Genetic and Evolutionary Computation Conference

<u>
</u>

0 110 01100111

Madrid, Spain July 11-15, 2015

0

+GA

On Evolutionary Approaches to Wind Turbine Placement with Geo-Constraints

July 13, 2015

Daniel Lückehe (Jade University of Applied Sciences), Markus Wagner (University of Adelaide), Oliver Kramer (University of Oldenburg)

GECCO 2015, Madrid

Context

• Objective:

© www.adelaide.edu.au

Maximize power output of renewable energy sources

- University of Adelaide
 - Adelaide: City in South Australia
 - A lot of solar and wind potential
- University of Oldenburg and Jade University of Applied Sciences
 - Oldenburg: City in Lower Saxony, Northern Germany
 - Not so much solar potential, but a lot of wind
- Focusing on wind turbines

© Carl von Ossietzky Universität Oldenburg

© iapg.jade-hs.de

Motivation

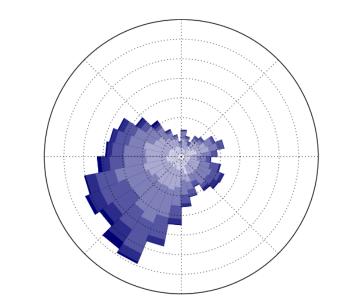
- Behavior and effectiveness of wind turbines is strongly depending on their location
- Question: Where to place wind turbines to increase their power output?
- Increase by:
 - Optimal positions caused by higher wind potential
 - Reduction of wake effects
- Modern Turbine, 40% full load hours, 0.1 €/kWh
 → 1 M€/a
- Even small improvements lead to large values

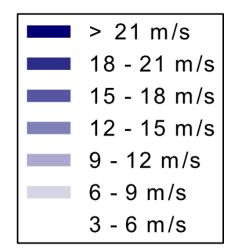
Content

- 1. Wind turbine placement scenario
 - How we calculate the power output of wind turbines?
- 2. Optimization
 - Fitness function definition
 - Solution representation
 - Optimization approaches
- 3. Experimental results

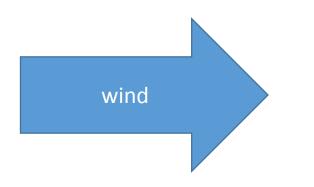
Wind

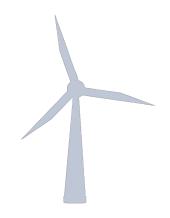
- Wind turbine
 - Produces power depending on wind speed at location
 - Power curve from Enercon E101
 - Constraint: Minimum distance between turbines
- Determination of the wind speed at location
 - Using COSMO-DE data from the German Weather Service (DWD)
 - Rotated grid over Germany (419 x 459 = 192,321, distance about 2.8 km)
 - Hourly wind vectors

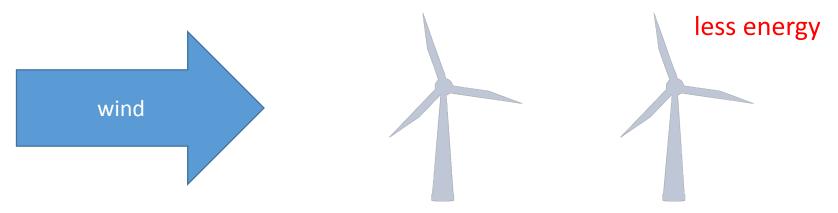

 \rightarrow more than 1.6 billion (419 x 459 x 365 x 24) wind vectors per year per height level



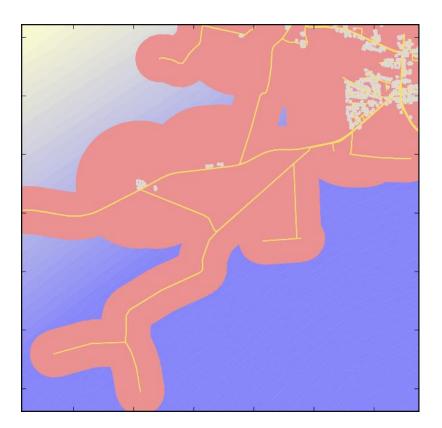
6


Wind Rose


- Rose: Distribution of wind speeds and directions
- Sort vectors by wind direction and location
- Wind rose for every grid position
- Bilinear interpolation using four grid positions



