
A Feature-Based Comparison of Local Search and the
Christofides Algorithm for the Travelling Salesperson

Problem

Samadhi Nallaperuma, Markus Wagner,
Frank Neumann

Evolutionary Computation Group
School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia

Bernd Bischl, Olaf Mersmann,
Heike Trautmann

Statistics Faculty
TU Dortmund University

44221 Dortmund, Germany

ABSTRACT
Understanding the behaviour of well-known algorithms for
classical NP-hard optimisation problems is still a difficult task.
With this paper, we contribute to this research direction and
carry out a feature based comparison of local search and the
well-known Christofides approximation algorithm for the
Traveling Salesperson Problem. We use an evolutionary al-
gorithm approach to construct easy and hard instances for
the Christofides algorithm, where we measure hardness in
terms of approximation ratio. Our results point out impor-
tant features and lead to hard and easy instances for this fa-
mous algorithm. Furthermore, our cross-comparison gives
new insights on the complementary benefits of the different
approaches.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Traveling Salesperson Problem, Approximation Algorithms,
Local Search, Classification, Prediction, Feature Selection

1. INTRODUCTION
Our goal is to understand the performance of algorithms for
hard optimisation problems such as the Travelling Salesper-
son Problem (TSP). This understanding is essential for algo-
rithm design and automated algorithm selection. In both the
artificial intelligence (AI) and operational research commu-
nities, this topic has become a major point of interest. Thus,
various kinds of attempts have been made theoretically and
empirically. Classical approaches taking a worst-case or an
average-case perspective hardly capture what is happening
for real instances. For a given instance I of a combinatorial
optimisation problem, it is often hard to predict the perfor-
mance of an algorithm A without running A on I .

Hyper heuristics in the optimisation domain and meta-lear-
ning in the machine learning domain focus on finding the
conditions that determine algorithm performance in advance.
Smith-Miles and Lopes [8] classify the research on problem
hardness analysis into two different directions. The first di-
rection is to consider the problem as a learning problem,
where automatic algorithm selection [3] is done based on
learned knowledge from previous algorithm performance.
The second direction is to analyse the algorithms and prob-
lems theoretically [7, 10, 4] and experimentally [8] [13] to un-
derstand the reasons for performance on different problem
instances. This understanding is the key to future algorithm
design for more complex real world problems.

Our study considers both approaches, where we investigate
the performance of important algorithms for the TSP on dif-
ferent instances. Heuristic methods are frequently used to
tackle NP-hard combinatorial optimisation problems. Usu-
ally, they do not provide any performance guarantees. In
contrast to this, approximation algorithms provide guaran-
tees on the quality of a solution that is achieved by running
the approximation algorithm. In this paper, we investigate
which features make instances of the TSP hard or easy for
the well-known Christofides approximation algorithm. Easy
and hard instances for this algorithm are generated by an
evolutionary algorithm (EA) presented in [6]. Furthermore,
we examine the behaviour of a 2-Opt based local search al-
gorithm on these instances and carry out a comparison to a
well-known 2-Approximation algorithm.

Our results provide evidence on the capability of individual
or combinations of features to classify instances into hard
and easy ones. Some features like distance and minimum
spanning tree statistics are more effective for this classifica-
tion for the Christofides algorithm than others like convex
hull or mode features. Combined with the analysis of the
feature values of the instances of medium difficulty, an in-
creased understanding of the individual feature influences
on the approximation quality is provided. Results of the al-
gorithm comparisons enable the analysis of relative strengths
of the algorithms on each others’ difficult instances as 2-Opt
(the Christofides algorithm respectively) outperformed the
Christofides algorithm (2-Opt respectively) on its hard in-
stances. These insights can be used to improve automatic
algorithm selection and algorithm design.

The rest of the paper is organised as follows. In Section 2, we
introduce the considered algorithms and the approach of se-



lecting features that measure problem difficulty. In Section 3,
we carry out the analysis of easy and hard instances for the
Christofides algorithm. In Section 4, we compare the perfor-
mance of different algorithms on their respective easy and
hard instances. Finally, we conclude with some remarks.

