9 THE UNIVERSITY
e Markus Wagner and Frank Neumann
o ADELAIDE

Single- and Multi-Objective Genetic
Programming: New Runtime
Results for SORTING

Overview

Genetic Programming (GP):

= Highly complex GP variants address challenging
problems, e.g., in symbolic regression

= Currently, it seems to be impossible to analyse these
complex variants on complex problems.

Our key questions

= Which optimisation problems can provably be solved by
(simple) GPs in polynomial time?

= Can we provide design support to a practitioner?

Current Status “EA Theory”

Computational Complexity Analysis of Evolutionary

Computing
EAs for discrete combinatorial optimisation (lots of
results)

Evolutionary Multi-Objective Optimisation (many
results)

Ant Colony Optimisation (some results)
EAs for continuous optimisation (initial results)
Particle Swarm Optimisation (initial results)

Our Goal: Rigorous insights into the working principles
of GP using existing approaches!

Current Status “GP Theory”

Initial article [Durrett/Neumann/O'Reilly 2011]

“GP Computational Complexity on ORDER/MAJORITY”
Properties of the functions:
= Separable (subproblems can be optimised independently)
* Admit multiple solutions

Additional works by Kotzing, Neumann, Nguyen, O’Reilly,
Sutton, Urli, and Wagner (2011-2014):

= MAX problem, generalised ORDER/MAJORITY
= Different mutation strategies
= Different multi-objective GPs

In summary:

= Techniques: fitness-based partitions, random walks, coupon
collector arguments, drift analysis, failure events, ...

= many bounds known

SORTING

"%

= One of the basic problems in computer science.

= Optimisation problem: maximise the sortedness in a
given permutation of elements.

= First combinatorial optimisation problem analysed for
EAs.

= Many measures of sortedness work provably well for
permutation based EAs (Scharnow/Tinnefeld/Wegener
2002).

Measures of Sortedness

Given a permutations (e.g. 1 3 2 45)

= INV(s) pairs in order in s

= HAM(s) Hamming distance to optimum

= RUN(s) number of ascending (sorted) subsequences
= LAS(s) longest ascending sequence length

= EXC(s) number of pairwise exchanges

Scharnow/Tinnefeld/Wegener 2002: Polynomial upper
bounds for all functions, except RUN.

GP and SORTING

Four Algorithms

= Tree-based approaches

= Inorder parse leads to (incomplete) permutation®*
» Consider different sortedness (fitness) measures

Algorithms (summary)

(1+1)-GP*, F(X)

(1+1)-GP, F(X)
requires: not worse
noteworthy: no bloat control

(1+1)-GP, MO-F(X)
requires: at least not longer
noteworthy: parsimony pressure towards shorter solutions

SMO-GP, MO-F(X)
requires: weak dominance
noteworthy: number of different sortedness values limits
population size

Variation Operator: HVL-mutate

With equal probability, do...

Replace
J
Insert r r
Delete - -

AllBiwch [A
Chosennode | D E

Choice of parameter k:

= k=1 do a single operation

= k=1+Poisson(1) do multiple operations

Results (before this paper)

F(X) (1+1)-GP*, F(X) (1+1)-GP, F(X)
single multi single/multi
INV
LAS
HAM
EXC
RUN
(1+1)-GP, MO-F(X) SMO-GP, MO-F(X)
F(X) . . : .
single multi single/multi
INV
LAS
HAM 00 O(nTinit +n%)
EXC 00 O(nTinic + n°logn)
RUN 00 O(nTinit +n°logn)

Results (*this paper)

(1+1)-GP*, F(X) - (1+1)-GP, F(X)
single single/multi

B SMO-GP, MO-F(X)
single/multi

Al 2 . 5Y *

(1+1)-GP, MO-F(X)
single multi

O(Tinic +n°) * ?

Advertisement

O(Tinic+

Approximation-Guided

Evolution (AGE)

- Theory-motivated

- many dimension (2-20D)
J

INV LAS HAM EXC RUN

ST o 8 .0 L
10° - ' pe=eseRsRtE B
At least [
3.5 39 19 1.9
not longer p0-04__ 04 ————— 2 _______
10'5_
med(eval) __ n2log(n) — - n® - - nllog(n) -—- n* - -+ n®
poly

% fail. 0 10 £ 20 £ 30 B 40

Algorithms (summary)

(1+1)-GP*, F(X) number of sortedness improving steps
limits solution size

(1+1)-GP, F(X) no bloat control
(1+1)-GP, MO-F(X) parsimony pressure

SMO-GP, MO-F(X) number of different sortedness values
limits population size

Results SMO-GP

Proof idea:
1. Introduce the empty solution in O(KT,;,)
2. Build up the Pareto front step by step.

