
Approximate Approaches to the Traveling Thief Problem

Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, Markus Wagner
Optimisation and Logistics

School of Computer Science
University of Adelaide, Australia

ABSTRACT
This study addresses the recently introduced Traveling Thief
Problem (TTP) which combines the classical Traveling
Salesman Problem (TSP) with the 0-1 Knapsack Problem
(KP). The problem consists of a set of cities, each containing
a set of available items with weights and profits. It involves
searching for a permutation of the cities to visit and a deci-
sion on items to pick. A selected item contributes its profit
to the overall profit at the price of higher transportation
cost incurred by its weight. The objective is to maximize
the resulting profit.

We propose a number of problem-specific packing strate-
gies run on top of TSP solutions derived by the Chained
Lin-Kernighan heuristic. The investigations provided on
the set of benchmark instances prove their rapidity and ef-
ficiency when compared with an approximate mixed integer
programming based approach and state-of-the-art heuristic
solutions from the literature.

Categories and Subject Descriptors
G.1.6 [Optimization]: Miscellaneous; I.2.8 [Problem
Solving, Control Methods, and Search]: Scheduling

Keywords
Traveling thief problem; local search; multi-component
problems

1. INTRODUCTION
Recently, a new benchmark problem called the Traveling

Thief Problem (TTP)has been introduced [3] in an attempt
to provide an abstraction of problems with multiple inter-
dependent components. The underlying idea of TTP is to
combine the Traveling Salesman Problem (TSP) and the
Knapsack Problem (KP). They both have been intensively
studied for many years and are the core problems in the
field of optimization. The TTP comprises a thief stealing
items with weights and profits from a number of cities. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754716

thief uses a knapsack of limited capacity and pays rent for it
depending on the overall travel duration. To make the two
components interdependent, the speed of the thief is made
dependent (non-linearly) on the weight of the items picked
so far. The thief has to visit all cities once and collect items
so that the overall profit is maximized. While it is possible
to generate solutions for the TTP by combining solutions
for the individual components, such approaches do not nec-
essarily result in near-optimal solutions: (1) each solution
for the TSP hinders the best quality that can be achieved in
the KP component because of the impact on the profit that
is a function of travel time, and vice versa (2) each solution
for the KP component influences the tour time for TSP as
different items impact the speed of travel differently due to
the variability of the weights of items.

A range of different approaches to the problem have been
developed recently. For example, Mei et al. [6] focus on large
TTP instances with relatively simple approaches. They an-
alyze the computational complexity of different algorithms
and suggest asymptotic speed-ups. The resulting algorithm
significantly outperforms the three iterative and constructive
algorithms originally presented in [10]. Bonyadi et al. [4] are
the first to attempt to solve both components of the TTP
in parallel, instead of sequentially. The authors design a co-
evolutionary approach called CoSolver in which modules
responsible for either the TSP part or the KP part communi-
cate with each other. The proposed CoSolver outperforms
a heuristic similar to the constructive heuristic SH from [10].
Mei et al. [7] also investigate a co-evolutionary approach and
compare it to a memetic algorithm, with the result of the
memetic algorithm outperforming the co-evolutionary one.

Recently, Polyakovskiy et al. [11] investigated a non-linear
knapsack problem that occurs when packing items along a
fixed route and taking into account travel time. They ad-
dress the complexity of the problem and show that even the
capacity unconstrained version is NP-hard. Subsequently,
they propose exact and approximate mixed integer program-
ming (MIP) solutions that are able to produce (near-) opti-
mal results for instances of a moderate size.

Despite the state-of-the-art techniques there remains
potential for TTP-specific algorithms based on different
paradigms. In this article, we provide a set of structurally
diverse algorithms to effectively solve the entire range of ex-
isting TTP instances.

This article is set out as follows. In Section 2 we outline
the important features of the Traveling Thief Problem. In
Section 3 we describe our three local search routines, based
on which we construct heuristic searches in Section 4. Sec-

tion 5 adopts the MIP based approximate approach of [11]
and yields another high-quality technique. In Section 6, we
present and compare their results with the state-of-the-art
solutions. We finish with some concluding remarks.

2. TRAVELING THIEF PROBLEM
In the following, we first describe the TTP as defined

in [10]. Given is a set of cities N = {1, . . . , n} and a set
of items M = {1, . . . ,m} distributed among the cities. The
distance dij between any pair of cities i, j ∈ N is known.
Every city i, except the first one, contains a set of items
Mi = {1, . . . ,mi}, M = ∪

i∈N
Mi. Each item k positioned in

the city i is characterized by its profit pik and weight wik,
thus the item Iik ∼ (pik, wik). The thief must visit each of
the cities exactly once starting from the first city and return-
ing back to it in the end. Any item may be selected in any
city as long as the total weight of collected items does not
exceed the capacity W . A renting rate R is to be paid per
each time unit taken to complete the tour. Respectively,
υmax and υmin denote the maximal and minimum speeds
that the thief can move. The goal is to find a tour, along
with a packing plan, that results in the maximal profit.