2. PRELIMINARIES
The Travelling Salesperson Problem (TSP) is one of the most
famous NP-hard combinatorial optimization problems.
Given a set of n cities {1, . . . , n} and a distance matrix d =
(di,j), 1 ≤ i, j ≤ n, the goal is to compute a tour of minimal
length that visits each city exactly once and returns to the ori-
gin. A tour that visits each city exactly once and return to the
origin is frequently called a Hamiltonian cycle. Hamiltonian
cycles for complete graphs can be represented as permuta-
tions of the n cities. For a given permutation π = (x1, . . . , xn)
we denote by

c(π) = dxn,x1
+

n−1∑

i=1

dxi,xi+1

the cost of the tour π.
A wide range of algorithms have been developed for the
TSP including approximation algorithms and various heuris-
tic approaches. The approximation ratio of an algorithm A
for a given instance I is defined as

αA(I) = A(I)/OPT (I)

where A(I) is the tour length produced by algorithm A for
the given instance I , and OPT (I) is the length of the shortest
Hamiltonian cycle in I . An algorithm A is an r-approximation
algorithm if for any valid input I , αA(I) ≤ r holds, i. e. the
worst case instance can have an approximation ratio of at
most r.

Different approximation algorithms have been developed for
the TSP. We refer the reader to the book of Vazirani [12] for a
comprehensive presentation. In general, the TSP is not only
NP-hard but also hard to approximate. We will restrict our-
selves to a subset of all TSPs, the class of Metric TSPs. Here
the distances between the cities have to fulfill the triangle in-
equality

∀i, j, k ∈ {1, . . . n} : dik ≤ dij + djk.

One of the most prominent approximation algorithms for the
Metric TSP is the Christofides algorithm (see Algorithm 1),
which achieves an approximation ratio of 3/2. It starts by
computing a minimum spanning tree T for the given input.
Furthermore, a minimum weight matching M is computed
on nodes that have odd degree in T . The graph obtained by
combining the edges of T and M is used to compute an Euler
tour which is then turned into a Hamiltonian cycle by using
short-cuts.

A prominent special case of the Metric TSP is the Euclidean
TSP. Here, cities are represented by points in the plane and
distances are given by the Euclidean instances between these
points. The Euclidean TSP is often considered in experimen-
tal investigations. Note, that the Euclidean TSP is still NP-
hard but admits a PTAS [2]. However, this algorithm is not
considered to be practical, instead we will investigate the
performance of the Christofides algorithm on Euclidean in-
stances of the TSP in greater detail by analyzing features of
easy and hard instances.

Algorithm 1: Christofides 3/2-approximation algorithm

input : Graph G
output: Hamiltonian cycle π

1 Compute a minimum spanning tree MST T of G.;
2 Find a minimum-weight perfect matching M on the set of

nodes of T having an odd degree.;
3 Combine the edges of M and T to form the graph U .;
4 Create an Euler cycle S in U .;
5 Obtain a Hamiltonian cycle π from S by skipping already

visited nodes.;
6 return π;

In practice, heuristic methods such as local search are fre-
quently used to solve instances of the TSP. Our goal is to com-
pare the Christofides algorithm to a standard local search al-
gorithm based on the well-known 2-Opt operator. The com-
plete local search algorithm is given Algorithm 2. It repeat-
edly checks whether the swapping of two edges in a tour re-
sults in a shorter tour. If no improvement can be found any
more, the tour is called “2-Optimal” and the algorithm termi-
nates. Note that in [6] a variant is used in which randomness
is only induced by varying the initial tour, whereas the 2-
opt algorithm is deterministic in always choosing the edge
replacement resulting in the highest reduction of the current
tour length.

2.1 Hard and easy instance generation
The most generic way to generate hard or easy instances is
based on a feature set that is considered to determine prob-
lem hardness [9]. Hard or easy instances are generated by
setting the values of these features to modify the problem
difficulty level. Then algorithm performance is measured
on these instances. Smith-Miles and Lopes [9] criticise this
conventional approach. The two major drawbacks are the
difficulty of generating diverse random instances and the re-
strictedness of randomly generated benchmark datasets in
the spectrum of difficulty. Van Hemert [11] has proposed
a different approach. His approach is based on an evolu-
tionary algorithm that evolves instances based on the perfor-
mance of the algorithm being investigated. After this study
on the Lin-Kernighan algorithm [5], there were several more
studies that used this approach to generate hard and easy
instances for problems like the TSP [8, 6, 9]. Using an evo-
lutionary algorithm, it is possible to evolve sets of extremely
hard and easy instances by maximizing or minimizing the fit-
ness (tour length) of each instance. This is essential to achieve
diversity within the data set [9]. Therefore, we assume that
an evolutionary algorithm based approach can generate a di-
verse set of easy and hard instances for approximation algo-
rithms as well.