- Model based on wind distributions by Kusiak and Song (2010)
 - Weibull distribution to describe wind distributions
 - Discretization of wind speed and wind directions
 - Our modifications \rightarrow see paper
- Model considers wake effects
 - Jensen wake model



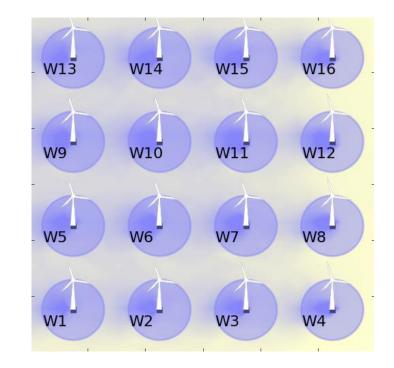
- Model based on wind distributions by Kusiak and Song (2010)
 - Weibull distribution to describe wind distributions
 - Discretization of wind speed and wind directions
 - Our modifications \rightarrow see paper
- Model considers wake effects
 - Jensen wake model

Geographical Data

- Geographical data from OpenStreetMap
- Constraints for areas around
 - Buildings
 - Streets
- Constraint handling with death penalty
- Scenario 2 (from paper):
 - 3.3 x 3.3 km
 - 250 buildings
 - 64 streets consisting of 489 parts

Fitness Function

• Produced energy for a wind farm: sum of all turbines


$$f(\mathbf{x}) = \sum_{i=1}^{N/2} E(\mathbf{t}_i)$$

- Fitness function depending on
 - Wind turbine E101 from Enercon
 - Wind data from COSMO-DE model
 - Power calculation based on Kusiak and Song with modifications
 - Jensen wake model
 - Geographical data from OpenStreetMap

Solution

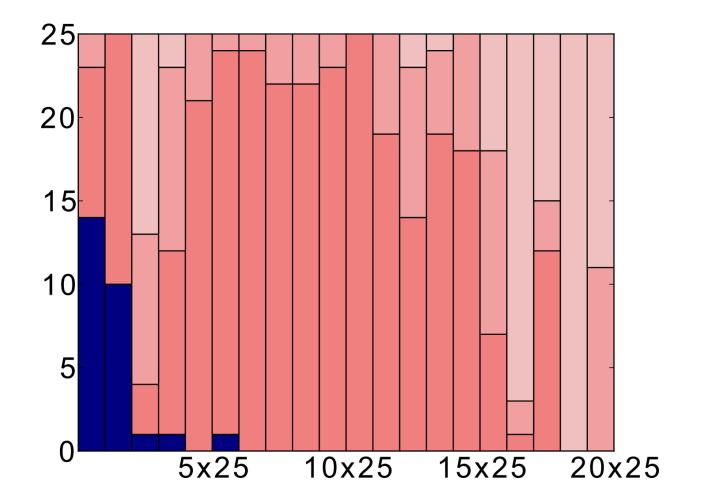
- Solution \boldsymbol{x} describes the positions of multiple turbines
 - e.g. *x* = [100, 300, 200, 200]
- Initial solution:
 - Random
 - Chessboard pattern

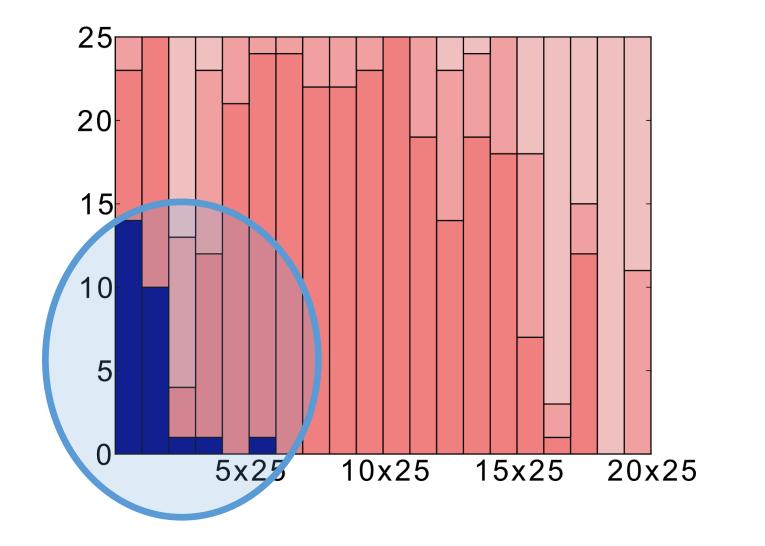
- Circles:
 - Minimum distance between turbines