To set up the objective function precisely, let yik ∈ {0, 1}
be a binary variable equal to one when the item k is selected
in the city i. In addition, let Wi denote the total weight of
collected items when the thief leaves the city i. Therefore,
the objective function for a tour Π = (x1, . . . , xn), xi ∈ N
and a packing plan P = (y21, . . . , ynmi) has the following
form:

Z(Π, P) =

n∑
i=1

mi∑
k=1

pikyik

−R

(
dxnx1

υmax − νWxn

+

n−1∑
i=1

dxixi+1

υmax − νWxi

)
(1)

where ν = υmax−υmin
W

is a constant value defined by input
parameters. The minuend is the sum of all packed items’
profits and the subtrahend is the amount that the thief pays
for the knapsack’s rent equal to the total traveling time along
Π multiplied by R.

A brief numeric example of the TTP problem is provided
in Figure 1 [10]. Each node but the first has an assigned set
of items. Let us assume that the maximum weight W = 3,
the renting rate R = 1 and υmax and υmin are set as 1
and 0.1, respectively. Then the optimum objective value
Z(Π, P) = 50 for Π = (1, 2, 4, 3) and P = (0, 0, 0, 1, 1, 0).
Specifically, the thief collects no items traveling from city
1 to city 3 via cities 2 and 4. Therefore, this part of the
tour has a cost of 15. In the city 3 only items I32 and I33
are picked up, resulting in a total profit of 80. However,
on the way from city 3 back to city 1 the thief’s knapsack
has a weight of 2. This reduces the speed and results in an
increased cost of 15. Consequently, the final objective value
is Z(Π, P) = 80− 15− 15 = 50.

3. LOCAL SEARCH ROUTINES
In this section, we discuss a number of routines used to

elaborate a packing plan for a given permutation of the cities
Π. We assume that a TSP tour Π is the outcome of the
call of the Chained Lin-Kernighan heuristic [2]1. A packing
1As available at http://www.tsp.gatech.edu/concorde/
downloads/downloads.htm

Figure 1: Illustrative Example [10]

routine is applied to construct an initial packing which is
further enhanced by a set of local search procedures.

3.1 Packing Routine
For greedy heuristics, it is common to utilize a goodness

measure of the elements of a problem to make a decision.
Here, we provide our packing heuristic algorithm with a scor-
ing function which generates a score sik for item k placed in
city i as:

sik =
pik

wik × di
,

where di is the distance from city i to the end of a given tour
Π. The function incorporates a trade-off between a distance
that item Iik is to be carried over, its weight and its profit.
Depending on a particular instance, it might be beneficial
to strengthen the influence of one or more variables of the
function. In this scope, we introduce exponents applied to
the weight and the profit of an item to manage their impact.
Thus, the function takes the following form:

sik =
pαik

wαik × di
.

Our preliminary study shows that keeping the exponent
of a distance low relative to the exponents of other two vari-
ables results in the best objective values. Therefore, we
omit using an exponent for the distance variable. Moreover,
using the same value for the exponents of the profit and
weight variables often achieves the higher objective values
when compared to varying exponents between the variables.

Algorithm 1 depicts our knapsack packing routine. The
constructing process starts by giving a score to each item,
and then subsequently sorting the entire set M of the items
in non-decreasing order based on their scores. Then, the al-
gorithm instantiates the control parameters. Since evaluat-
ing the objective function (1) is time-consuming, especially
when complicated by the size of an instance, we introduce a
parameter µ controlling the frequency of the objective value
recomputation. Thus, the objective value is only evaluated
each time µ items have been included for a possible pack-
ing. The value of µ is initialized in relation to the number of
items m as µ = bm/τc, where τ is a given integer constant.
In addition, the current and the best packing plans P and
P ∗ respectively, are initialized as empty sets. Finally, the
best objective value found so far is set to −∞.

Having been initialized, the algorithm starts the iterative
solution construction process by considering the first item
I1 ∈M with the largest score. At each iteration k, item k is
added to P if there remains enough free space in the knap-
sack. Every time µ items have been considered, the routine
computes the objective value Z. When Z is improved, µ re-
mains the same and the best objective value Z∗ is updated

Algorithm 1
Packing Routine Pack (Π,α)

compute score for each of the items Im ∈M
sort the items of M in non-decreasing order of their scores
set the frequency µ = bm/τc
set the current packing plan P = ∅ and W ′ = 0
set the best packing plan P ∗ = ∅
set best objective value Z∗ = −∞
set the counter k = 1 and set k∗ = 1
while (W ′ < W) and (µ > 1) do

if (W ′ + wk ≤W) then
add item Ik ∈M to the packing plan P = P ∪{Ik}
set W ′ = W ′ + wk
if (k mod µ = 0) then

compute the objective value Z = Z (Π, P)
if (Z < Z∗) then

restore the packing plan P = P ∗

set k = k∗ and update W ′

set µ = bµ/2c
else

update the best packing plan with P ∗ = P
set k∗ = k and Z∗ = Z

set k = k + 1
return P

accordingly. However, as soon as the packing plan P yields
Z < Z∗, the previous packing plan P ∗ is restored and the
algorithm returns back to consider the items again starting
with item Ik ∈ M . In addition, the frequency µ is halved.
This strategy helps to identify the moment when no further
solution improvement is possible while keeping the algorithm
computationally fast. The heuristic terminates either when
no further improvement is possible or the limit value of 1 is
reached for µ.