We measure the hardness of an instance I for a given al-
gorithm A by the approximation ratio αA(I). We drop the
subscript A and write α(I) if it is clear which algorithm A
is under investigation. Since we only consider determinis-
tic approximation algorithms in this paper, we can obtain
A(I) by a single run of algorithm A on a given instance I .
However, within the instance generation for 2-opt in [6] it
is accounted for randomness by using several different ini-
tial tours. OPT (I) is obtained by using the exact TSP solver
Concorde [1].



Algorithm 2: 2-Opt algorithm

input : Graph G
output: Hamiltonian cycle π

1 Choose a π;
2 while true do
3 best improvement := 0;
4 for i from 0 to number of cities do

5 xi := ith node in π;
6 for j from i to number of cities do

7 xj := jth node in π;
8 improvement := distance({xi, xi+1}) +

distance({xj , xj+1}) − distance({xi, xj}) −
distance({xi+1, xj+1});

9 if improvement > best improvement then
10 π := π′;
11 best improvement:=c(π′);
12 best current := i;
13 best other := j;

14 if best improvment > 0 then
15 comment : swap edges and reverse the cities in

between;
16 current:= best current + 1; other := best other;
17 while current <= other do
18 increment current; decrement other;
19 tmp := π[current];
20 π[current]:= π[other];
21 π[other] := tmp;

22 else
23 break while-loop;

24 return π;

In order to evolve easy and hard instances for approximation
algorithms, we use the evolutionary algorithm introduced by
Mersmann et al. [6]. The search is guided by the approxima-
tion ratio of an instance, which is used as the fitness function
in the evolutionary algorithm. It should be noted that this
is in contrast to the approach proposed by van Hemert [11]
who used algorithm runtime as a measure for the hardness
of a particular problem instance. We maximize α(I) in order
to generate hard instances and we minimize α(I) in order to
generate easy instances for a given fixed algorithm A. For
the analysis instance sizes of 25, 50, 100 and 200 nodes are
investigated.

Our evolutionary algorithm uses two strategies to create new
instances: (1) “local mutation” is performed by adding a
small normal perturbation to the location (normalMutation),
and (2) “global mutation” is carried out by replacing each co-
ordinate of the city with a new uniform random value (uni-
formMutation). This later step was performed with a very
low probability. The two sequential mutation strategies to-
gether enable small local as well as global structural changes
in the offspring. The parameters of the evolutionary algo-
rithm are set as follows: population size = 30, generations =
5000, time limit = 24h, normalMutationRate = 0.01, uniformMu-
tationRate = 0.001, cells = 100, and the standard deviation of
the normal distribution used in the normal- Mutation step
equals normalMutationSd = 0.025. The parameter levels were
chosen based on initial experiments. For each combination

of difficulty and input size, we run the evolutionary process
100 times with different initial populations in order to create
a diverse set of hard and easy instances.

2.2 Investigated features
We study features that lead to easy and hard instances in a
similar way as Mersmann et al. [6], including statistics based
on the distance matrix, the minimum spanning tree, and the
convex hull of the cities. The complete set of features is listed
in the following.

Distance Features: Features based on summary statistics of
the edge cost distribution such as the lowest, highest, mean
and median edge costs, the proportion of edges with dis-
tances shorter than the mean distance, the fraction of distinct
distances, the standard deviation of the distance matrix and
the expected tour length for a random tour.

Mode Features: The number of modes of the edge, the cost
distribution and related features such as the frequency and
quantity of the modes, the mean of the modal values, and
the number of modes of the edge cost distribution.

Cluster Features: These features assume that the existence
and the number of node clusters relates to algorithm perfor-
mance. In particular, the number of clusters and mean dis-
tances to cluster centroids are determined using different lev-
els of reachability distances of the clustering algorithm GDB-
SCAN.

Nearest Neighbour Distance Features: Features reflecting
the uniformity of an instance such as the minimum, maxi-
mum, mean, median, standard deviation and the coefficient
of variation of the normalised nearest neighbour distances of
each node.

