
Improved Computational Complexity Results for Weighted
ORDER and MAJORITY

Anh Nguyen
Evolutionary Computation

Group
School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia

Tommaso Urli
Dipartimento di Ingegneria

Elettrica, Gestionale e
Meccanica

Università degli Studi di Udine
33100 Udine, Italy

Markus Wagner
Evolutionary Computation

Group
School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia

ABSTRACT
We consolidate the existing computational complexity analy-
sis of genetic programming (GP) by bringing together sound
theoretical proofs and empirical analysis. In particular, we
address computational complexity issues arising when cou-
pling algorithms using variable length representation, such
as GP itself, with different bloat-control techniques. In or-
der to accomplish this, we first introduce several novel upper
bounds for two single- and multi-objective GP algorithms on
the generalised Weighted ORDER and MAJORITY problems.
To obtain these, we employ well-established computational
complexity analysis techniques such as fitness-based parti-
tions, and for the first time, additive and multiplicative drift.

The bounds we identify depend on two measures, the maxi-
mum tree size and the maximum population size, that arise
during the optimization run and that have a key relevance
in determining the runtime of the studied GP algorithms. In
order to understand the impact of these measures on a typ-
ical run, we study their magnitude experimentally, and we
discuss the obtained findings.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Genetic Programming, Multi-objective Optimization, Theory,
Runtime Analysis

1. INTRODUCTION
In the last decade, genetic programming (GP) has found var-
ious applications (see Poli et al., 2008) in a number of do-
mains. As other paradigms based on variable length repre-
sentation, however, GP can be subject to bloating. Bloating
occurs when a solution’s growth in complexity does not cor-
respond to a growth in quality and causes the optimization

process to diverge and slow down. Since bloat-control is a
key factor to the efficient functioning of GP, its impact on the
computational complexity has been studied already for sim-
ple problems, in Durrett et al. (2011) and Neumann (2012).
The algorithms that have been considered are a stochastic
hill-climber called (1+1)-GP, and a population-based multi-
objective genetic programming algorithm called SMO-GP; the
latter considers the trade-offs between solutions complexity
C and fitness with respect to a problem F . These algorithms
have been analysed on problems with isolated program se-
mantics taken from Goldberg and O’Reilly (1998), namely
ORDER and MAJORITY, which can be seen as the analogue
of linear pseudo-Boolean functions Droste et al. (2002) that
are known from the computational complexity analysis of
evolutionary algorithms working with fixed length binary
representations. Both problems are simple enough to be anal-
ysed thoroughly, and they represent different aspects of prob-
lems solved through genetic programming, that is, including
components in the correct order (ORDER), and including the
correct set of components in a solution (MAJORITY). Addi-
tional recent computational complexity results are those of
Kötzing et al. (2012) on the MAX problem, and of Wagner
and Neumann (2012) on the SORTING problem.

The results provided in Durrett et al. (2011); Neumann (2012)
raise several questions that remain unanswered in both pa-
pers. In particular, for different combinations of algorithms
and problems no (or no exact) runtime bounds are given.
These works suggest that two measures, namely the maxi-
mum tree size Tmax and the maximum population size Pmax
obtained during the run, play a role in determining the ex-
pected optimization time of the investigated algorithms. Urli
et al. (2012) have made significant effort to study the order of
growth of these quantities, and to conjecture runtime bounds
for both problems. However, their results are based purely
on extensive experimental investigations, potentially neglect-
ing problematic cases. Even though Urli et al. (2012) conjec-
ture runtimes based on their observations, the impact of both
quantities on the runtime is still unclear from the theory side.

In this paper, we address these questions. We use multiplica-
tive drift (Doerr et al., 2010) on the fitness values to bound
the runtime of (1+1)-GP on the Weighted ORDER (WORDER)
problem. Subsequently, we consider (1+1)-GP on the multi-
objective formulations of WORDER, which considers the com-
plexity as well. There, we apply drift analysis on the solu-
tion sizes in order to bound (with high probability) the max-
imum tree sizes encountered. Lastly, we consider the multi-

objective SMO-GP algorithm, and bound the runtimes using
fitness-based partitions. In the cases where Tmax and Pmax
are part of the asymptotic bound, we augment the results
with experimental observations.

Note that our investigations focus on the weighted variants
WORDER and WMAJORITY, which both allow for exponen-
tially many different fitness values. Very few runtime bounds
were known for both problems so far.

The paper is structured as follows. In Section 2, we introduce
the analysed problems and algorithms. In Section 3, we sum-
marize the previous computational complexity results from
Durrett et al. (2011); Neumann (2012). In Sections 4 and 5, we
present several new theoretical upper bounds and we com-
plement the analyses with experimental results whenever a
term of the bound is not under the control of the user. In the
final section, we summarise the existing known bounds and
ours, and we point out open questions.

2. PRELIMINARIES
In our theoretical and experimental investigations, we will
treat the algorithms and problems analyzed in Durrett et al.
(2011); Neumann (2012). We consider tree-based genetic pro-
gramming where a possible solution is represented by a syn-
tax tree. The inner nodes of such a tree are labelled by func-
tion symbols from a set F and the leaves of the tree are la-
belled by terminals from a set T .