To reach a better packing performance, we run the packing
routine routine Pack (Π,α) iteratively for different values of
the exponent α. Algorithm 2 explains the structure of the
solution process. The algorithm PackIterative (Π,c,δ,q)
is fed by the starting exponent value c ∈ R+, and a de-
viation value δ ∈ R+ which defines the current studying
interval for potential exponent values as (c− δ, c+ δ). In
addition, an integer q is given as a limit on the number of
iterations. The algorithm starts with evaluating objective
values obtained by Pack (Π,α) in case of α = c and in cases
of two terminal values α = c − δ and α = c + δ. At each
iteration, the algorithm compares the corresponding objec-
tive values Zl, Zm and Zr, and selects the further interval
for investigation. Specifically, it switches its attention to
smaller values if (Zl > Zm)∧ (Zl > Zr) or to larger values if
(Zr > Zm) ∧ (Zr > Zl). Subsequently, the routine updates
the best packing plan P ∗ found so far. In addition, it nar-
rows the potential interval for a search setting δ = δ/2 and
changes the current exponent value c to c − δ or c + δ, de-
pending on which produces the largest objective value. The
searching process continues until the number of iterations
performed reaches its limit or improvement in the objective
value is less than ε, where ε is a small threshold constant.

3.2 Bitflip
The previously presented packing approach is not guaran-

teed to find a globally optimal TTP solution as (1) it does
not modify the tours, and (2) the packing plan it finds may

Algorithm 2
Iterative Packing Routine PackIterative (Π,c,δ,q)

obtain Pl by Pack (Π,c− δ) and compute Zl = Z (Π, Pl)
obtain Pm by Pack (Π,c) and compute Zm = Z (Π, Pm)
obtain Pr by Pack (Π,c+ δ) and compute Zr = Z (Π, Pr)
set the best packing plan P ∗ = ∅
set the counter i = 1
while i ≤ q do

if (Zl > Zm) and (Zr > Zm) then
if (Zl > Zr) then

set Zm = Zl, c = c− δ and P ∗ = Pl
else

set Zm = Zr, c = c+ δ and P ∗ = Pr
else if (Zl > Zm) then

set Zm = Zl, c = c− δ and P ∗ = Pl
else if (Zr > Zm) then

set Zm = Zr, c = c+ δ and P ∗ = Pr
δ = δ/2;
obtain Pl by Pack (Π,c−δ) and compute Zl=Z(Π,Pl)
obtain Pr by Pack (Π,c+δ) and compute Zr=Z(Π,Pr)
set i = i+ 1
if (Zl − Zm < ε) and (Zr − Zm < ε) then break

return P ∗

Algorithm 3
Bitflip (Π,P)

set Z∗ = Z(Π, P)
set P ∗ = P
for each item Im ∈M do

if Im 6∈ P ∗ then
add item Im, P = P ∗ ∪ {Im}

else
remove item Im, P = P ∗ \ {Im}

compute the objective value Z (Π, P)
if Z > Z∗ then

set Z∗ = Z
set P ∗ = P

return P ∗

not necessarily be optimal for a given tour. Therefore, we
present two local search operators to complement the pack-
ing plan generation from Section 3.1.

The BitFlip operator is a simple greedy hillclimber with a
low runtime. Its pseudocode is shown in Algorithm 3. The
operator iteratively evaluates the outcome of flipping each
bit position corresponding to item Im ∈ M in the packing
plan P . If flipping a bit improves the objective value (Z >
Z∗), the change is kept, otherwise P remains unchanged. A
single iteration of the operator ends when all bit flips have
been attempted once. Multiple passes can result in further
improvement of the objective value.

3.3 Insertion
The insertion operator takes advantage of the situation

where a valuable item at a particular city is picked up early
and it is worth trying to delay the item pickup by modifying
the tour Π. Figure 2 shows an example where city x2 is
inserted later in the tour, after city x7. In this case the result
is a slightly longer tour, however the items at x2 are now
later in the tour and hence contribute a lower carrying cost.

Figure 2: A graphical example of insertion: The solid black
line represents the initial tour option, while the red dashed line
represents a modified tour where city x2 has been inserted after
city x7. The red tour can have a higher objective score due to
a valuable (but heavy) picked item at city x2.

Algorithm 4
Insertion (Π,P)

for a = n→ 1 do
compute Z = Z(Π, P)
for b = a− 1→ 1 do

set Π∗ = Π
insert city xa between xb and xb−1 in tour Π∗

compute Z∗ = Z(Π∗, P)
if Z∗ > Z then

set Z = Z∗

set Π∗∗ = Π∗

if b = 1 then
set Π = Π∗∗

return Π

There is a tradeoff between increasing the tour length and
hence travel time and carrying cost for all items before the
insertion point, and decreasing the carrying cost of the items
of the inserted city. The insertion pseudocode is shown in
Algorithm 4. The operator searches over all cities in reverse
tour order (xn → x1), evaluating the effect of inserting each
city at all positions before its own position in the tour Π∗.
If an insertion for a city xa is found that produces a greater
objective value than (1) the current tour Π and (2) all other
insertions for Π∗a, then the tour is stored as Π∗∗. Once the
tour has been completely checked for better positions for xa
then Π∗∗ becomes the new tour Π and the process begins
with the next city xa−1. Again, multiple passes can result
in further improvement of the objective value.