A
®
® ® .
C(X) =
° °® 7 Polynomial bounds for
o °® ¢ | SMO-GP-single/-multi
* L° | using INV & LAS
® i

Algorithm (1/4)
(1+1)-GP*-single for maximisation

1 Choose an initial solution X;

2 repeat

3 Set Y = X;

4 Apply the mutation operator HVL mutate
with k=1t Y;

5 if f(Y) > f(X) then set X :=Y;

Algorithm (1/4)
(1+1)-GP*-single for maximisation

1 Choose an initial solution X;

2 repeat

3 Set Y = X;

4 Apply the mutation operator

with k=1t Y;

5 if f(Y) > f(X) then set X :=Y;

Algorithm (2/4)
(1+1)-GP -single for maximisation

1 Choose an initial solution X;

2 repeat

3 Set Y = X;

4 Apply the mutation operator

with k=1t Y;

5 if f(Y)> f(X) then set X :=Y;

Algorithm (3/4)
(1+1)-GP -single for maximisation

1 Choose an initial solution X;

2 repeat

3 Set Y := X;

4 Apply the mutation operator

with k=11t Y;

5 if f(Y)> f(X) then set X :=Y;

Parsimony pressure to favour short solutions: use MO-F(X) instead of F(X)

MO-F(Y) = MO-F(X) holds iff F(Y) > F(X) or
(F(Y) = F(X) and C(Y) < C(X))

Algorithm (4/4)

SMO-GP

1 Choose an initial solution X;

2 Set P:={X};

3 repeat

4 Choose X € P uniformly at random;

5 Set Y = X;

6 Apply mutation to Y;

7 | if{ZeP|Z>=Y} =10 then set
P.=(P\{Ze€P|Z>Y})u{Y};

A proper MO algorithm for the sortedness F(X) and the
solution quality C(X).

Results (1+1)-GP*

=» The expected optimisation time is O(n3T

) using INV.

max

Proof based on fitness-based partition:

n(n-1)/2+1 different sortedness values possible

Probability to makean 1 1 1 1 1

improving mutation 3 2 n Thae T o

Overall optimisation n-(n—1)/2 | o

time bounded by Y. O(nTmaz) = O(n*Trnaz)
k=0

For HAM, LAS, RUN & EXC: local optima exist that can only be

left in expected exponential time with n mutations.

Results (1+1)-GP
=>» No results for the (1+1)-GP, F(X).

=>» The expected optimisation time of (1+1)-GP-single on
MO-LAS is O(T,;;+n2log n).

Proof idea:

= Deleting all blocking and surplus leaves takes
O(T,,;;+n logn)

= Correctly inserting the missing leaves then takes
O(n2logn)

“Multi” case: a sortedness improvement may be
accompanied by the insertion of many elements...

Results (1+1)-GP

Bound the solution size [t=poly(n) steps and C(T,,;)=poly(n)]

Faihglzl(*e)probability for inserting at most n¢ in a single HVL operation
1s e~*Hne),

For LAS and EXC, at most n sortnedness improving steps are
possible.

Thus, the failure probability for adding at most nn¢ in t time steps is
te—Q(ns):e—Q(nE)

Thus, the size does not exceed T, ..+nn¢ within poly(t) time steps,

with high probability.

nit

=>» The optimisation time of (1+1)-GP-multi on MO-LAS is

O(T,,;;+n2log n), with probability 1-o(1).

1nit

Proof idea:

As before

Use Chernoff bounds and multiplicative drift with tail bounds to
consider multiple mutations.

Methods

Huge set of methods for the analysis is available:

Fitness-based partitions

Expected distance decrease

Coupon Collector’s Theorem

Markov, Chebyshev, Chernoff, Hoeffding bounds
Markov chain theory: waiting times, first hitting times
Rapidly mixing Markov chains

Random walks: gambler’s ruin, drift analysis, martingale
theory

Identifying typical events and failure events
Potential functions

Computational Complexity Analysis

Black Box Scenario

= Measure the runtime T by the number of fitness
evaluations.

= Consider time to reach
— an optimal solution
— a good approximation

Alternative: Analyse
= expected number of fitness evaluations
= success probability after a fixed number of t steps.

Introduction

There are many

= successful applications and
= experimental studies

of Genetic Programming.

We want to
= argue in a rigorous way about GP algorithms and
= contribute to their theoretical understanding.

This is also important for the acceptance of GP outside the
EC community.

Classical Algorithm Analysis

= (lassical algorithm analysis has a large focus on runtime
and approximation behavior of algorithms.

Our key questions

= Which optimization problems can provably be solved by
(simple) GPs in polynomial time?

= (Which functions can provably be learned by (simple) GP
systems in polynomial time?)