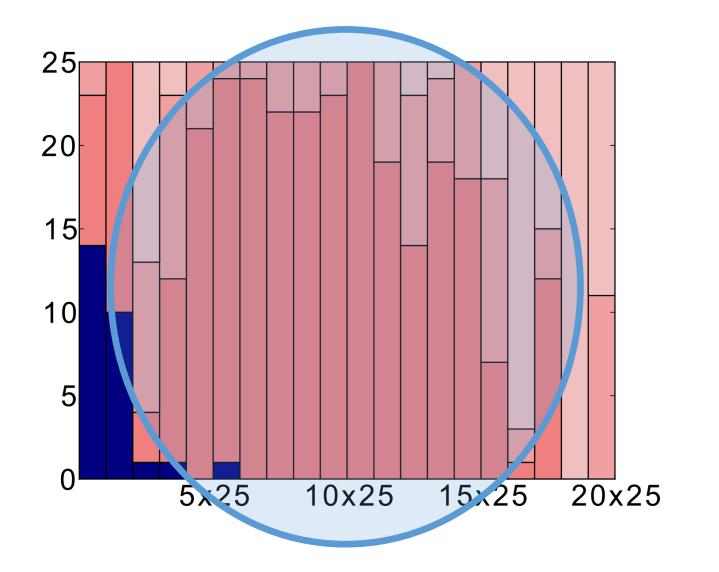
- **x** = [100, 300, 200, 200]
- Holistic approaches
 - Mutation will change every dimension of \boldsymbol{x}

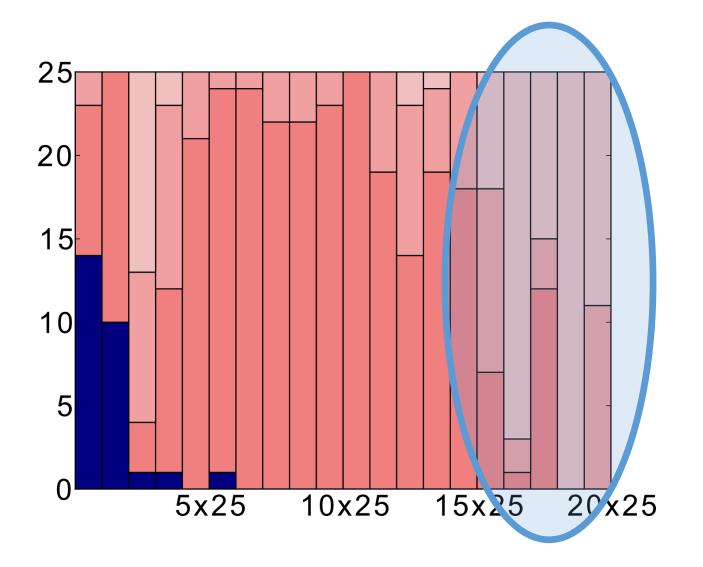
- Turbine-oriented approaches
 - Mutation will randomly pick the dimensions of one turbine

- *x* = [100, 300, 200, 200]
- Holistic approaches
 - Mutation will change every dimension of x
- Adaptive (1+1)-ES
 - Gaussian mutation to move turbines
 - Rechenberg's step size control


- **x** = [100, 300, 200, 200]
- Holistic approaches
 - Mutation will change every dimension of \boldsymbol{x}
- Adaptive (1 + 1)-ES
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)


- *x* = [100, 300, 200, 200]
- Turbine-oriented approaches
 - Mutation will randomly pick the dimensions of one turbine
- Adaptive (1+1)-ES
 - Gaussian mutation
 - Special Case: 1 dimension
 - Rechenberg's step size control


- *x* = [100, 300, 200, 200]
- Turbine-oriented approaches
 - Mutation will randomly pick the dimensions of one turbine
- Adaptive (1 + 1)-ES (1 dim.)
- Replacing