We examine the problems Weighted ORDER (WORDER) and
Weighted MAJORITY (WMAJORITY). In these problems, the
only function symbol is the join (denoted by J), which is bi-
nary. The terminal set is a set of 2n variables, where x̄i is
considered the complement of xi. Hence, F := {J}, and
L := {x1, x̄1, x2, x̄2, ..., xn, x̄n}.

In WORDER and WMAJORITY, each variable xi is assigned
a weight wi ∈ R, 1 ≤ i ≤ n so that the variables can differ
in their contributions to the fitness of a tree. Without loss of
generality, we assume that w1 ≥ w2 ≥ w3 ≥ . . . ≥ wn >
0. We get the ORDER and MAJORITY as specific cases of
WORDER and WMAJORITY where wi = 1, 1 ≤ i ≤ n.

For a given solutionX , the fitness value is computed by pars-
ing the represented tree inorder. For WORDER, the weight
wi of a variable xi contributes to the fitness of X iff xi is
visited in the inorder parse before all the x̄i in the tree. For
WMAJORITY, the weight of xi contributes to the fitness ofX
iff the number of occurrences of xi in the tree is at least one
and not less than the number of occurrence of x̄i (see Fig-
ures 2 and 3). We call a variable redundant if it occurs multi-
ple times in the tree; in this case the variable contributes only
once to the fitness value. The goal of WORDER and WMA-
JORITY problems is to maximize their function values. We
illustrate both problems by an example (see Figure 1).

MO-WORDER and MO-MAJORITY are variants of the above-
described problems, which take the complexityC of a syntax
tree (computed by the number of leaves of the tree) as the
second objective:

• MO-WORDER (X) = (WORDER (X), C(X))
• MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

Figure 1: Example for evaluations according to WORDER
and WMAJORITY. Let n = 5 and w1 = 15, w2 = 14,
w3 = 12, w4 = 7, and w5 = 2. For the shown tree
X , we get (after inorder parsing) l = (x1, x̄5, x4, x̄2, x2).
For WORDER, we get S = (x1, x4) and WORDER(X) =
w1 + w4 = 22. For WMAJORITY, we get S = (x1, x4, x2)
and WMAJORITY(X) = w1 + w4 + w2 = 36.

Input: a syntax tree X
Init: l an empty leaf list, S is an empty statement list.

1. Parse X inorder and insert each leaf at the rear of l as it
is visited.

2. Generate S by parsing l front to rear and adding ("ex-
pressing”) a leaf to S only if it or its complement are
not yet in S (i.e. have not yet been expressed).

3. WORDER (X) =
∑
xi∈S wi

Figure 2: Computation of WORDER (X)

Optimization algorithms can then use this to cope with the
bloat problem: if two solutions have the same fitness value,
then the solution of lower complexity can be preferred. In
the special case, where wi = 1 holds for all 1 ≤ i ≤ n, we
have the problems:

• MO-ORDER (X) = (ORDER (X), C(X))

• MO-MAJORITY (X) = (MAJORITY (X), C(X))

In this paper, all algorithms only use the mutation opera-
tor HVL-Prime to generate offspring. HVL-Prime produces
a new tree by making changes to the original tree via three
basic operators: insertion, deletion and substitution. A more
detailed explanation of this operator can be found in Dur-
rett et al. (2011). In each step of the algorithms, k muta-
tions are applied to the selected solution. For the single-
operation variants of the algorithms, k = 1 holds. For the
multi-operation variants, the number of operations performed

Input: a syntax tree X
Init: l an empty leaf list, S is an empty statement list.

1. Parse X inorder and insert each leaf at the rear of l as it
is visited.

2. For 1 ≤ i ≤ n, if count(xi ∈ l) ≥ 1 and count(xi ∈ l) ≥
count(x̄i ∈ l), add xi to S

3. WMAJORITY (X) =
∑
xi∈S wi

Figure 3: Computation of WMAJORITY (X)

Mutate Y by applying HVL-Prime k times, In each time,
randomly choose either insert, subsitute or delete.

• Insert: Choose a variable u ∈ L uniformly at random
and select a node v ∈ Y uniformly at random. Replace
v by a join node whose children are u and v, in which
their orders are chosen randomly,

• Substitute: Replace a randomly chosen leaf v ∈ Y by
a randomly chosen leaf u ∈ L.

• Delete: Choose a leaf node v ∈ Y randomly with par-
ent p and sibling u. Replace p by u and delete p and
u.

Figure 4: HVL-Prime mutation operator

is drawn each time from the distribution k = 1 + Pois(1),
where Pois(1) is the Poisson distribution with parameter 1.

3. THEORETICAL RESULTS
The computational complexity analysis of genetic program-
ming analyses the expected number of fitness evaluations
until the algorithm has produced an optimal solution for the
first time. This is called the expected optimization time. In
the case of multi-objective optimization the definition of ex-
pected optimization time is slightly different and considers
the number of fitness evaluations until the whole Pareto front,
i.e. the set of optimal trade-offs between the objectives, has
been computed.

