decrease the annual cost of the system.

Table 3: General parameter settings for NSGA-II and SPEA2

NSGA-II SPEA2

Population size 100 100

Archive Size – 100

Crossover probability 0.9 0.9

Mutation probability 0.1 0.1

Distribution index 10 10

Maximum evaluations 7000 7000

Table 4: Domain knowledge related to different decision variables and objectives for Aalborg

energy system problem

DKObj

DVs
dvCHP dvHP dvONW dvOFW dvPV

DKoEM true true true true true

DKoAC false false false false false

5.2. Evaluation Metrics

Evaluation metrics are necessary to measure the quality of the found set

of trade-off solutions. To evaluate our proposed initialization method, we will

use four metrics that are commonly used, namely the hypervolume (HV) [41],
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the inverted generational distance (IGD) [42], the additive epsilon approxima-

tion [43], and the spread [14]. The HV metric measures the volume covered by

a set of solutions in the objective space with respect to a pre-defined reference

point. IGD is the average distance of all the solutions in the true Pareto front

(tPF) to the nearest solution of given set of solutions. The concept of epsilon

approximation is that one determines the minimum distance a found solution

set in the objective space needs to be translated to in order to dominate the

tPF. Deb at al. [14] introduced an indicator, called spread, to understand how

well the front is distributed. Typically, a tPF (or an approximation thereof) is

required to calculate the values of all the metrics except for the hypervolume.

The reference point can be chosen either arbitrarily or based on a reference set:

assuming we are minimizing, the coordinates of the point can be the maximum

values per objective that the reference set in the objective space attains.

As the tPF of Aalborg energy system problem is not known in advance, we

merge all the found sets of solutions (i.e., solution sets of 240 different individual

runs), and we take only the non-dominated solutions from the merged fronts.

We use this approximation of the tPF to calculate all the metric values. Please

note that higher HV values indicate better results, whereas lower values for the

other metrics indicate better results.

5.3. Influence of Smart Initialization

To investigate the impact of our smart initialization (SI), we will compare

it with random initialization (RI) that is typically used in MOEA experiments.

Random initialization is the process of selecting the value of a decision variable

uniformly at random within the lower and upper bound of the decision variable.

For the smart initialization process, we set θ = 6.0, k = 4 and β ∈ [0, 1, 2] based

on preliminary experiments.5

Figure 4 presents two Pareto fronts for Aalborg energy system problem,

5We conjecture that additional performance gains are possible, however, a tuning of these

parameters is beyond the scope of this article.
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Figure 4: Pareto fronts generated by SPEA2 with random initialization (RI) and with smart

initialization (SI)

generated by the SPEA2 algorithms; the red one is generated using RI and

the green one uses SI. The X-axis represents CO2 emission in million tons and

the Y-axis represents annual cost in million Danish Krone (DKK) for Aalborg

energy system. It is noticeable that some of the solutions (i.e., scenarios) have

negative emissions. This is simply because these scenarios export electricity

generated by green sources from within the system to outside partners of the

system. The net amount of emission of the system is adjusted by the electricity

generation mix of imported electricity. Details of this aspect can be found in

the article by Lund [44].

Moreover, the green set of solutions clearly has a better spread, hence, produces

more optimized energy scenarios towards the corners that can be interesting

to energy planners. In addition, sometimes it produces better solutions than

some of the solutions of the Pareto front generated by using RI. However, as

previously mentioned, it is required to perform statistical analyses to understand

the performance of the algorithms. Therefore, Figure 5 shows the results as

boxplots for the four different evaluation metrics. The means and standard

deviations of four metrics for two MOEAs are presented in Table 5. The dark
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Figure 5: Boxplots for four metrics comparing random initialization (RI) with smart initial-

ization (SI) in NSGA-II and SPEA2

gray shade indicates better results. It is very clear from the figure and the table

that SI outperforms RI on all the metrics for the two algorithms. Moreover, we

perform Mann-Whitney U-tests [45]6 on all the metric values of the different

runs. The test is performed to test the null hypothesis against an alternative

hypothesis to determine whether two samples come from same population or not.

In our context, we want to reject the null hypothesis, as the evaluation metric

values of applying SI and RI should be significantly different to each other. We

consider that the null hypothesis will be rejected if the corresponding p-value is

less than 0.05. Table 6 presents p-values for all the metrics of the two different

MOEAs. All the p-values except spread and IGD for NSGA-II are less than

0.05. The test results shows that there are statistically significant differences

for the metrics (except spread for NSGA-II) when SI is used instead of RI.

6a non-parametric statistical test, also known as Wilcoxon rank-sum test
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In summary, for most of the metrics, significant amounts of improvements are

achieved by using our proposed smart initialization technique.

Table 5: Mean and standard deviation (in subscript) for different quality indicators.