Centroid Features: The coordinates of the instance centroid
together with the minimum, mean and maximum distance of
the nodes from the centroid.

MST Features: Statistics that are related to the depth and the
distances of the minimum spanning tree (MST).
These include the minimum, mean, median, maximum and
the standard deviation of the depth and distance values of
the MST completed by the sum of the distances on the MST,
normalised by diving it by the sum of all pair wise distances.
This feature group represents the MST heuristic that provides
an upper bound for the optimal tour, i.e. the solution of the
MST heuristic is within a factor two of the optimal.

Angle Features: Statistics regarding the angles between a
node and its two nearest neighbour nodes, i.e. the minimum,
mean, median, maximum and the respective standard devi-
ation.

Convex Hull Features: The area of the convex hull of the
instance reflecting the spread of the instance in the plane and
the fraction of nodes that define the convex hull.

Different TSP instance sizes are considered for the analysis.
Cities are generated in [0, 1]2 and placed on a discretised grid
enabling cross comparison of features. Instances with vary-
ing difficulty levels in between easy and hard are generated
by a sophisticated morphing strategy which includes a heuris-
tic point matching strategy between easy and hard instances
and computes convex combinations of the respective points



Figure 1: Boxplots of the mean (top) and standard devia-
tions (bottom) of the tour length legs of the optimal tour,
both for the evolved easy and hard instances for Christofi-
des.

of both instance classes. The instances of various difficulty
levels will help to increase the understanding of the correla-
tion between instance features, algorithm performance and
problem difficulty.

3. ANALYSIS OF THE CHRISTOFIDES AL-

GORITHM
We now characterize instances of different difficulty for the
Christofides algorithm. We start by examining hard and easy
instances for the Christofides algorithm. The achieved ap-
proximation ratio is close to 1 for all the easy instances and
roughly 1.4 for the hard instances. Later on, we morph easy
instances into hard ones. The mean distances of the optimal
tours of the easy instances are greater than those of the hard
instances across all considered instance sizes. Similarly, the
standard deviation of the distances of each leg of an optimal
tour of the easy instances is considerably higher than for the
hard instances. This does not change for increasing instance
size (see Figure 1). It is observable that easy instances con-
sist of small clusters of cities as opposed to a more uniform
distribution for the hard instances.

As observed in Figure 2, the mean angle of successive tour
legs of the easy instances are higher than those of the hard
instances (when considering small instances), and lower for
larger instance sizes. However, the differences in location are
not statistically significant for the small instances. Neverthe-
less, the results for the larger instance sizes indicate that in
this case the instances have higher angles than the easy ones.

Using the boxplots in Figures 1 and 2), we can identify indi-
vidual features with the capability to differentiate easy from
hard instances. This can be refined by using two features
to classify instances as easy or hard. Examples for this are
shown in Figure 3. There, the top figure shows a combination
of distance (standard deviation) and angle (standard devia-
tion) features, while the bottom figure shows a combination
of MST (the standard deviation of the depth of MST) and
centroid (maximum distance to the centroid) features. As
observed in the previous boxplots, the angle features alone
do not provide enough information for an accurate classifi-

Figure 2: Boxplots of the mean values angle between adja-
cent cities on the optimal tour for Christofides.

.24 .26 .28 .30 .32 .34

Figure 3: Scatterplots of exemplary feature combinations
classifying easy and hard instances for Christofides.

cation. Nevertheless, once combined with another features
(such as distance), the angle features are capable of discern-
ing easy from hard instances reasonably well. Similarly, two
exemplary MST and centroid features are show in the bot-
tom figure, to illustrate that these too can be used to build
accurate classification rules.

3.1 Features of instances with different approx-

imation ratios
We create instances with varying difficulty levels by forming
convex combinations of easy and hard instances, a process
we call morphing in the following. Then, the changes of the
feature values with increasing difficulty level are studied in
order to understand the influence of the different features on
the approximation quality. Figures 7 to 11 show the approx-
imation quality for the Christofides instances of all morph-
ing sequences, for the various instance difficulty levels repre-
sented by α. Here, α ∈ {0, 0.2, ..., 0.8, 1} increases from hard
to easy instances (left to right). In the following, we will dis-
cuss basic observations on the variation of the feature values
from hard to easy instances for Christofides, with references
to the previous observations on 2-Opt [6].