The existing bounds from Durrett et al. (2011); Neumann (2012)
are listed in Table 1. As it can be seen, all results for (1+1)-GP
take into account tree sizes of some kind: either the maxi-
mum tree size Tmax found during search or the initial tree
Tinit size play a role in determining the bound. While Tinit
is something which can be decided in advance, Tmax is a re-
sult of the interactions between the fitness function, the set of
mutations and the selection process. As mutations involve a
degree of randomness, in some cases such a measure is very
difficult to control.

A similar problem arises when dealing with multi-objective
algorithms, such as SMO-GP. As we will see, the maximum
population size reached during optimization, Pmax, is a fun-
damental term in most bounds and it is again very difficult to
tackle when a random number of mutations is involved. This
is the paramount reason for which the only bounds for the
single-mutation variant are known to date. Lastly, note that
the upper bounds marked with ? hold only if the algorithm
has been initialized in the particular, i.e. non-redundant, way
described in Neumann (2012).

Because of the direct relation between these measures and
the bounds, investigating their magnitude is key to the fun-
damental understanding of the bounds meaning.

4. (1+1)-GP
The algorithm (1+1)-GP starts with an initial solution X , and
in each generation a new offspring Y is produced by mutat-
ing X . Y replaces X if it is favoured by the selection mecha-
nism. Different from WORDER and WMAJORITY where so-
lutions of equal fitnesses can replace each other uncondition-
ally, the selection on MO-WORDER and MO-WMAJORITY

favours solutions with higher fitness value or smaller com-
plexity value when two solutions have the same fitness value.

Algorithm 1: (1+1)-GP algorithm

1. Choose an initial solution X

2. Repeat

• Set Y := X

• Apply mutation to Y

• If the selection favours Y over X then X := Y .

Let X , Y be the solutions and F be the fitness function in
(1+1)-GP.

• (1+1)-GP on F: Favour Y over X iff
F (Y) ≥ F (X)

• (1+1)-GP on MO-F: Favour Y over X iff
(F (Y) > F (X))∨((F (Y) = F (X))∧((C(Y) ≤ C(X)))

Figure 5: Selection mechanism of (1+1)-GP

However, since in MO-WORDER and MO-WMAJORITY, the
complexity of a syntax tree is not taken into account, there
is no mechanism for handling the bloat problem. Given the
maximum tree size Tmax for a run is unknown, it would be
preferable to have runtime bounds based on the size of the
initial tree Tinit, which the user can control. Using a differ-
ent approach in which the selection in Figure 4 is used, Neu-
mann (2012) proved that the expected optimisation time for
(1+1)-GP-single on both MO-WORDER and MO-WMAJORITY
is O(Tinit + n logn). In the following subsections, (1+1)-GP
with one and more than one mutation in each step are corre-
spondingly denoted by (1+1)-GP-single and (1+1)-GP-multi.

4.1 (1+1)-GP on F(X) Problems
In previous works, Durrett et al. (2011) showed that the up-
per bound of the expected run time for (1+1)-GP on ORDER
is O(nTmax). First, we show that this bound immediately
carries over for (1+1)-GP-single on WORDER.

THEOREM 1. The expected optimization time of (1+1)-GP-single
on WORDER is O(nTmax).

PROOF. As (1+1)-GP-single performs only a single muta-
tion operation at a time, it is not possible (1) to increase the
WORDER value of a tree and (2) to decrease the number of
expressed variables at the same time. Hence, once a variable
is expressed, it will stay expressed for the rest of the optimi-
sation process. This, however, means that the weights asso-
ciated to the variables are effectively irrelevant. Thus, the up-
per bound of the runtime is identical to that of (1+1)-GP-single
on the unweighted ORDER, and the bound immediately car-
ries over.

The bound for the multi-operation variant is found by ap-
plying Theorem 3 (multiplicative drift analysis) from Doerr
et al. (2010), which is defined as follows.

F(X)
(1+1)-GP, F(X) Durrett et al. (2011) (1+1)-GP, MO-F(X) Neumann (2012) SMO-GP, MO-F(X) Neumann (2012)

k=1 k=1+Pois(1) k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORDER O(nTmax) O(nTmax) O(Tinit + n logn)

?

O(nTinit + n2 logn)

WORDER ? ? O(Tinit + n logn) O(n3)? ?

MAJORITY O(n2Tmax logn) ? O(Tinit + n logn) O(nTinit + n2 logn)

WMAJORITY ? ? O(Tinit + n logn) O(n3)? ?

Table 1: Computational complexity results from Durrett et al. (2011); Neumann (2012)

THEOREM 2 (MULT. DRIFT, DOERR ET AL. (2010)). Let
S ⊆ R be a finite set of positive numbers with minimum smin.
Let X(t)

t∈N be a sequence of random variables over S ∪ {0}. Let
T be the random variable that denotes the first point in time t ∈ N
for which X(t) = 0.