Mean and standard deviation

Algorithm Evaluation metrics Random Initialization Smart Initialization

NSGA-II

HV 8.35e− 013.6e−04 8.35e− 012.9e−04

IGD 7.01e− 034.0e−04 6.81e− 033.5e−04

Epsilon 6.70e+ 004.8e+00 2.37e+ 001.5e+00

Spread 4.38e− 013.6e−02 4.29e− 013.5e−02

SPEA2

HV 8.32e− 012.4e−03 8.35e− 015.1e−04

IGD 2.51e− 022.0e−02 1.00e− 021.8e−03

Epsilon 7.06e+ 015.5e+01 2.63e+ 011.2e+01

Spread 5.98e− 014.2e−02 5.45e− 012.3e−02

Table 6: Mann-Whitney U-tests: p-values for different metrics when comparing smart initial-

ization (SI) with the common random initialization (RI).

p-values

Evaluation

metrics

Compare NSGA-II:

With SI and RI

Compare SPEA2:

With SI and RI

HV 0.02247 9.083e−12

IGD 0.087783 2.2e−16

Epsilon 5.92e−05 1.886e−04

Spread 0.3986 2.841e−07

While it is necessary to compare the final solutions, we are also interested in

the actual effect that SI has on the optimization. As SPEA2 benefits more than

NSGA-II from the use of SI, we are showing the development of the indicator

values over time in Figure 6. As we can see, our smart initialization strategy

results in significantly better starting points for the optimization process than

random initialization does. In addition, SI also appears to provide better pop-

ulations for the subsequent optimization, as the progress over time is “steeper”

in comparable parts of the optimization. For example in the case of additive

epsilon approximation, it takes six generations to improve from approximately

380 to 200 when SI is used, whereas twice as much time is needed when random

initialization is used. Similar trends can be observed for development of the
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Figure 6: Development of the indicators during the optimisation runs for SPEA2.

other indicator values. We conjecture that the bias of the initial populations as

generated by SI has favorable properties that are exploited in the subsequent

optimization, whereas RI with its uniform initialization is not problem-specific.

As a final note, the chosen approach to initialize the populations based

on the maximization of Solow and Polasky diversity metric is computationally

relatively expensive, taking approximately 40 minutes each time on our machine.

While it is possible to maximize Solow and Polasky metric in slightly different

approach that reduce the computational time within few seconds; we continue

to use the approach proposed in [33] and described in section 2.2.2, as we do not

intend to compare different approaches to maximize Solow and Polasky diversity

metric.

5.4. Influence of Smart Mutation

In this section, we investigate the impact of smart mutation on the Aalborg

energy system problem. To do so, we compare polynomial mutation (PM)

with our smart mutation (SM) using the same evaluation metrics as above for
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Figure 7: Pareto fronts generated by SPEA2 with polynomial mutation (PM) and with smart

mutation (SM)

Table 7: Mann-Whitney U-tests: p-values for different metrics when comparing our smart

mutation (SM) with the common polynomial mutation (PM).

p-value

Evaluation

metrics

Compare NSGA-II:

With SM and PM

Compare SPEA2:

With SM and PM

HV 0.0906 1.51e−05

IGD 0.2539 1.20e−16

Epsilon 0.01664 0.07721

Spread 0.7082 1.34e−04

NSGA-II and SPEA2 as the underlying MOEAs. For each MOEA, the same

initial population is used for each run to ensure a fair comparison between PM

and SM. By using the same initial populations we cut down any advantage gain

by a MOEA in the initial phase. Therefore, the settings ensure that if any

MOEA performs better than any other, then this is strictly due to the use of

our specific mutation SM.

Figure 7 shows two Pareto fronts generated by SPEA2 using PM and SM.

The Pareto front with SM has better spread and produces better solutions.

Figure 8 presents the comparison of PM and SM as boxplots. For all the metrics,

SM performs better than PM. However, the statistical test (Table 7) shows
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Figure 8: Boxplots for four metrics comparing PM with SM for NSGA-II and SPEA2

that not all the metrics are not statistically significantly different for NSGA-

II. Nevertheless, significant improvement is achieved for SPEA2. From the

boxplots and the statistical test, it can be concluded that SM provides a good

performance improvement for both MOEAs.

5.5. Combined Approach

Finally, we want to compare a combined approach (i.e., smart initialization,

smart mutation and stopping criterion are integrated) with a typical approach

(i.e., random initialization, polynomial mutation and fixed maximum genera-

tions) for NSGA-II and SPEA2 on the Aalborg energy system problem.

For this experiment, we use the following parameters for the stopping crite-

rion: nGenLT = 20, nGenUnCH = 5, α = 0 .05 and MaxGen = 70. The values

are chosen in such a way that the stopping happens early, which we prefer as

we are using costly simulations. All other parameters remain unchanged.