Figure 7 explains the variation of distance features with the
instance difficulty for Christofides. The mean, median and
the standard deviation of distances have inverse relationships
with the instance difficulty. They decrease drastically when
the approximation ratio increases. The maximum distance
shows a similar pattern, yet does not have a dramatic change
over increasing difficulty. Some features such as the min-
imum distance and the mean tour length do not exhibit a
systematic relationship with increasing α. In most cases the
variation of the feature over all values for α is larger for small



instances than for larger instances. For example, the stan-
dard deviation of the distance for the smallest instance size
varies within a range of 0.15 (from 0.25 to 0.4), where as for
the largest instance size this range is only 0.05 (from 0.25 to
0.30). This pattern holds even for the features like the mean
tour length, minimum and the distinct distance, which do
not exhibit a strong relationship with increasing α. Com-
pared to the feature values for 2-Opt [6], some features ex-
hibit a stronger relationship with α for Christofides. For ex-
ample, the median and the mean show stronger relationships
with α for all instance sizes, where 2-Opt had the strong in-
creasing pattern only for the smallest instance size. For the
rest of the features, the pattern of this systematic nonlinear
relationship is almost similar for both algorithms, in spite of
slight differences in exact values of features. In contrast to
the distance features, the cluster features shown in Figure 7
do not exhibit a strong systematic relationship with α. The
cluster feature values for Christofides show patterns similar
to 2-Opt [6], as well as having exact values also much closer
to the values of 2-Opt’s cluster features.

Figure 8 shows some evidence that the angle features do not
have a strong systematic relationship between the feature
value and the instance difficulty for Christofides like for 2-
Opt [6]. Nevertheless, there is a slight variation observable
in the standard deviation, minimum and the maximum an-
gle features. There, feature values decrease (increase in min-
imum angle accordingly) until the medium difficulty level is
reached, and then again increase slightly, over the increasing
(decreasing in minimum angle accordingly) α. This provides
a hint on the dominance of angle features for the instances
with medium difficulty. Thus, we might use the angle fea-
tures to identify instances with medium difficulty for the ap-
proximation algorithm, in spite of its inability to differenti-
ate hard from easy instances. Interestingly, similar observa-
tion for the maximum angle feature can be made for 2-Opt as
well.

Some of the features in the centroid feature group, like the
maximum distance from centroid and the mean distance from
centroid, provide a good representation of the instance diffi-
culty, through the systematic nonlinear relationship with in-
creasing feature values over α. However, it is observable that
the exact centroid location alone does not provide any insight
into the problem difficulty (see Figure 8). The highest range
of feature values is observed for the mean distance to cen-
troid in case of the smallest instance size, which is 0.2 (from
0.35 to 0.55). Similar nonlinear relationships are observed for
centroid features for 2-Opt [6] also, with slight differences in
the range of the feature values, such as a 0.3 to 0.7 range for
centroid x for 2-Opt and 0.35 to 0.06 for Christofides.

The convex hull features also reflect an influence on the ap-
proximation ratio along α, although this is less prominent
than in other feature groups (see Figure 9). Among the two
features, only the area of the convex hull relates with instance
difficulty, having increasing feature value with α, thus de-
creasing with the instance difficulty. In terms of the area of
the convex hull, Christofides shows patterns inverse to those
of 2-Opt [6], where the area grows with the instance diffi-
culty. Moreover, the feature values for the points on the hull
also increases over α for 2-Opt, while no such notable varia-
tion observed for Christofides.

As shown in Figure 9 mode features do not exhibit any cor-
relation with the instance difficulty, having similar feature
values over increasing α. The range of feature value is re-
duced with the instance size, similar to the convex full fea-
ture group. The pattern of variation in mode features for
Christofides aligns well with that of 2-Opt [6], except for the
mode quantity for larger instance sizes, where 2-Opt has fea-
ture values in 0.1 range and Christofides has in 0.01 range.

