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Context

° Object“/e: © www.adelaide.edu.au
Maximize power output of renewable energy sources

e University of Adelaide
* Adelaide: City in South Australia
* Alot of solar and wind potential

* University of Oldenburg and Jade University of =~ © arlven Ossietzky Universitat Oldenburg
Applied Sciences

* Oldenburg: City in Lower Saxony, Northern Germany 7

* Not so much solar potential, but a lot of wind

* Focusing on wind turbines

© iapg.jade-hs.de



Motivation

* Behavior and effectiveness of wind turbines is strongly depending on
their location

* Question: Where to place wind turbines to increase their power
output?

* Increase by:
* Optimal positions caused by higher wind potential
* Reduction of wake effects

* Modern Turbine, 40% full load hours, 0.1 €/kWh
-2 1 M€/a

* Even small improvements lead to large values



Content

1. Wind turbine placement scenario
* How we calculate the power output of wind turbines?

2. Optimization
* Fitness function definition
 Solution representation
e Optimization approaches

3. Experimental results



Wind

* Wind turbine
* Produces power depending on wind speed at location
» Power curve from Enercon E101
* Constraint: Minimum distance between turbines

* Determination of the wind speed at location

» Using COSMO-DE data from the German Weather Service (DWD)

* Rotated grid over Germany (419 x 459 = 192,321, distance about 2.8 km)
* Hourly wind vectors

— more than 1.6 billion (419 x 459 x 365 x 24) wind vectors per year per height
level



Wind Rose

* Rose: Distribution of wind speeds and directions
 Sort vectors by wind direction and location

* Wind rose for every grid position

* Bilinear interpolation using four grid positions

> 21 m/s
18 - 21 m/s
15-18 m/s
12 -15 m/s
9-12 m/s
6 -9 m/s
3-6m/s




Wind Model

* Model based on wind distributions by Kusiak and Song (2010)
* Weibull distribution to describe wind distributions
* Discretization of wind speed and wind directions
* Our modifications = see paper

* Model considers wake effects
* Jensen wake model
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* Model based on wind distributions by Kusiak and Song (2010)
* Weibull distribution to describe wind distributions
* Discretization of wind speed and wind directions
* Our modifications = see paper

* Model considers wake effects
* Jensen wake model

less energy
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Geographical Data

* Geographical data from OpenStreetMap

* Constraints for areas around
* Buildings
* Streets

* Constraint handling with

death penalty

 Scenario 2 (from paper):
* 3.3x3.3km
e 250 buildings
* 64 streets consisting of 489 parts




Fitness Function

Produced energy for a wind farm: sum of all turbines

N/2

f(x) = ZE(’%‘)

Fitness function depending on
* Wind turbine E101 from Enercon
Wind data from COSMO-DE model
Power calculation based on Kusiak and Song with modifications
Jensen wake model
Geographical data from OpenStreetMap
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Solution

* Solution x describes the positions of multiple turbines
* Initial solution:

* e.g. x = [100,300,200,200]

* Random

 Chessboard pattern “0 0
* Circles: | |

* Minimum distance between 0 0 0

turbines




Evolutionary Strategies

- x = [100, 300, 200, 200]

* Holistic approaches
* Mutation will change every dimension of x

- x = [100,300,200, 200]

* Turbine-oriented approaches
e Mutation will randomly pick the dimensions of one turbine
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Holistic approaches
* Mutation will change every dimension of x

* Adaptive (1 + 1)-ES
* Gaussian mutation to move turbines
* Rechenberg’s step size control
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Holistic approaches
* Mutation will change every dimension of x

 Adaptive (1 + 1)-ES
e Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Turbine-oriented approaches
* Mutation will randomly pick the dimensions of one turbine

* Adaptive (1 + 1)-ES
* Gaussian mutation
 Special Case: 1 dimension
* Rechenberg’s step size control
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Turbine-oriented approaches
* Mutation will randomly pick the dimensions of one turbine

 Adaptive (1 + 1)-ES (1 dim.)
* Replacing
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Turbine-oriented approaches
* Mutation will randomly pick the dimensions of one turbine

 Adaptive (1 + 1)-ES (1 dim.)
* Replacing
 Deterministic (1 + 1)-ES
* Gaussian mutation
» Starting with step size equal the map size

* Decreased linearly
* Ending with step size: 1 / “fitness function calls” x map size
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Evolutionary Strategies

- x = [100, 300, 200, 200]

* Turbine-oriented approaches
* Mutation will randomly pick the dimensions of one turbine

 Adaptive (1 + 1)-ES (1 dim.)
* Replacing
* Deterministic (1 + 1)-ES
* Self-Adaptive (1 + A)-ES
* Choose between replace and Gaussian mutation

* Can also mutate multiple turbines in one generation
e Operation and number of turbines are controlled self-adaptively
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Analysis of Operator Ratios
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Analysis of Operator Ratios
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Analysis of Operator Ratios
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Comparison of Evolutionary Algorithms

 Scenario 2: 36-dimensional optimization problem (18 turbines)
(results for random initialization in paper)

Init. Chess

Algo. Mean + Std Max
Init. 10944.2 £ 0.0 | 10944.2
(14+1)% 11221.3 £33.0 | 11287.3
CMA | 11359.74+12.5 | 11386.6
(14+1)1| 11399.3 £17.5 | 11444.5
Rep. | 11484.04+9.7 | 11505.0
(1+1)%| 11524.1 £8.4 | 11538.2
(14+X) | 11516.5 £11.7 | 11537.2
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 Scenario 2: 36-dimensional optimization problem (18 turbines)
(results for random initialization in paper)