- **x** = [100, 300, 200, 200]
- Turbine-oriented approaches
 - Mutation will randomly pick the dimensions of one turbine
- Adaptive (1 + 1)-ES (1 dim.)
- Replacing
- Deterministic (1 + 1)-ES
 - Gaussian mutation
 - Starting with step size equal the map size
 - Decreased linearly
 - Ending with step size: 1 / "fitness function calls" x map size

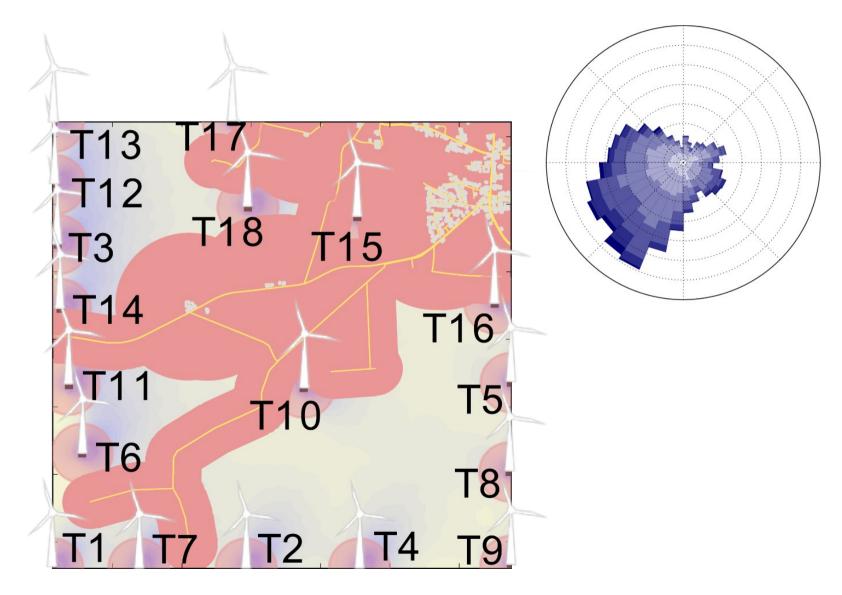
- **x** = [100, 300, 200, 200]
- Turbine-oriented approaches
 - Mutation will randomly pick the dimensions of one turbine
- Adaptive (1 + 1)-ES (1 dim.)
- Replacing
- Deterministic (1 + 1)-ES
- Self-Adaptive $(1 + \lambda)$ -ES
 - Choose between replace and Gaussian mutation
 - Can also mutate multiple turbines in one generation
 - Operation and number of turbines are controlled self-adaptively

 Scenario 2: 36-dimensional optimization problem (18 turbines) (results for random initialization in paper)

Init.	Chess	
Algo.	Mean \pm Std	Max
Init.	10944.2 ± 0.0	10944.2
$(1+1)^N$	11221.3 ± 33.0	11287.3
CMA	11359.7 ± 12.5	11386.6
$(1+1)^1$	11399.3 ± 17.5	11444.5
Rep.	11484.0 ± 9.7	11505.0
$(1+1)^{t}$	11524.1 ± 8.4	11538.2
$(1+\lambda)$	11516.5 ± 11.7	11537.2

• Scenario 2: 36-dimensional optimization problem (18 turbines) (results for random initialization in paper)

Init.	Chess	
Algo.	Mean \pm Std	Max
Init.	10944.2 ± 0.0	10944.2
$(1+1)^N$	11221.3 ± 33.0	11287.3
ĊMA	11359.7 ± 12.5	11386.6
$(1+1)^{\perp}$	11399.3 ± 17.5	11444.5
Rep.	11484.0 ± 9.7	11505.0
$(1+1)^{t}$	11524.1 ± 8.4	$\boldsymbol{11538.2}$
$(1+\lambda)$	11516.5 ± 11.7	11537.2


• Scenario 2: 36-dimensional optimization problem (18 turbines) (results for random initialization in paper)