Strong systematic relationships can be detected for the MST
features (see Figure 10). Among this feature group, features
representing the depth of the spanning tree have stronger
relationship with α than others. These include the depth
mean, median, maximum and the depth’s standard devia-
tion. Considering the difference in scale, it is not possible
to compare the exact values for the variation of feature val-
ues among features. However, it is observed visually, that
a strong systematic relationship exists for the maximum dis-
tance feature, in the case of the smallest instance size. The
distance features of the MST show relationships with increas-
ing α, mostly for smaller instance sizes. An interesting ob-
servation in this group is that some features are more promi-
nent for smaller instance sizes (distance maximum, distance
standard deviation), while some are dominating for larger in-
stance sizes (depth features). Furthermore, it is observed that
the minimum statistics of both feature groups, distance and
depth (minimum depth and minimum distance) do not indi-
cate any relationship with α. When comparing this with the
results for 2-Opt [6], Christofides shows similar patterns of
the variation of the MST feature values with α, except for the
depth features. There, Christofides shows more consistent
relationship of increasing feature value with α for all instance
sizes, whereas 2-Opt merely shows a slight variation for the
largest instance size. Again, these depth feature values for
the largest instance size are decreasing with α, in contrast to
the increasing pattern of the Christofides algorithm.

The nearest neighbour distance feature group (see Figure 11)
also shows relationships with α. Especially the standard de-
viation and the coefficient of variation provide stronger re-
lationships than the maximum and the minimum statistics.
The coefficient of variation exhibits the largest variation and
influence of the feature values. This is observed for the small-
est instance size. Instances for both 2-Opt [6] and Christo-
fides algorithms exhibit similar patterns of (nonlinear) rela-
tionship of approximation ratio with feature levels, where
some features like the median and the mean are decreasing
with α, while others like the standard deviation and the co-
efficient of variation are increasing.

In summary, the variation of feature values over the diffi-
culty level (α) is more prominent in some feature groups than
the others. The distance, nearest neighbour, centroid and the
MST feature groups have stronger systematic relationships
with α than the angle, convex hull, cluster and the mode fea-
ture groups. It is observed that some features have greater
variation with α than others, even within a single feature
group. For example, the area of the convex hull increases
drastically with α, while the number of points in the hull
stays relatively steady. Interestingly, some features exhibit
different tendencies for the smallest and highest instance size,
such as the features reflecting the minimum distance to the
centroid and mean of angles in Figure 8. This is due to the



2-app

2-app

Figure 4: Performance of the 2-Opt algorithm (top) and
Christofides algorithm (bottom) on the easy (grey) and hard
(black) instances of the 2-Approximation algorithm.

structural shapes of small and large instance classes. Gen-
erally, the standard deviations seem to have a larger influ-
ence than maximum and minimum statistics. However, in
some feature groups like the MST and the nearest neighbour
group, the maximum statistics also provide considerable vari-
ations of feature values over α. These values provide sugges-
tions for the best features to estimate the problem difficulty
for Christofides. Furthermore, these features are similar to
the most prominent features for 2-Opt [6] to a considerable
extent. Nevertheless, there exist differences in the strength
of the relationships and the contrast patterns of some fea-
tures for the two algorithms such as the angle and the con-
vex hull features. This provides evidence on instance dif-
ficulty unique to the algorithm. Hence, we will further in-
vestigate this topic in next section, with the aim to identify
complementary capabilities of the considered algorithms in
this study.

4. PERFORMANCE COMPARISON OF LO-

CAL SEARCH AND APPROXIMATION

ALGORITHMS
In this section, we consider algorithms with different under-
lying techniques, and we compare their relative performance
on each others’ difficult instances. We compare the Christo-
fides algorithm, the 2-Opt local search algorithm studied in
[6], and a well-known 2-Approximation algorithm. The 2-
Approximation algorithm is similar to the Christofides algo-
rithm but does not compute the minimum weight matching.
Instead of this, it doubles the edges of the minimum span-
ning tree and uses the resulting graph to compute the Euler
tour that is afterwards turned into a Hamiltonian cycle by us-
ing short-cuts. A detailed description of this algorithm can
be found in the textbook of Vazirani [12]. For the first test,
these algorithms are considered pairwise, then run on each
others’ hard and easy instances, and the achieved approx-
imation ratios are calculated. In this manner, it is possible
to derive relative strengths and weaknesses of the consid-
ered algorithms by observing how well one algorithm per-
forms in situations that are difficult for the others. Note that
the three algorithms achieved approximation ratios close to
1 on their respective easy instances. On its hard instances,
2-Opt achieves ratios in the range from 1.15 to 1.3. The 2-
Approximation algorithm achieves ratios of around 1.8 on its

2-opt

2-opt

Figure 5: Performance of the 2-Approximation algorithm
(top) and the Christofides algorithm (bottom) on the easy
(grey) and hard (black) instances of 2-Opt algorithm.

own hard instances, and the Christofides algorithm achieves
ratios of roughly 1.4 on it own hard instances.