Note that in typical good solutions to the TTP many items
are picked up towards the end of the tour. The intuition
is that it is not too harmful to the overall objective value
if items are picked up late, since the speed of the thief is
typically low at that point in time. We begin our insertions
at the end of the tour since this is a time consuming search
operation for very large instances.

4. LOCAL SEARCH ALGORITHMS
In order to isolate the effects of the different search rou-

tines, we first define a set of straight-forward local search
algorithms. All algorithms use the Chained Lin-Kernighan
heuristic (CLK) to generate an initial TSP tour:

• Heuristic S1: run CLK, then PackIterative;

• Heuristic S2: run CLK, then PackIterative, then
repeat Bitflip until converged;

• Heuristic S3: run CLK, then PackIterative, then
(1+1)-EA;

• Heuristic S4: run CLK, then PackIterative, then
repeat Insertion until converged;

• Heuristic S5: repeat S1 until time is up.

Because Bitflip and Insertion are deterministic, we can
stop the heuristics S2 and S4 once the objective value does
not change.

(1+1)-EA is a simple alternative to the greedy Bitflip,
which was previously used in [10]: given a packing plan, we
flip each item with probability 1/m. If the TTP solution
with the new packing plan has a higher objective value, we
use it as the next starting point. We terminate it once the
CPU time is used up.

Since we expect the different routines to be able to escape
each others local optima, we also define the following slightly
more complex heuristics:

• Heuristic C1: run CLK, then PackIterative, then
repeat “one Bitflip pass, one Insertion pass” until
converged;

• Heuristic C2: run CLK, then PackIterative, then
repeat “one Bitflip pass, one (1+1)-EA pass, one
Insertion pass”;

• Heuristic C3: run CLK until 10% of the time is used,
then apply PackIterative, select the best of those,
then “one Bitflip pass, one Insertion pass”;

• Heuristic C4: run CLK until 10% of the time is used,
then apply PackIterative, select the best of those,
then “one Bitflip pass, one (1+1)-EA pass, one In-
sertion pass”;

• Heuristic C5: repeat C1 until time is up;

• Heuristic C6: repeat C2 until time is up.

The heuristics C1 and C2 are straight-forward extensions
of S2 and S4, with the hope that the two routines comple-
ment each other. Heuristics C3 and C4 use 10% of their
CPU time to sample better starting points. This allows us
to investigate the benefits of a better starting point over
performing more iterations of the routines. Lastly, C5 and
C6 are the restart variants of C1 and C2, with which we can
observe the advantage of restarts to make the best use of
the available computation time.

Note that we limit (1+1)-EA to 10,000 iterations in these
complex heuristics, whereas it is unlimited in the simple
ones. In addition, note that we decided to execute only sin-
gle passes of Bitflip and Insertion per iteration due to
their computational complexity. With this interleaving of
the two routines, none of them will use a disproportionate
amount of time. This is important particularly for the in-
stances in which there are a large number of cities and items.

5. PACKING ITEMS WITH A MIP BASED
APPROACH

When a tour is given, the two MIP based approaches of
Polyakovskiy and Neumann [11] are able to solve the resid-
uary knapsack packing part either exactly or approximately.
Obtaining the optimal solution is costly in regard to run-
ning time as it requires the use of a linearization technique
to handle the non-linear terms in the objective function. As
an alternative, the piecewise linear approximation technique
can be used. In this case, each of the non-linear terms is rep-
resented by the function t (υ) = 1/υ which is subsequently

approximated by a set of straight line segments. The compu-
tational experiments presented in [11] show that the approx-
imate approach yields a tight approximation within only 1%
of the optimal packing plan.

For our MIP-based approach, we adopt the approximative
technique and run it on top of the Chained Lin-Kernighan
heuristic [2] as a tour generator. The final solution for a
particular instance results from the following iterative pro-
cess. Each iteration starts with computing a distinct tour Π
as a result of the TSP heuristic. Then, we run the approx-
imative solver for the KP component. Firstly, the primal
order Π = (x1, x2, . . . , xn) is considered. Specifically, the
set of items M is refined to exclude any existing unprof-
itable and compulsory items according to the pre-processing
scheme as prescribed in [11]. Then the resulting non-linear
knapsack problem on the reduced set of items is solved as
the linear mixed 0-1 program named NKPaτ , where τ is the
number of equal-sized line segments and is used to manage
the precision of the approximation. Secondly, the reversed
order Π = (x1, xn, . . . , x2) is investigated for which the pre-
processing scheme and NKPaτ are performed again. Thus, we
obtain through each iteration two feasible solutions based on
either Π or Π. Afterwards, we start the next iteration with
a new tour. We consider the best solution found by this
iterative process within a given time limit to be the output
of this approach.

6. EXPERIMENTAL INVESTIGATIONS
In this section, we investigate the effects of the different

local search routines and compare our approaches with ex-
isting ones.

6.1 Experimental Setup
As mentioned above, we use the comprehensive set of TTP

instances from Polyakovskiy et al. [1, 10] for our investiga-
tions. The two components of the problem are balanced
in such a way that the near-optimal solution of one sub-
problem does not dominate over the optimal solution of an-
other sub-problem.