Suppose that there exists a constant δ > 0 such that

E
[
X(t) −X(t+1)|X(t) = s

]
≥ δs (1)

holds for all s ∈ S with Pr[Xt = s] > 0. Then for all s0 ∈ S with
Pr[X(0) = s0] > 0,

E[T |X(0) = s0] ≤ 1 + log(s0/smin)

δ
. (2)

In the following theorem we employ Theorem 2 to provide
an upper bound on the expected runtime of (1+1)-GP-multi,
F(X) on WORDER when starting from any solution.

THEOREM 3. The expected optimization time of (1+1)-GP-multi
on WORDER is O(nTmax(logn+ logwmax)).

PROOF. In order to prove the stated bounds we need to
instantiate Theorem 2 on our problem. The theorem is valid
if we can identify a finite set S ⊆ R from which the random
variables Xt are drawn. In our case the drift is defined on
the (at most exponentially many) values of the fitness func-
tion. Also, since the result holds under the assumption that
the underlying problem is a minimization problem, we first
need to define an auxiliary problem WORDERmin which get
minimized whenever WORDER gets maximized

WORDERmin(x) =

n∑
i=1

wi −WORDER(x).

Note that while WORDER(x) is the sum of the weights for
the expressed variables in x, WORDERmin(x) is the sum of
the weights of the unexpressed variables. We also recall that
ORDER(x) denotes the number of expressed variables in x.

Now, given a solution xt at time t, let st = WORDERmin(xt)
be the WORDER-value of this solution andm = n−ORDER(xt)
the number of unexpressed variables in xt. Since an im-
provement can be done by inserting a non-expressed vari-
ables into the current tree, then the expected increment, i.e.

the drift, of WORDERmin is lower bounded by:

E
[
X(t) −X(t+1)|X(t) = st

]
≥ WORDERmin(xt)

m
· m

6enTmax

=
WORDERmin(xt)

6enTmax

since the probability of expressing any of the m unexpressed
variables at the beginning of the tree is at least m

2n
· 1

3eTmax
=

m
6enTmax

for both the single- and the multi-operation case,
and the expected improvement when performing such step
is WORDERmin(xt)/m (because the missing weights are
distributed over m variables).

Given this drift, we have (in Theorem 2 terminology)

δ =
1

6enTmax

s = WORDERmin(xt).

Also, from the definition of WORDER, we have that smin =
wmin. From Theorem 2 follows that, for any initial value s0 =
WORDERmin(x0), we have

E[T |X(0) = s0] ≤
(

1 + ln

(
s0

wmin

))
· δ−1

≤
(

1 + ln

(
s0

wmin

))
· 6enTmax.

Since we are interested in an upper bound over the expected
optimization time, we must consider starting from the worst
possible initial solution, i.e. where none of the variables is
expressed. Let wmax be the largest weight in the set, then the
maximum distance from the optimal solution is nwmax ≥ s0.
Hence we have

E[T] ≤
(

1 + ln

(
nwmax
wmin

))
· 6enTmax

≤ (1 + ln (nwmax)) · 6enTmax
= O(nTmax log(nwmax)) = O(nTmax(logn+ logwmax))

which states that the expected optimization time T of (1+1)-GP,
F(X) for WORDERmin, and hence for WORDER, starting from
any solution is bounded byO(nTmax(logn+logwmax)).

The dependence of this bound, and of the bound for OR-
DER introduced in Durrett et al. (2011), on Tmax is easily ex-
plained by the fact that, in order to guarantee a single-step
improvement, one must perform a beneficial insertion, i.e.
one which expresses one of the unexpressed variables, at the
beginning of the tree. This involves selecting one out of at

most Tmax nodes in the tree. Unfortunately, Tmax can po-
tentially grow arbitrarily large since F (X) does not control
solution complexity.

We have investigated this measure experimentally in order to
understand what its typical magnitude is. The experiments
were performed on AMD Opteron 250 CPUs (2.4GHz), on
Debian GNU/Linux 5.0.8, with Java SE RE 1.6 and were given
a maximum runtime of 3 hours and a budget of 109 evalua-
tions. Furthermore, each experiment (involving two differ-
ent initialization schemes, respectively with 0 and 2n leaves
in the initial tree) has been repeated 400 times, which results
in a standard error of the mean of 1/

√
400 = 5%. The empir-

ical distributions of maximum tree sizes for (1+1)-GP, F (X)
on all ORDER variants are shown as box-plots in Figure 6.
The blue-toned line plots show the median Tmax divided by
n (solid line) and by n log(n) (dashed line); the nearly con-
stant behavior of the solid line suggests that Tmax has typi-
cal a linear behavior, at least for the tested values of n and
the employed initialization schemes, for all the variants of
ORDER.

4.2 Algorithms on MO-F(X) Problems
For the multi-operation variants, a single HVL-Prime appli-
cation can lead to more than a single mutation with constant
probability. This would lead to the case where the complex-
ity increase faster than the fitness value, i.e. an improvement
on the fitness of the tree can be followed by multiple increase
on the complexity. We start our analysis by showing an up-
per bound of the maximum tree size, Tmax, during run time
and then using that fact to bound the expected optimisation
time of (1+1)-GP-multi on MO-WORDER.