Our observations on the pair-wise comparison are as follows.
As shown in Figure 4, both 2-Opt and Christofides algorithms
perform better than the 2-Approximation algorithm on the
hard instances generated by the 2-Approximation algorithm
itself and worse on the easy ones. In the former case, for
smaller instance sizes, 2-Opt achieves approximation ratios
ranging from 1 to 1.2, and it slightly outperforms Christofi-
des that achieves a range of 1 to 1.3. In contrast, for larger
instance sizes, both algorithms have a similar performance
with approximation ratios in a tighter range (1.1 to 1.2). As
a general observation, 2-Opt and the Christofides algorithm
perform similarly on the easy instances, despite the slight
variations shown in the approximation values. The 2-Appro-
ximation algorithm obtains a better approximation ratio
around 1, while the others range from 1 to 1.2 (see Figure 4).

As shown in Figure 5, both the 2-Approximation algorithm
and the Christofides algorithm shows similar patterns of the
achieved approximation ratios. For smaller instances, these
values form straight lines for easy instances, and are scat-
tered for hard instances. For the largest instances, two sep-
arate clusters are formed of the easy and hard instances. In
the case of the hard 2-Opt instances, the ranges differ signif-
icantly for the two algorithms. There, the 2-Approximation
algorithm obtains ratios ranging from 1 to 1.6, while the Chris-
tofides algorithm achieves a much smaller range from 1 to
1.2. Interestingly, the instances that are hard for 2-opt are not
that hard for the Christofides algorithm (see bottom diagram
in Figure 5): the approximation ratios obtained by 2-Opt on
the hard instances vary from 1 to 1.3, whereas the range is
1 to 1.15 for Christofides, and even just 1 to 1.1, for larger
instances.

Figure 6 shows the results obtained by 2-Opt and the 2-Appro-
ximation algorithm on easy and hard Christofides instances.
It can be observed that the Christofides algorithm itself has
better performance for larger instance sizes than the 2-Appro-
ximation. This is more prominent in the case of hard in-
stances where the clusters move to the upper right, with in-
creasing instance size. Comparatively, 2-Opt achieves the
best approximation values ranging from 1 to 1.3 for hard



Chris

Chris

Figure 6: Performance of 2-Opt algorithm (top) and the 2-
Approximation algorithm (bottom) on easy (grey) and hard
(black) instances of Christofides algorithm.

Christofides instances, the 2-Approximation algorithm (from
1.1 to 1.6) and Christofides (from 1.3 to 1.4). In contrast,
Christofides achieves the best approximation ratios on its own
easy instances (very close range around 1), whereas 2-Opt
(from 1 to 1.2) and the 2-Approximation algorithm (from 1 to
1.5) cover wider ranges. For 2-Opt and the 2-Approximation
algorithm these ranges get smaller with increasing instance
size.

In summary it is observed that Christofides and 2-Opt algo-
rithms surpass each other in the case of their own hard in-
stances (see Figure 5 and 6), and this effect is more promi-
nent in larger instance sizes. This implies that even though
the hard instances of the different algorithms share some fea-
tures, some other features are specific to each algorithm. For
the easy instances, the generating algorithm generally per-
formed best on its easy instances, and all algorithms achieve
approximation ratios very close to 1. Considering hard in-
stances only, the best approximation ratio is obtained by
Christofides on the largest hard instances of 2-Opt (from 1
to 1.1). On the other hand, the worst approximation val-
ues for the hard instances are obtained for instances of the
2-Approximation algorithm by this algorithm itself, with val-
ues around 1.8. Both 2-Opt and Christofides algorithms com-
pete with each other, having similar performances, while the
2-Approximation algorithm stays at a fair distance behind
them. In general, these results imply that there are comple-
mentary capabilities of all the three algorithms on the dif-
ficult instances of each other. In addition, it becomes obvi-
ous that in general – as expected – hard and easy instances
for a specific algorithm cannot be distinguished solely by
means of the corresponding approximation ratios of the two
remaining algorithms. The only slight exception is the 2-
Approximation heuristic which allows for some conclusions
regarding the approximation quality of the Christofides al-
gorithm, especially for larger instance sizes.