The characteristics of the 9,720 instances vary widely, and
we outline the most important ones in the following:2

• The instances have 51 to 85,900 cities, based on in-
stances from the TSPlib by Reinelt [12];

• For each TSP instance, there are three different types
of knapsack problems: uncorrelated, uncorrelated with
similar weights and bounded strongly correlated types,
where the latter has been shown to be difficult for dif-
ferent types of knapsack solvers in [5, 10];

• For each TSP and KP combination, the number of
items per city (referred to as an item factor) is F ∈
{1, 3, 5, 10}. Note that all cities of a single TTP in-
stance have the same number of items, except for the
first city (which is also the last city), where no items
are available;

• For each instance, the renting rate R that links both
subproblems is chosen in such a way that at least one
TTP solution with zero negative objective value exists;

• Lastly, for each TTP configuration 10 different in-
stances exist where the knapsack capacity is varied.

2For a more detailed description, we refer the interested
reader to [1, 10].

Figure 3: Heat-map of objective values for different values
of α, averaged over the same 50 tours for each of the thirty
instances of pcb3038 n9111. Greener (darker) squares indicate
higher objective values and boxes represent the best.

From the set of 9,720 TTP instances, we select 72 as a
representative subset to cover small, medium, and large size
instances with different characteristics:

• six different numbers of cities (spread out roughly log-
arithmically): 195, 783, 3038, 11849, 33810, 85900;

• two different numbers of items per city: 3, 10;

• all three different types of knapsacks;

• two different sizes of knapsacks (capacities): 3 and 7
times the size of the smallest knapsack.

We run all algorithms for a maximum of 10 minutes per
instance, except for the MIP-based approach which we run
for 8 hours on the instances with n ∈ {33810, 85900} cities.
Due to their randomized nature, we perform 30 independent
repetitions of the algorithms on each instance. All com-
putations of heuristics S1–S5 and C1–C6 are performed on
machines with Intel Xeon E5430 CPUs (2.66GHz), on De-
bian Linux 4.7.2, with Java SE RE 1.7.0. All computations
of our MIP-based appproach were performed on machines
with AMD Opteron 6348 CPUs (2.8GHz) on Red Hat Linux
4.4.7, with IBM ILOG CPLEX 12.6.

We assess the quality of the algorithms using the following
approach. For each instance, we consider the best solution
found to be a lower bound on the achievable objective value.
Then, we take the average of the 30 results produced by an
algorithm and then compute the ratio between that aver-
age and the best objective value found, which gives us the
approximation ratio. This ratio allows us to compare the
performances across the chosen set of instances, since the
objective values vary across several orders of magnitude.

6.2 Impact of the Exponent in the Packing
Routine

In the following, we investigate the performance of the
packing approaches from Section 3.1. First, in an attempt
to uncover the best performing values for α for varying in-
stances, we carry out an experimental study with objective
values being calculated and averaged over 100 unique tours
using values e ∈ [1, 6] at 0.25 intervals.

Figure 4: The best performing exponent values averaged over
50 tours for varying instances and instance types.

Figure 3 is a heat-map from the study for the
pcb3038 n9111 instances.3 It is easy to see that (1) there
appears to be a single best performing exponent for each
instance, and (2) there is also an optimal trend-line curve
for instances of the same type that stars at high exponents
for small knapsacks and ends at smaller exponents for larger
knapsacks. This heat-map is representative of heat-maps for
other instances. Across all instances, the trend-lines are de-
pendent on the knapsack types (bounded-strongly, uncorr-
similar, uncorr).

In order to quickly determine well performing exponents,
we use PackIterative. Based on previous experiments, we
use the starting exponent c = 5 and the sampling spread
δ = 2.5. To limit the runtime of Algorithm 2, we limit the
number of iterations q = 20 and use ε = 0.1. We show the
best performing exponents in Figure 4. What we can ob-
serve in Figure 3 is now visible across all 72 instances: the
best performing exponents for the uncorrelated ones are sig-
nificantly smaller than those for the instances with bounded
and strongly correlated items.

Interestingly, the best performing exponents for certain
classes of TTP instances are in very narrow ranges, e.g. for
all instances with uncorrelated weights. For the instances
with bounded and strongly correlated items, however, the
best performing exponents vary significantly.

Further investigation into these trends is necessary to fully
understand why they exist and what particularities of an
instance affect the value of the optimal exponent.

6.3 Results and Discussion
In the following, we will show and analyse the performance

of the different heuristics on the 72 instances. We compare

3Only here we consider the wider range of knapsack sizes
1–10 to better show the trends.

Figure 6: Results of S1–S5: ranking across the 72 instances.

Figure 7: Results of C1–C6: ranking across the 72 instances.

our heuristics S1–S5, C1–C6, and MIP based heuristic with
the heuristic MATLS [6] and with the three heuristics pre-
sented in [10]. Note that the study in [6] already shows that
MATLS outperforms these three on large instances.

In Table 1 we list all achieved average ratios. Due to space
constraints, we only show in this table the results of algo-
rithms with an average approximation ratio ≥ 96%. Thus,
the three approaches from [10] are missing in the table, as
are S2–S4. S1 remains as an important baseline for our anal-
yses. In addition, we show in Figure 5 for all 16 approaches
the number of times that a heuristic achieved the best, sec-
ond best, and third best average ratio.