First, Figure 9 presents an example of the comparison of two Pareto fronts
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Figure 9: Pareto fronts generated by generic SPEA2 and SPEA2 Com

generated by the generic SPEA2 and by SPEA2 with the combined approach

(SPEA2 Com). Again, SPEA2 Com clearly performs better than the generic

approach. In addition, Table 8 shows the results of the four different MOEAs,

where a darker cell color indicates a better result. Figure 10 shows the results

as boxplots to compare NSGA-II and NSGA-II with the combined approach

(NSGA-II Com), and similarly for SPEA2. Table 9 presents the p-values for

all the metrics. From the boxplots and Table 8, it is clear that our combined

approach performs very similarly to a typical approach for NSGA-II, however, it

outperforms a typical approach on every chosen metric for SPEA2. Nevertheless,

it should be noted that our combined approach achieves the similar results for

NSGA-II with fewer function evaluations (Table 10). Hence, it can be concluded

that our combined technique has a positive impact on MOEAs. For NSGA-II,

our technique does not provide significantly better results in terms of metrics

values, however, on average almost one-forth of total function evaluations (Ta-

ble 10) are saved. On the other hand, for SPEA2, a significant improvement of

the metric values are obtained, compared to the typical method.

Lastly, we list in Table 10 the total number and average percentage of saved

function evaluations for each MOEA for 30 runs. Note that all the simulations
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Figure 10: Boxplots for four metrics comparing NSGA-II and SPEA2 with all the proposed

techniques.

Table 8: Mean and standard deviations of four different metrics
Metric NSGA-II NSGA-II Com SPEA2 SPEA2 Com

HV 8.35e− 013.6e−04 8.35e− 013.5e−04 8.32e− 012.4e−03 8.35e− 017.5e−04

IGD 7.01e− 034.0e−04 6.85e− 034.3e−04 2.51e− 022.0e−02 9.96e− 032.9e−03

Epsilon 6.70e+ 004.8e+00 6.57e+ 004.9e+00 7.06e+ 015.5e+01 2.03e+ 011.4e+01

Spread 4.38e− 013.6e−02 4.27e− 013.1e−02 5.98e− 014.2e−02 5.51e− 012.5e−02

without our stopping criterion technique use 7,000 function evaluations (i.e., 70

generations). We calculate the number of saved function evaluations (SFE) for

each run by SFE = (70 − Gensc) ∗ PS, where Gensc is stopping generation

number of the stopping criterion and PS is the population size. Then, we sum

up all SFE values of the 30 runs to find the total SFE. The average percentage

of SFE is calculable by SFET ∗100
FET

, where SFET is the total SFE and FET =

210, 000 as this is the total number of function evaluations required when the

stopping criterion is not used. According to the results, the modification of

NSGA-II has saved the largest number of function evaluations. On average 22%
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Table 9: Mann-Whitney U-tests: p-values for different metrics when comparing our combined

approaches (Com) with the generic approaches.

p-value

Evaluation

metrics

Compare NSGA-II:

With combined and generic approach

Compare SPEA2:

With combined and generic approach

HV 0.7191 1.63e−09

IGD 0.1727 2.20e−16

Epsilon 0.8704 6.932e−06

Spread 0.3136 4.106e−09

Table 10: Number and percentage of saved function evaluations for different MOEAs

MOEA
Total saved

function evaluation

Average percentage of

saved function evaluations

NSGA-II Com 45400 22%

SPEA2 Com 27400 13%

function evaluations are saved, while also yielding a similar performance of the

final solutions (see Table 8 and Figure 10).

The poor results of SPEA2 can be also explained by the number of saved

evaluations. According to the table, fewer evaluations are saved compared to

NSGA-II. Therefore, it is clear that SPEA2 is not able to converge as quickly

as NSGA-II on this problem.

6. Conclusion

Current and future energy systems will include more and more renewable

energy sources. To accurately plan such systems, complex and computation-

ally costly simulations are typically used to assess configurations according to

different objectives, for example, based on their cost and their emissions.

General purpose multi-objective evolutionary algorithms are often used to

solve such problems, however, the simulation cost result in time-consuming op-

timizations. In this article, we present and combine different techniques to im-

prove both solution quality and speed of an optimization. First and foremost,

we incorporate basic domain knowledge about energy systems into different op-
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erators of such algorithms in order to increase the solution quality. In addition,

we also adapt a recently-developed stopping criterion to save simulations.

Our results on the Danish Aalborg energy system problem reveal that our

problem-specific approaches achieve significant improvements over generic state-

of-the-art approaches, both in terms of solution quality and optimization speed.

It is noteworthy that this was achieved with rather basic domain knowledge. It

remains to be seen how much solution quality can be improved further by using

more detailed knowledge.
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