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ABSTRACT
The functional correctness of safety- and security-critical
software is of utmost importance. Nowadays, this can be
achieved through computer assisted verification.

While formal verification itself typically poses a steep
learning-curve for anyone who wants to apply it, its appli-
cability is further hindered by its (typically) low runtime
performance.

With the increasing popularity of algorithm parameter
tuning and genetic improvement, we see a great opportu-
nity for assisting verification engineers in their daily tasks.
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1. INTRODUCTION
Formal verification is the act of proving or disproving that

an algorithm or its implementation is correct with respect
to its formal specification. The formal mathematical ap-
proaches include, among others, model checking, deductive
verification, and program derivation [1, 3, 6].

While formal methods get increasingly used in industry
in the development of safety- and security-critical programs,
the general popularity of formal methods is not as high as it
could be. Reasons include, among others, the steep learning
curve (even for verification engineers), and the often unsat-
isfactory runtime performance.

Our goal is to increase the runtime performance of verifi-
cation systems by improving their proof procedure. We see
at least the following two different approaches:

1. automated algorithm parameter tuning to tune “magic
numbers” used in existing proof procedures,
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2. genetic improvement of the actual proof procedure, or
of components thereof.

These two can be seen as extremes, with deep parameter
tuning [10] sitting between.

Two success stories about the improvement of non-
functional properties in the greater context of formal ver-
ification are the following. For example, Hutter et al. [7]
reduced the runtime of the SAT solver SPEAR through al-
gorithm parameter tuning. A different approach to the opti-
misation of a non-functional property was chosen by Bruce
et al. [5], who modify the source code of the SAT solver
miniSAT in order to reduce its energy consumption.

Similar success stories are rarely heard of, and we intend
to change this by improving an open-source tool that is used
in industry.

2. TARGET OF OPTIMIZATION: PRO-
GRAM VERIFICATION SYSTEMS

Every program verification system has to perform (at
least) two rather separate tasks: (a) handling the program-
language-specific and specification-language-specific con-
structs, and reducing or transforming them to classical logic
expressions, (b) theory reasoning and reasoning in classical
logics, for handling the resulting expressions and statements
over data types. One can either handle these tasks in one
monolithic logic/system, or one can use a combination of
subsystems. In our present research, we propose to focus on
the second task.

To demonstrate the applicability of search-based software
engineering for formal verification speed-up, we have cho-
sen the KeY tool [1], an open-source verification system for
sequential Java Card programs. In KeY, the Java Model-
ing Language (JML) is used to specify properties about Java
programs with the common specification constructs like pre-
and postconditions for methods and object invariants. Like
in other deductive verification tools, the verification task is
modularised by proving one Java method at a time.

In the following, we will briefly describe the workflow of
the KeY system—in our case, we assume the user has chosen
one method to be verified against a single pre-/postcondition
pair. First, the relevant parts of the Java program (to-
gether with its JML annotations) are translated to a sequent
in Java Dynamic Logic (JavaDL), a multimodal predicate
logic [1]. Validity of this sequent implies that the program
is correct with respect to its specification. Proving the va-
lidity is done using automatic proof strategies within KeY,
which apply sequent calculus rules.



Results of a verification attempt in KeY are the following:
either the generated JavaDL formula is valid and KeY is
able to prove it; or the generated formula is not valid and
the proof cannot be closed; or KeY runs out of resources.

By the way, this is not the first time that the KeY tool
is subject to search-based software engineering approaches.
For example, Beckert et al. [2] presented the first maximi-
sation of a problem-specific test coverage criterion. Wag-
ner [9] investigated this further and also minimised the time
needed for regression testing by greedily choosing tests from
a large set of automatically created tests. Recently, Bokhari
et al. [4] further improved the test coverage results through
problem-specific local search.

3. RUNTIME IMPROVEMENT OF KEY
As already mentioned, we are targeting the reasoning task

of a verification system, which in KeY’s case is handled by its
automated proof strategy. This strategy decides which of the
hundreds of rules are to be applied to an expression in order
to efficiently show its validity. The difficulty here is that this
strategy has grown over many years, with the input of many
researchers from several universities. Currently, the strategy
selection encompasses hundreds of lines of code, complex
formulae, and about 350 numeric values to determine the
next rule application.

In a first step to understand this historically grown selec-
tion procedure, we analysed the GIT history of the JavaDL
strategy implementation. We focussed on changes in the cost
function, when the comment indicated the change was due
to some optimisation. This way, we determined ranges of
the constants (“magic numbers”). As an example, we show
10 constants, their default value in the current KeY imple-
mentation, as well as in earlier versions, in order to provide
some first idea about the ranges and the relative ordering:

parameter name current default previous defaults
pull out select -1900 -2000

cut direct 100 200, 10
gamma 10

inEqSimp expand -4400 -4500
inEqSimp directInEquations -2900 -3000

inEqSimp propagation -2400 -2500
inEqSimp pullOutGcd -2150 -2250

inEqSimp saturate -1900 -2000
inEqSimp forNormalisation -1100 -1000

defOps expandRanges -8000 -5000

These 10 are currently considered by KeY developers to
be the most influential in the proof procedure, however, we
expect that others will prove to be important as well.

In the strategy selection approach, other costs are factored
in, and in the end the strategy with the lowest cost (which
can be negative) is applied.

Our next steps...
As the first step, we are preparing for KeY’s strategy pa-

rameters to be optimised using sequential Model-based Al-
gorithm Configuration (SMAC) [8]. Currently, KeY’s test
suite contains about 560 cases which run in approximately
half an hour on a modern laptop. Of course, the underlying
hypothesis is that the these tests (respectively their trans-
lations to proof obligations) exhibit some similarities that
can be exploited in the parameter tuning. While this kind
of algorithm tuning has been successfully demonstrated in
other problem domains, we are not aware of its application
to verification systems.

Another approach to speed-up the system would be to set
up KeY in such a way that it generates proof obligations for
other solvers such as the SMT solver Z3, of which the algo-
rithm parameters could then be optimised as well. However,
this is currently not possible due to technical issues.

Our long-term goal is to replace the complex and histori-
cally grown formulae in KeY’s strategy selection with either
an updated one (via genetic improvement) or with a com-
pletely new (evolved) one. Ideally, this process will become
automated so that it can reoptimise the strategy calculations
whenever features are added to KeY or when new regression
tests are added. Ultimately, we plan to take the developers’
minds off the strategy part so that they can focus on fea-
tures, while verification engineers will enjoy an increase in
runtime performance.
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