A closer look into the results yields surprising insights.
First, let us look into our group of simple heuristics S1–S5.
In Figure 6 we show the number of times that a particular
approach performed on average either best or second best
in this group. We can see that S5 clearly outperforms our
other simple heuristics when it comes to the number of times
that its average is the highest. The runner-ups are S2–S4,
which shows that all three routines Bitflip, (1+1)-EA and
Insertion perform well on instances for which the others do
not. In particular the performance of S4 shows that mod-
ifications of the tours need to be considered in addition to
modifications of the packing plans. Note that the dominat-
ing performance of S5 is a first indicator of the importance
of the initial TSP tour for the final objective value.

Next, for the analysis of the complex heuristics, let us
recall that C3 and C4 sample several starting points in com-
parison to C1 and C2, and that C5 and C6 are the restart
variants of C1 and C2. In Figure 7 we show again the num-
ber of times that an approach achieved either the best, sec-
ond best, or third best average objective value in this group.
We can see that C3 and C4 perform best, which we at-
tribute to the fact that both select the best from several
TTP solution candidates for the subsequent hill-climbing.
The restarting algorithms C5 and C6 perform better than
the single-iteration ones, however, they do not perform as
well as algorithms C3 and C4 that can explore more TSP
tours. Again, the performance of the algorithms that sample
more tours indicates that the TSP tours are of high impor-
tance.

Figure 5: Results for all approaches: ranking across the 72 instances. Shown are the number of times an algorithm’s approximation
ratio is best, second best, or third best on an instance.

Interestingly, it is possible to directly compare the effects
of resampling tours and of hill-climbing based on a good
initial solution: C3/C4 contain S5, even though it is limited
to just 10% of the overall computation time. A look into
Table 1 reveals that the resampling strategy is the more
successful one, since S5 achieves an average approximation
ratio of 98.2%, whereas C3 and C4 achieve only about 97%.

Since PackIterative requires only a small number of
evaluations, it is very quick compared to the traditional iter-
ative TTP approaches that are allowed to use up to 10 min-
utes. For example, the runtimes of PackIterative ranges
from 15-60 milliseconds for the instances with 195 cities and
1.2-13 seconds for instances with 11,849 cities, to 18-110 sec-
onds for the instances with 85,900 cities. Since S1 performs
only a single iteration of PackIterative, we can compare
the performance of this basic step with the other approaches
in Table 1.

As we can observe in the approximation ratios of S1 and
S5, the impact of initial tours on the final solution qual-
ity can be significant. On many instances, the restart ap-
proach of S5 outperforms any other complex approach. This
strongly indicates that, even though the local search routines
are problem-specific, their effect is limited. Given our short
computation time budget, even the iterative MIP approach
achieves just comparable performance.

The results also show that the routines Bitflip and In-
sertion can help to improve the solutions, in particular
when we compare the ratios of the complex algorithms C1–
C6 with that of S1. The drawback of these routines, how-
ever, is their computational complexity. To increase their
effectiveness, fast and particular heuristics are necessary to
prevent the exhaustive search that both routines currently
perform.

Additional noteworthy observations include, amongst oth-
ers:

• The mixed-integer approach performs second best on
average, if we do not consider the instances with
n =85,900 cities.

• MATLS cleary outperforms our approaches on a few
instances. On average, however, it is not amongst the
best-performing algorithms.

Since generating tours can be very time consuming for
very large problem instances, it would be an obvious im-
provement to pre-compute many TSP tours and to randomly
pick from these. In practice, the decision to pre-compute
can be reasonable, in cases where the locations of delivery
or pick-up spots rarely change. In fact, a large number of
slightly different tours can be achieved by running CLK mul-
tiple times. To investigate this further, we repeatedly run
CLK: if the number of cities n <1,000 then we run it 10,000

Figure 8: Percentage of unique tours found in repeated Lin-
Kernighan runs. Percentages >100 are possible as a single TSP
tour can be used in two different directions for TTP purposes.

times, if 1,000 ≤ n < 10,000 we run it 1,000 times, and if
n ≥10,000 we run the heuristic 100 times (see Figure 8).
In particular for TSP instances that are based on electronic
circuits, which exhibit regular grid like arrangements, often
the final tours are identical with the exception of a few nodes
that then belong to earlier or later parts of the tour.

Summarizing the results the following conclusion can be
made: while problem understanding can help, it is surprising
how well a greedy approach with low computational com-
plexity performs compared to more complex ones.

7. CONCLUDING REMARKS
As discovered from the literature and as observed in our

experiments, there does not yet seem to be a single best algo-
rithm paradigm for the TTP. So far, constructive heuristics,
simple and complex hill-climbers, and also more sophisti-
cated co-evolutionary approaches have been applied to the
TTP. With each study, more successful approaches are iden-
tified however further investigation is needed to enable un-
derstanding to solve the TTP. The interdependence of the
TTP is rarely considered, and minimally problem-specific
local searches that alternate between solving the TSP and
KP components perform best.