THEOREM 4. (Oliveto and Witt, 2011) Let Xt, t ≥ 0, be the
random variables describing a Markov process over a finite state
space S ⊆ R+

0 and denote ∆t(i) := (Xt+1 − Xt | Xt = i)
for i ∈ S and t ≥ 0. Suppose there exists an interval [a, b] in
the state space, two constants δ, ε > 0 and, possibly depending on
l := b− a, a function r(l) satisfying 1 ≤ r(l) = o(l/log(l)) such
that for all t ≥ 0 the following two conditions hold:

1. E(∆t(i)) ≥ ε for a < i < b,

2. Prob(∆t(i) ≤ −j) ≤ r(l)

(1+δ)j
for i > a and j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 :

Xt ≤ a | X0 ≥ b} it holds Prob
(
T ∗ ≤ 2c

∗l/r(l)
)

= 2−Ω(l/r(l)).
In the conference version, r(l) was only allowed to be a constant,
i.e., r(l) = O(1). In this case, the last statement is simplified to

Prob(T ∗ ≤ 2c
∗l) = 2−Ω(l).

THEOREM 5. Let Tinit ≤ 19n be the complexity of the initial
solution. Then, the maximum tree size encountered by
(1+1)-GP-multi on MO-WORDER in less than exponential time
is 20n, with high probability.

Note that the state space S (of the tree sizes) is finite for both
problems, as at most 2n fitness improvements are accepted.
Thus, at most 2n + 1 different tree sizes can be attained.

PROOF. Theorem 4 was used to find the lower bound value
of a function in less than exponential time. In case of finding
the upper bound value of a function, condition 1 and 2 of
Theorem 4 are then changed to :

1. E(∆t(i)) ≤ −ε for a < i < b and ε > 0,

2. Prob(∆t(i) ≥ j) ≤ r(l)

(1+δ)j
for i > a and j ∈ N0.

Let a = 19n, b = 20n, k be the number of expressed vari-
ables, and s be the number of leaves of the current tree. For
condition 1 to hold, the expected drift of the size of a syn-
tax tree in the interval [a, b] = [19n, 20n] must be a negative
constant. This is computed by

E(∆t(i)) =
∑
j∈Z

j · P (∆t(i) = j)

=
∑

j∈Z,j<0

j · P (∆t(i) = j) +
∑
j∈N

j · P (∆t(i) = j)

=
∑
j∈N

−j · P (∆t(i) = −j) +
∑
j∈N

j · P (∆t(i) = j)

When ∆t(i) = −j for j ∈ N, then the tree size is reduced by
j. We can find a lower bound to the expected decrease in size
by observing that to obtain a reduction of −j, we can do in
principle t > j operations, out of which j must be deletions
of redundant variables and the other t − j must be neutral
moves. Since we have three mutations with equal probabil-
ity of being selected, there are at least to 3t−j possible combi-
nations of mutations that lead to a decrease of −j. We know
that among these, at least one is made of substitutions that
don’t decrease the fitness and the probability of obtaining it
1/3t−j . Let s = cn, 19 < c < 20, then∑
j∈N

−j · P (∆t(i) = −j)

≤ −
∑
j∈N

j

∞∑
t=j

[(
1

3

)j (
s− k
j

)(
1

s

)j
· 1

3t−s
· Pois(x = t)

]

≤ −
∑
j∈N

j

∞∑
t=j

[(
1

3

)j (
s− k
j

)(
1

s

)j
· 1

3t−s
· 1

et!

]

≤ − 1
e

∑
j∈N

j

(
1

3

)j
·
(
s− k
j

)j
·
(

1

s

)j ∞∑
t=j

(
1

3t−s
· 1

t!

)
≤ − 1

e

∑
j∈N

j

(
1

3

)j
·
(
c− 1

c

)j
·
(

1

j

)j ∞∑
t=j

(
1

3t−s
· 1

t!

)
where (1/3)j comes from the fact that we need to perform j
deletions, (1/s)j is related to selecting the right leaf over s
leaves for j times and

(
s−k
j

)
is the number of possible per-

mutations of redundant variables.

When ∆t(i) = j for j ∈ N, the size of the tree increases. In
order to provide a upper bound on the expected increase of
the tree size, we need to consider all the possible combina-
tions of t mutations which lead us to an increase of j. Since
we need to increase the tree size by j, we need at least j in-
sertions, thus the remaining t− j mutations can be arranged
in 3t−j different ways. Note that this is an upper bound, as
many of these combinations will not lead to an increase of
j. This means that the probability to do a correct number of

Figure 6: Distribution, as green box-plots, of the maximum tree sizes observed for (1+1)-GP, F (X) on the ORDER variants.
The blue-toned lines are the median Tmax values divided by the corresponding polynomial (see the legend) and suggest the
asymptotic behavior of the measure. In this case the almost horizontal line for n shows that the maximum tree size is very
close to linear, at least for the tested input sizes.

insertions is upper bounded by

3t−j

3t
=

1

3j

Also, in order to accept a larger tree size, the fitness must be
increased as well. In the worst case, this can be accomplished
by inserting one unexpressed variable in such a position that
it increases the fitness of the tree size, an inserting m − 1
random variables in positions that don’t decrease the fitness
of the tree. Thus the expected increase in the tree size is∑

j∈N

j · P (∆t(i) = j)

≤
∑
j∈N

(
j · n− k

2n
· P1 · P2

∑
t=j

Pois(x = t)

)

≤
∑
j∈N

(
j · 1

3j
· 1

2

∑
t=j

1

et!