5. CONCLUSIONS AND OUTLOOK
We used an evolutionary algorithm approach to generate easy
and hard instances for the well-known Christofides and a
2-Approximation algorithm. Various features of easy and
hard instances for the Christofides instances have been anal-
ysed in order to identify features for distinguishing the in-
stance classes. Furthermore, the relationship of the feature
values with the problem difficulty when moving from easy
to hard instances has been examined which increased the un-

derstanding of underlying structures and relationships. Af-
terwards, we compared the Christofides, the 2-Approxima-
tion and a local search algorithm based on the 2-Opt operator
by running the algorithms on each others’ hard and easy in-
stances. The results of this comparison of the hard instances
point out complementary capabilities of the considered algo-
rithms. Future work will be concentrated on feature based
prediction of algorithm performance or the best suited al-
gorithm for the analysed problem instances which will pro-
vide meaningful insights regarding algorithm design and es-
pecially the final goal of automated algorithm selection for
given TSP instances.

References
[1] D. Applegate, W. J. Cook, S. Dash, and A. Rohe. Solu-

tion of a min-max vehicle routing problem. INFORMS
Journal on Computing, 14(2):132–143, 2002.

[2] S. Arora. Polynomial time approximation schemes for
euclidean traveling salesman and other geometric prob-
lems. J. ACM, 45(5):753–782, 1998.

[3] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß.
Algorithm selection based on exploratory landscape
analysis and cost-sensitive learning. In Proceedings of the
fourteenth international conference on Genetic and evolution-
ary computation conference, GECCO ’12. ACM, 2012.

[4] T. Kötzing, F. Neumann, H. Röglin, and C. Witt. Theo-
retical analysis of two aco approaches for the traveling
salesman problem. Swarm Intelligence, pages 1–21, 2012.

[5] S. Lin and B. Kernighan. An effective heuristic algo-
rithm for the traveling salesman problem. Operations
Research, 21(1):498–516, 1973.

[6] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann,
M. Wagner, and F. Neumann. Local search and the trav-
eling salesman problem: A feature-based characteriza-
tion of problem hardness. In Proceedings of the Learn-
ing and Intelligent Optimization Conference (LION), LNCS.
Springer, 2012. http://arxiv.org/abs/1208.2318.

[7] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Com-
putational Complexity. Springer, 2010.

[8] K. Smith-Miles and L. Lopes. Measuring instance diffi-
culty for combinatorial optimization problems. Comput-
ers & OR, 39(5):875–889, 2012.

[9] K. Smith-Miles, J. I. van Hemert, and X. Y. Lim. Un-
derstanding tsp difficulty by learning from evolved in-
stances. In LION, pages 266–280, 2010.

[10] A. Sutton and F. Neumann. A parameterized runtime
analysis of evolutionary algorithms for the euclidean
traveling salesperson problem. In Proceedings of Associa-
tion of Advancements of Artificial Intelligence. AAAI, 2012.

[11] J. I. van Hemert. Evolving combinatorial problem
instances that are difficult to solve. Evol. Comput.,
14(4):433–462, Dec. 2006.

[12] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[13] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Satzilla: portfolio-based algorithm selection for sat. J.
Artif. Int. Res., 32(1):565–606, June 2008.



Figure 7: Distance features (top) and Cluster features (bottom): approximation quality and feature values for different α
levels of all conducted morphing experiments for Christofides.



Figure 8: Angle (top) and Centroid Features (bottom): approximation quality and feature values for different α levels of all
conducted morphing experiments for Christofides.



Figure 9: Convex Hull (top) and Mode (bottom) features: approximation quality and feature values for different α levels of
all conducted morphing experiments for Christofides.



Figure 10: MST features: approximation quality and feature values for different α levels of all conducted morphing experi-
ments for Christofides.



Figure 11: Nearest neighbour distance features: approximation quality and feature values for different α levels of all con-
ducted morphing experiments for Christofides.


	Introduction
	Preliminaries
	Hard and easy instance generation
	Investigated features

	Analysis of the Christofides algorithm
	Features of instances with different approximation ratios

	Performance Comparison of local search and approximation algorithms
	Conclusions and Outlook