It appears that the near future in TTP research will
mostly be driven by experiments. Maybe research similar
to that in [8, 9, 13], where the difficulty of TSP instances
is systematically analyzed, will contribute to the theoreti-
cal understanding of the TTP. Computational complexity
analyses of simple approaches on simple instances may also
provide insights.

n m t F S1 S5 C3 C4 C5 C6 MIP MATLS
1
9
5

5
8
2

b
sc 3 88.1 99.6 99.4 99.4 99.6 99.5 100 96.3

7 88.0 99.2 99.2 99.2 99.2 99.2 99.2 95.6

u
n
c 3 98.2 99.2 99.3 99.3 99.3 99.3 99.3 99.5

7 99.2 99.9 100 100 100 100 100 99.8
u
sw 3 96.1 98.6 99.0 98.9 99.3 99.0 99.5 98.5

7 98.2 99.1 99.2 99.2 99.3 99.2 99.3 99.2

1
9
4
0

b
sc 3 89.6 99.9 99.9 99.9 99.9 99.9 100 98.3

7 89.2 97.7 97.1 97.5 97.7 97.6 98.1 97.0

u
n
c 3 96.0 99.1 98.7 98.7 99.3 99.1 99.1 99.0

7 96.3 98.6 97.7 97.7 98.7 98.5 98.8 99.2

u
sw 3 88.4 91.3 91.3 91.6 91.5 91.7 91.4 97.0

7 92.6 96.3 95.6 95.6 96.4 96.0 96.9 99.4

7
8
3

2
3
4
6

b
sc 3 97.8 99.7 99.4 99.4 99.6 99.4 99.7 96.6

7 95.5 99.3 98.7 98.6 99.1 98.8 99.0 96.6

u
n
c 3 95.9 98.9 98.5 98.5 98.8 98.5 98.7 98.8

7 96.3 97.9 97.6 97.7 97.9 97.7 97.8 98.6

u
sw 3 95.3 99.1 99.2 99.2 99.5 99.3 99.5 98.7

7 96.0 99.7 99.6 99.5 99.8 99.5 99.7 98.7

7
8
2
0

b
sc 3 98.0 99.7 99.6 99.7 99.4 99.5 99.8 94.8

7 97.0 99.5 99.4 99.4 99.3 99.1 99.5 94.5

u
n
c 3 96.8 99.3 99.2 99.1 99.2 98.7 99.3 98.5

7 97.9 99.5 99.4 99.3 99.3 99.1 99.4 99.0

u
sw 3 96.0 99.3 99.6 99.6 99.4 99.0 99.6 97.7

7 95.9 99.3 99.2 99.2 99.2 98.4 99.4 98.1

3
0
3
8

9
1
1
1

b
sc 3 97.9 99.5 99.1 99.1 98.1 98.0 99.1 93.9

7 97.6 99.4 99.0 99.0 97.7 97.4 98.8 94.4

u
n
c 3 98.0 99.7 99.4 99.4 98.5 98.0 99.5 99.0

7 98.3 99.7 99.5 99.4 98.9 98.5 99.6 99.4

u
sw 3 97.0 99.1 99.2 99.1 97.2 97.2 99.2 98.2

7 97.6 99.6 99.3 99.2 98.4 97.7 99.3 99.0

3
0
3
7
0

b
sc 3 98.1 99.6 99.3 99.3 99.0 99.0 99.3 96.7

7 97.0 99.2 98.7 98.8 98.6 98.2 98.9 95.8

u
n
c 3 97.1 99.6 99.2 99.1 98.9 98.8 99.3 99.0

7 97.8 99.5 99.3 99.3 99.2 98.9 99.3 99.2

u
sw 3 94.8 98.9 98.2 98.3 97.6 97.6 98.6 98.3

7 96.2 99.1 98.6 98.4 98.5 97.9 98.6 98.6

1
1
8
4
9

3
5
5
4
4

b
sc 3 97.1 99.2 98.4 98.6 97.3 97.4 97.5 93.5

7 96.7 98.9 97.9 98.1 96.6 96.7 96.7 93.9

u
n
c 3 97.4 99.0 98.4 98.5 97.6 97.8 98.0 98.4

7 97.9 99.5 98.9 99.0 98.0 98.3 98.4 99.3

u
sw 3 96.3 98.6 97.8 98.0 96.2 96.5 97.2 97.6

7 97.1 99.0 98.5 98.5 97.0 97.3 97.3 98.7

3
5
5
4
4

b
sc 3 96.7 99.0 98.4 98.3 96.9 97.0 97.9 93.6

7 96.2 99.2 98.1 98.3 96.2 96.4 97.4 94.0

u
n
c 3 97.2 99.2 98.6 98.7 97.4 97.6 98.3 98.4

7 97.4 99.2 98.6 98.4 97.9 97.8 98.5 98.8

u
sw 3 95.3 98.3 97.8 97.8 95.6 95.9 97.1 97.6

7 96.2 98.9 98.1 98.0 96.7 96.7 97.9 98.5

3
3
8
1
0

1
0
1
4
2
7 b

sc 3 91.3 97.9 95.5 94.0 93.9 92.0 98.3 94.4
7 91.0 97.9 94.2 95.3 93.8 91.7 96.5 94.1