)

=
1

e

∑
j∈N

(
j · 1

2
· 1

3j

∑
t=j

1

t!

)

where the (1/3)j term comes from the fact that we want to
do j insertions, (n− k)/2n comes from the fact that we want

to insert one of the unexpressed variables, P1 comes from
the fact that we want to insert the unexpressed variable in
a position where it can determine an increase in the fitness,
and P

(j−1)
2 comes from the fact that we want to put j − 1

(possibly redundant) random variables (whose probability 1
of being selected has been omitted) at any position in which
they don’t determine a decrease in the fitness. Also note that
P1, P2 ≤ 1 and n− k/2n ≤ 1/2. Therefore, we have that

E(∆t(i)) =
∑
j∈N

−j · P (∆t(i) = −j) +
∑
j∈N

j · P (∆t(i) = j)

≤ −1

e

∑
j∈N

[
j

j!
·
(

1

3

)j
·
(

1

cn

)j
·
(

(c− 1)n

j

)j
·

∞∑
t=j

(
1

3t−s
· 1

t!

)]
+
∑
j∈N

(
j · 1

2
· 1

3j
· 1

e

∑
t=j

1

t!

)

=
1

e

∑
j∈N

(
j

3j
·

[
1

2

(∑
t=j

1

t!

)
− 1

j!
·
(
c− 1

c

)j
·

1

jj

(
1

j!

1

3 · (j + 1)!

)])

Let A =
∑
j∈NAj , where

Aj = j
3j ·

[
1
2

∑
t=j

1
t!
−
(
c−1
c

)j 1
jj

∑
t=j

(
1

3t−j
1
t!

)]
in which

∑
t=j

(
1

3t−j
1
t!

)
≥
(

1
j!

1
3·(j+1)!

)
for 19 < c < 20, we have

A1 <
1

3
·
(
e− 1

2
− 19

20
(1 + 1/6)

)
= −0.083064

A2 <
2

9
·

(
e− 2

2
−
(

19

20

)2

· 1

4
(1/2 + 1/18)

)
= 0.051954

A3 <
1

9
·

(
e− 2− 0.5

2
−
(

19

20

)3

· 1

27
(1/6 + 1/72)

)
= 0.011490

Hereby,

A = A1 +A2 +A3 +
∑
j≥4

Aj < −0.019620 +
∑
j≥4

Aj

However, since

∑
j≥4

Aj =
∑
j≥4

j

3j
·

[
1

2

∑
t=j

1

t!
−
(
c− 1

c

)j
1

jj

∑
t=j

(
1

3t−j
1

t!

)]

<
∑
j≥4

j

3j
·

(
1

2

∑
t=j

1

t!

)

<
∑
j≥4

j

3j
· e− 2− 0.5− 1/6

2

< 0.025808 ·
∑
j≥4

j

3j

≤ 0.025808 · 1/3

(1− 1/3)2
= 0.019356

This gives us

A = A1 +A2 +A3 +
∑
j≥4

Aj

= −0.000264

Therefore E(∆t(i)) = 1
e
·A < 0, and condition 1 holds.

For condition 2 to hold, in order to increase the number of
nodes of the original tree by j, at least j insertions must be
made. Thus, the probability that the tree size increases ex-
actly by j is at most

P (∆i = j) ≤ 1

e
·

(
1

2
· 1

3j

∑
t=j

1

t!

)

≤ 1

e
· 1

3j
· 1

2
·
∑
t=j

1

t!

≤ 1

3j

Hence,

P (∆i ≥ j) =

∞∑
k=j

P (∆i = k)

≤
∞∑
k=j

1

3j
=

∞∑
k=1

1

3j
−
j−1∑
k=1

1

3j

=

∞∑
k=0

1

3j
− 1−

[
j−1∑
k=0

1

3j
− 1

]

=
1

1− 1/3
− 1− (1/3)j

1− 1/3
=

3

2

1

3j

Let r(l) be a constant and δ = 2, then condition 2 holds.

THEOREM 6. Starting with an solution with initial size Tinit <
19n , the optimization time of (1+1)-GP-multi on MO-ORDER is
O(n2 logn), with high probability.

PROOF. This algorithm contains multiple phases. At each
phase, there are two main tasks:

• Delete all the redundant variables in the current tree to
obtain a non-redundant tree.