Init.	Chess	
Algo.	Mean \pm Std	Max
Init.	10944.2 ± 0.0	10944.2
$(1+1)^N$	11221.3 ± 33.0	11287.3
CMA	11359.7 ± 12.5	11386.6
$(1+1)^1$	11399.3 ± 17.5	11444.5
Rep.	11484.0 ± 9.7	11505.0
$(1+1)^{t}$	11524.1 ± 8.4	11538.2
$(1+\lambda)$	11516.5 ± 11.7	11537.2

• Scenario 2: 36-dimensional optimization problem (18 turbines) (results for random initialization in paper)

Init.	Chess	
Algo.	Mean \pm Std	Max
Init.	10944.2 ± 0.0	10944.2
$(1+1)^N$	11221.3 ± 33.0	11287.3
ĊMA	11359.7 ± 12.5	11386.6
$(1+1)^1$	11399.3 ± 17.5	11444.5
Rep.	11484.0 ± 9.7	11505.0
$(1+1)^{t}$	11524.1 ± 8.4	11538.2
$(1+\lambda)$	11516.5 ± 11.7	11537.2

Best Turbine Placement Result

Conclusion & Future Work

Conclusion

- Wind turbine placement leads to different optimization problem
- Self-adaptive approach first replaces, then moves turbines
- Turbine-oriented approaches outperform holistic approaches

Conclusion & Future Work

Conclusion

- Wind turbine placement leads to different optimization problem
- Self-adaptive approach first replaces, then moves turbines
- Turbine-oriented approaches outperform holistic approaches

Future Work

- Advanced contraint handling methods
- Add more features to the model

Conclusion & Future Work

Conclusion

- Wind turbine placement leads to different optimization problem
- Self-adaptive approach first replaces, then moves turbines
- Turbine-oriented approaches outperform holistic approaches