u
n
c 3 70.6 73.5 71.4 71.5 71.2 70.9 73.3 75.8

7 95.1 98.2 96.4 96.0 95.3 95.5 99.9 98.4

u
sw 3 90.4 97.5 93.7 93.3 92.5 91.8 96.2 95.9

7 92.2 98.0 94.7 93.9 93.9 93.5 98.1 97.4

3
3
8
0
9
0 b

sc 3 92.2 97.3 93.8 93.3 92.5 92.4 99.1 93.9
7 92.6 97.1 94.9 94.3 92.6 93.3 96.9 94.6

u
n
c 3 94.7 98.3 95.3 95.5 95.8 95.0 97.8 98.0

7 95.0 98.4 96.0 96.1 96.2 95.7 98.5 98.7

u
sw 3 91.3 97.7 93.5 92.8 92.1 92.3 98.3 96.4

7 93.9 98.3 94.4 95.1 94.1 94.6 99.5 98.3

8
5
9
0
0

3
3
8
0
9
0 b

sc 3 95.8 98.3 96.3 95.8 95.9 96.4 97.6 -
7 96.1 97.8 96.8 95.9 96.3 97.1 98.4 -

u
n
c 3 97.4 98.9 94.2 94.1 97.8 97.7 - -

7 97.6 98.6 95.6 95.4 98.0 98.2 98.1 -

u
sw 3 95.1 97.6 92.6 92.3 96.1 95.2 - -

7 95.8 97.4 93.4 93.3 96.4 96.0 97.9 -

8
5
8
9
9
0 b

sc 3 95.9 96.8 96.2 97.1 95.6 96.3 - -
7 96.6 97.2 97.0 97.6 96.6 96.3 - 94.1

u
n
c 3 97.6 97.5 92.1 92.0 97.6 97.3 - -

7 97.9 97.9 94.6 94.5 97.8 97.7 - 98.5

u
sw 3 95.7 97.5 91.8 92.7 96.3 95.3 - -

7 96.6 96.9 93.2 93.2 96.5 96.3 - 97.9

avg 95.2 98.2 97.0 96.9 96.9 96.8 87.2 84.9
avg-85900 95.0 98.3 97.5 97.4 97.0 96.8 98.1 97.0

Table 1: Approximation ratios achieved. n is the number of
cities, m the number of items, t stands for the three KP types,
and F stands for the KP size. avg is the average ratio achieved
across all 72 instances, avg-85900 across the top 60 instances.

Acknowledgements
This work has been supported by the ARC Discovery Project
DP130104395.

References
[1] TTP Test Data. See http://cs.adelaide.edu.au/

˜optlog/research/ttp.php.

[2] D. Applegate, W. J. Cook, and A. Rohe. Chained Lin-
Kernighan for large traveling salesman problems. IN-
FORMS Journal on Computing, 15(1):82–92, 2003.

[3] M. R. Bonyadi, Z. Michalewicz, and L. Barone. The
travelling thief problem: The first step in the transi-
tion from theoretical problems to realistic problems. In
IEEE Congress on Evolutionary Computation (CEC),
pages 1037–1044. IEEE, 2013.

[4] M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and
A. Wierzbicki. Socially inspired algorithms for the trav-
elling thief problem. In Genetic and Evolutionary Com-
putation Conference (GECCO), pages 421–428, New
York, NY, USA, 2014. ACM.

[5] S. Martello, D. Pisinger, and P. Toth. Dynamic pro-
gramming and strong bounds for the 0-1 knapsack prob-
lem. Management Science, 45(3):414–424, Mar. 1999.

[6] Y. Mei, X. Li, and X. Yao. Improving efficiency of
heuristics for the large scale traveling thief problem.
In Simulated Evolution and Learning (SEAL), volume
8886 of LNCS, pages 631–643. Springer, 2014.

[7] Y. Mei, X. Li, and X. Yao. On investigation of interde-
pendence between sub-problems of the travelling thief
problem. Soft Computing, pages 1–16, 2014.

[8] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner,
J. Bossek, and F. Neumann. A novel feature-based ap-
proach to characterize algorithm performance for the
traveling salesperson problem. Annals of Mathematics
and Artificial Intelligence, 69(2):151–182, 2013.

[9] S. Nallaperuma, M. Wagner, and F. Neumann. Param-
eter prediction based on features of evolved instances
for ant colony optimization and the traveling salesper-
son problem. In Parallel Problem Solving from Na-
ture PPSN XIII, volume 8672 of LNCS, pages 100–109.
Springer, 2014.

[10] S. Polyakovskiy, M. R. Bonyadi, M. Wagner,
Z. Michalewicz, and F. Neumann. A comprehensive
benchmark set and heuristics for the traveling thief
problem. In Genetic and Evolutionary Computation
Conference (GECCO), pages 477–484. ACM, 2014.

[11] S. Polyakovskiy and F. Neumann. Packing while trav-
eling: Mixed integer programming for a class of non-
linear knapsack problems. In Integration of AI and OR
Techniques in Constraint Programming, volume 9075 of
LNCS, pages 330–344. Springer, 2015.

[12] G. Reinelt. TSPLIB - A Traveling Salesman Problem
Library. ORSA Journal on Computing, 3(4):376–384,
1991.

[13] K. Smith-Miles, J. van Hemert, and X. Y. Lim. Un-
derstanding TSP difficulty by learning from evolved
instances. In Learning and Intelligent Optimization
(LION), pages 266–280. Springer, 2010.