Init. Chess
Algo. Mean + Std Max

|_Init. 10944.2 £+ 0.0 10944.2
11221.3 £ 33.0 | 11287.3

11359.7 = 12.5 | 11386.6
0

Rep. | 11484.0+9.7 | 11505.0
(14+1)t| 11524.1 +8.4 | 11538.2
(14+X) | 11516.5 £ 11.7 | 11537.2




Comparison of Evolutionary Algorithms

 Scenario 2: 36-dimensional optimization problem (18 turbines)

(results for random initialization in paper)

Init. Chess

Algo. Mean + Std Max
Init. 10944.2 £ 0.0 10944.2
(14+1)" 11221.3 +33.0 | 11287.3
CMA | 11359.7 £12.5 | 11386.6

11399.3 £ 17.5
11484.0 = 9.7

11524.1 + 8.4
11516.5 £+ 11.7

11444.5
11505.0
11538.2
11537.2
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Comparison of Evolutionary Algorithms

 Scenario 2: 36-dimensional optimization problem (18 turbines)

(results for random initialization in paper)

Init. Chess
Algo. Mean + Std Max
|_Init. 10944.2 4+ 0.0 10944.2

11221.3 £ 33.0
11359.7 & 12.5

11399.3 £ 17.5

11484.0 = 9.7
11524.1 + 8.4
11516.5 £+ 11.7

11287.3
11386.6
11444.5
11505.0
11538.2
11537.2



Best Turbine Placement Result




Conclusion & Future Work

Conclusion

* Wind turbine placement leads to different optimization problem
* Self-adaptive approach first replaces, then moves turbines

* Turbine-oriented approaches outperform holistic approaches
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Conclusion & Future Work

Conclusion

* Wind turbine placement leads to different optimization problem
* Self-adaptive approach first replaces, then moves turbines

* Turbine-oriented approaches outperform holistic approaches

Future Work
* Advanced contraint handling methods
e Add more features to the model
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Conclusion & Future Work

Conclusion

* Wind turbine placement leads to different optimization problem
* Self-adaptive approach first replaces, then moves turbines

* Turbine-oriented approaches outperform holistic approaches

Future Work
* Advanced contraint handling methods

Thank you!

e Add more features to the model
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Context

* This work follows the project EnerGeoPlan

2011 -2013
Obijective: To bring energy supply, spatial planning, and grid planning together
Funded by the Ministry for Science and Culture of the State of Lower Saxony

M Niedersichsisches Ministerium
Y fiir Wissenschaft und Kultur
Co-operation partners: Gemeinde Ganderkesee, EWE Netz GmbH

AN =
§7’ EWE NETZ

Ganderkesee

...mehr an Moalichkeiten

http://www.offis.de/f e bereiche/verkehr/projekt/projekte/energeoplan.html|



Evolutionary Runs (Chess)
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Local Optima Through Wind Discretization
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Rotor Size of the Affected Turbine
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Example of a small wind farm

* Enercon E101 with 3 MW at 12 m/s

* Calculating with 40% full load hours
- average 1.2 MW

* Small wind farm with 10 turbines
- more than 100 GWh/a

e With price at 0.10 €/kWh
- 10 M€/a

e Even small improvements lead to large values

36
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CMA-ES

* By N. Hansen

* Newest Change
* 14/12/06: meta_parameters now only as annotations in ## comments
* Python implementation
self. sigma = 10: corresponds to 10m

res = cma.fmin(

objective function = fitness function,

X0 = XY,

sigma® = self. sigma,

options = {'maxfevals': evaluations,
'verb_log': True,
'verb_filenameprefix': file prefix},

args = [self. solution]



Wind Model

* Model based on wind distributions by Kusiak and Song:

360
E(tz) = /O pg(ti,g) . Eg(t@',(g)dg

Eo(t;,0) = /OOO Bi(v) - po(v, k(t:, 0), c(t:, 0))dv
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Wind Model

* Model based on wind distributions by Kusiak and Song:

» E(t;) = /Sﬁopg(t@,é’) Eo(ts,0)d0

/ Bi(v) - pu(v, k(t;,8),c(t;,0))dv
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Wind Model

* Model based on wind distributions by Kusiak and Song:

E(t ) /Bﬁopg(t@,e) Eg(ti,f?)de

» / Bi(v) - pu(v, k(t;,8),c(t;,0))dv

40



Wind Model

* Model based on wind distributions by Kusiak and Song:

E(t;) = /Ogﬁope(tiﬁ) ' E@le

Eo(t;,0) = /OOO Bi(v) { po(v, k(t:, 0), c(t:, 0))dv

* Weibull distribution: Wind speed distribution from the wind roses



Wind Model

* Model based on wind distri!| ons by Kusiak and Song:

36
E(tz) = /O pg(ti,g) . Eg(t@',(g)dg

Eo(t;,0) = /OOO Bi(v) - po(v, k(t:, 0), c(t:, 0))dv

* Wind speed distribution from the wind roses
» Wind direction distribution from the wind roses
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Wind Model

* Model based on wind distributions by Kusiak and Song:

360

E(tz) = @ti,g) . Eg(t@',(g)dg

Eo(t;,0) :/0 Bi(v)|- po(v, k(t:, 0), c(t:, 0))dv

* Wind speed distribution from the wind roses
* Wind direction distribution from the wind roses

e Turbine power curve
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