• Insert an unexpressed variable into the tree to improve
the fitness

The algorithm terminates when all of n variables are expres-
sed and the tree size is n. Let ki, ji be the number of the
redundant and expressed variables of the solution at the be-
ginning of phase i. The expected time Ti to delete all of the
redundant variables at phase i is upper bounded by

Ti =

ki∑
l=1

(
1

3e
)−1 · (l

l + ji
)−1 ≤ 3e

ki∑
l=1

l + n

l

≤ 3e

n∑
l=1

l + n

l
+ 3e

ki∑
l=n+1

l + n

l

≤ 3e

n∑
l=1

l + n

l
+ 3e

ki∑
l=n+1

2

≤ O(n logn) + 2ki

An unexpressed variable is then chosen and inserted in to
the tree in any position to improve the fitness. The expected
time to do such a step is n−ji

6en
. Therefore, the expected time

for a single phase is O(n logn) + 2ki + n−ji
6en

.

The selection mechanism of (1+1)-GP on MO-F(X) problems
does not accept any decrease in the fitness of the solution.
Thus, ji increases during the run time, which we can denote
as j0 = 0 < j1 = 1 < ... < jn−1 = n − 1. Since there are at
most n variables that need to be inserted, there are at most n
phases need to be done to obtain the optimal tree. The total

runtime is then, with high probability, bounded by:

n−1∑
j=0

O(n logn) + 2ki +

(
n− j
6en

)−1

≤ O(n2 logn) + 2

n−1∑
j=0

E [Tmax] + 6en

n−1∑
j=0

i

n− j

≤ O(n2 logn) + 40n2 + 6enO(logn)

≤ O(n2 logn)

After n phases, the current tree now has the highest fitness
value. The last step now is to remove all of the redundant
variables to obtain a tree with highest fitness and complexity
value of n. Let s be the number of leaves, the expected time
for this step is upper bounded by:

4n∑
s=n+1

(
1

3e
· s− n

s

)−1

= 3e

3n∑
j=1

j + n

j

= 3e

n∑
j=1

j + n

j
+ 3e

2n∑
j=n+1

j + n

j
+ 3e

3n∑
j=2n+1

j + n

j

≤ 3e ·
n∑
j=1

j + n

j
+ 3e ·

2n∑
j=n+1

2 + 3e

3n∑
j=2n+1

3

2

= O(n logn) +O(n)

Summing up the runtimes for all the tasks, the optimization
time of (1+1)-GP-multi on MO-ORDER is O(n2 logn) with
high probability.

5. MULTI-OBJECTIVE ALGORITHMS
In SMO-GP, the complexity C(X) of a solution X is also
taken into account and treated as equally important as the
fitness value F (X). The classical Pareto dominance relations
are:

1. A solutionX weakly dominates a solution Y (denoted by
X � Y) iff (F (X) ≥ F (Y) ∧ C(X) ≤ C(Y)).

2. A solution X dominates a solution Y (denoted by X �
Y) iff ((X � Y) ∧ (F (X) > F (Y) ∨ C(X) < C(Y)).

3. Two solutions X and Y are called incomparable iff nei-
ther X � Y nor Y � X holds.

A Pareto optimal solution is a solution that is not dominated
by any other solution in the search space. All Pareto opti-
mal solutions together form the Pareto optimal set, and the
set of corresponding objective vectors forms the Pareto front.
The classical goal in multi-objective optimization (here: of
SMO-GP) is to compute for each objective vector of the Pareto
front a Pareto optimal solution. Alternatively, if the Pareto
front is too large, the goal then is to find a representative
subset of the front, where the definition of ‘representative’
depends on the choice of the conductor.

SMO-GP starts with a single solution, and at all times keeps
a population that contains only the non-dominated solutions
among the set of solutions seen so far.

Algorithm 2: SMO-GP

1. Choose an initial solution X

2. Set P := {X}

3. repeat

• Randomly choose X ∈ P
• Set Y := X

• Apply mutation to Y

• If {Z ∈ P |Z � Y } = ∅ set
P := (P\{Z ∈ P |Y � Z}) ∪ {Y }

In his paper, Neumann (2012) proved that the expected opti-
mization time of SMO-GP-single and SMO-GP-multi on MO-
ORDER and MO-MAJORITY is O(nTinit + n2 logn). In the
case of WORDER and WMAJORITY, the proven runtime
bound of O(n3) (for both problems) requires that the algo-
rithm is initialised with a non-redundant solution.

5.1 SMO-GP-single
If the initial solution is generated randomly, it is not likely to
be a non-redundant one. In order to generalise the proof, we
start the analysis by bounding the maximum tree size Tmax
based on the initial tree size Tinit for SMO-GP-single. Using
this result, we re-calculate the expected optimization time of
SMO-GP-single on both MO-WORDER and MO-WMAJORITY,
when using an arbitrary initial solution of size Tinit.

THEOREM 7. Let Tinit be the tree size of initial solution. Then
the population size of SMO-GP-single on MO-WORDER and MO-
WMAJORITY until the empty tree included in the population is
upper bounded by T init + n during the run of the algorithm.