Future Work

- Advanced contraint handling methods
- Add more features to the model

Genetic and Evolutionary Computation Conference

<u>
</u>

0 110 01100111

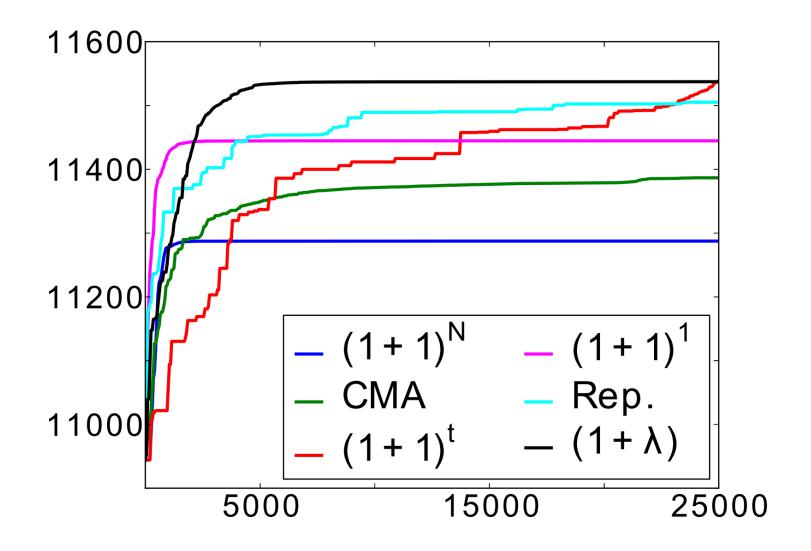
Madrid, Spain July 11-15, 2015

0

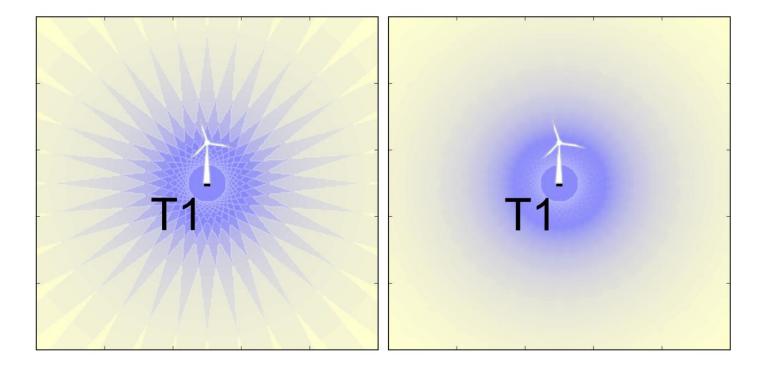
+GA

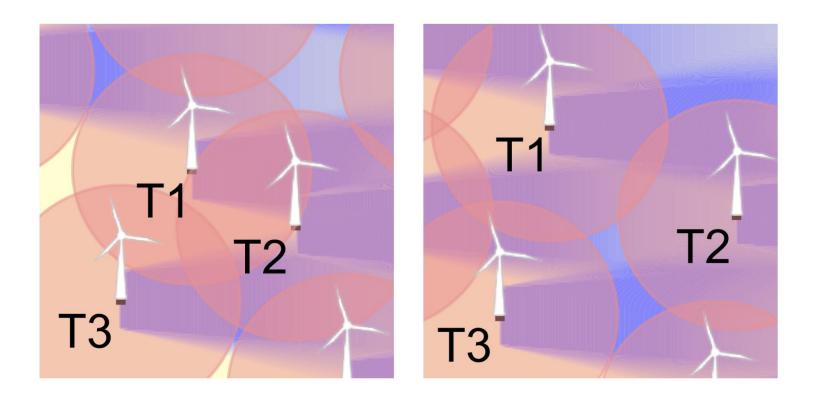
Context

- This work follows the project *EnerGeoPlan*
 - 2011 2013
 - Objective: To bring energy supply, spatial planning, and grid planning together
 - Funded by the Ministry for Science and Culture of the State of Lower Saxony


Niedersächsisches Ministerium für Wissenschaft und Kultur

• Co-operation partners: Gemeinde Ganderkesee, EWE Netz GmbH




http://www.offis.de/f_e_bereiche/verkehr/projekt/projekte/energeoplan.html

Local Optima Through Wind Discretization

Rotor Size of the Affected Turbine

Example of a small wind farm

- Enercon E101 with 3 MW at 12 m/s
- Calculating with 40% full load hours
 → average 1.2 MW
- Small wind farm with 10 turbines
 → more than 100 GWh/a
- With price at 0.10 €/kWh
 → 10 M€/a
- Even small improvements lead to large values

CMA-ES

- By N. Hansen
- Newest Change
 - 14/12/06: meta_parameters now only as annotations in ## comments
- Python implementation

```
self.__sigma = 10: corresponds to 10m
```

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$

$$E_{\theta}(\mathbf{t}_{i},\theta) = \int_{0}^{\infty} \beta_{i}(v) \cdot p_{v}(v,k(\mathbf{t}_{i},\theta),c(\mathbf{t}_{i},\theta))dv$$

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$
$$E_{\theta}(\mathbf{t}_i, \theta) = \int_0^\infty \beta_i(v) \cdot p_v(v, k(\mathbf{t}_i, \theta), c(\mathbf{t}_i, \theta)) dv$$

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$

$$E_{\theta}(\mathbf{t}_{i},\theta) = \int_{0}^{\infty} \beta_{i}(v) \cdot p_{v}(v,k(\mathbf{t}_{i},\theta),c(\mathbf{t}_{i},\theta))dv$$

• Model based on wind distributions by Kusiak and Song:

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$
$$E_{\theta}(\mathbf{t}_i, \theta) = \int_0^{\infty} \beta_i(v) \cdot p_v(v, k(\mathbf{t}_i, \theta), c(\mathbf{t}_i, \theta)) dv$$

• Weibull distribution: Wind speed distribution from the wind roses

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$

$$E_{\theta}(\mathbf{t}_{i},\theta) = \int_{0}^{\infty} \beta_{i}(v) \cdot p_{v}(v,k(\mathbf{t}_{i},\theta),c(\mathbf{t}_{i},\theta))dv$$

- Wind speed distribution from the wind roses
- Wind direction distribution from the wind roses

$$E(\mathbf{t}_i) = \int_0^{360} p_{\theta}(\mathbf{t}_i, \theta) \cdot E_{\theta}(\mathbf{t}_i, \theta) d\theta$$
$$E_{\theta}(\mathbf{t}_i, \theta) = \int_0^{\infty} \beta_i(v) \cdot p_v(v, k(\mathbf{t}_i, \theta), c(\mathbf{t}_i, \theta)) dv$$

- Wind speed distribution from the wind roses
- Wind direction distribution from the wind roses
- Turbine power curve