PROOF. When two solutions X , Y have the same com-
plexity, the solution with higher fitness dominates the other
one. Therefore, in the population where no solution is domi-
nated by any other solutions, all the solutions have different
complexities. Without loss of generality, assume that a so-
lution X is selected for mutation and Y is the new solution.
Then there are five ways to generate Y :

1. inserting an unexpressed variable, and thus increasing
the complexity of the new solution by 1,

2. deleting an expressed variable, and thus decreasing the
complexity of the new solution by 1,

3. deleting a redundant variable, and thus decreasing the
complexity of the new solution by 1. AsF (X) = F (Y)∧
C(X) > C(Y), X is then replaced by Y in the popula-
tion,

4. inserting a redundant variable to X , thus generating
a new solution with the same fitness and higher com-
plexity, which is not accepted by SMO-GP-single,

5. substituting a variable xi in X by another variable xj .

• If xj is a non-redundant variable and wi < wj ,
F (X) < F (Y) ∧ C(X) = C(Y), Y replaces X in
the population

• If xj is a non-redundant variable and wi > wj ,
F (X) > F (Y) ∧ C(X) = C(Y), Y is discarded.

• If xj is redundant variable, F (X) > F (Y)∧C(X) =
C(Y), Y is discarded.

As shown above, the number of redundant variables in the
solution will not increase during the run of the algorithm.
Let Ri be the number of redundant variables in solution i,
then for all the solutions in the population holds Ri ≤ Rinit.

Let X ∈ P be a solution in P and αX be the number of ex-
pressed variables in X , then the complexity of X is C(X) =
RX + αX . Since RX ≤ Rinit and αX ≤ n, the complexity of
a solution in P is upper bounded by Rinit + n ≤ Tinit + n.

The population size only increases when a new solution with
different fitness is generated. This only happens when the
complexity increases or decreases by 1. Because the highest
complexity that a solution can reach is Tinit+n, and because
the empty tree can be in the population as well1, the maxi-
mum size the population can reach is Tinit + n+ 1.

LEMMA 1. Starting with an arbitrary initial solution of size
Tinit , the expected time until the population of SMO-GP-single on
MO-WORDER and MO-WMAJORITY contains the empty tree is
O(T 2

init + nTinit).

PROOF. We will bound the time by repeated deletions of
randomly chosen leaf nodes in the solutions of lowest com-
plexity, until the empty tree has been reached. Let X be the
solution in the population with the lowest complexity. The
probability of choosing the lowest complexity solution X in
the population is at least 1

Tinit+n+1
, while the probability of

making a deletion is 1
3

. In each step, because any variable in
X can be deleted, the probability of choosing the correct vari-
able is 1. The probability of deleting a variable in X at each
step therefore is bounded from below by 1

3
· 1
Tinit+n+1

, and
the expected time to do such a step is at most 3·(Tinit+n+1).
Since Tinit is the number of leaves in the initial tree, there are
Tinit repetitions required to delete all the variables. This im-
plies that the expected time for the empty tree to be included
in the population is upper bounded by

Tinit · 3 · (Tinit + n+ 1) = O
(
T 2
init + nTinit

)
THEOREM 8. Starting with a single arbitrary initial solution

of size Tinit, the expected optimization time of SMO-GP-single on
MO-WORDER and MO-WMAJORITY is O(T 2

init + n2Tinit +
n3).

PROOF. In the following steps, we will bound the time
needed to discover the whole Pareto front, once the empty
solution is introduced into the population. As shown in The-
orem 1, the empty tree is included in the population after
1as the empty tree is Pareto optimal with F (X) = C(X) = 0

O(T 2
init + nTinit) steps. The empty tree is now a Pareto op-

timal solution with complexity C(X) = 0. Note that a so-
lution of complexity j, 0 ≤ j ≤ n is Pareto optimal in MO-
WORDER and MO-MAJORITY, if it contains only the largest
j variables.

Let us assume that the population contains all Pareto optimal
solutions with complexities j, 0 ≤ j ≤ i. Then, a population
which includes all Pareto optimal solutions with complexi-
ties j, 0 ≤ j ≤ i+ 1, can be achieved by producing a solution
Y that is Pareto optimal and that has complexity i+ 1. Y can
be obtained from a Pareto optimal solutionX with C(X) = i

and F (X) =
∑k
i=1 wi by inserting the leaf xk+1 (with associ-

ated weight wk+1) at any position. This operation produces
from a solution of complexity i a solution of complexity i+1.

Based on this idea we can bound the expected optimization
time once we can bound the probability for such steps to hap-
pen. Choosing X for mutation has the known probability
of at least 1

Tinit+n+1
as the population size is upper bound

by Tinit + n + 1. Next, the inserting operation of the muta-
tion operator is chosen with probability 1

3
. As a specific ele-

ment out of a total of n elements has to be inserted at a ran-
domly chosen position, the probability to do so it 1

n
. Thus,

the total probability of such a generation is lower bounded
by 1

Tinit+n+1
· 1

3
· 1
n

.

Now, we use the method of fitness-based partitions Wegener
(2002) according to the n + 1 different Pareto front sizes i.
Thus, as there are only n Pareto-optimal improvements pos-
sible once the empty solution is introduced into the popula-
tion, the expected time until all Pareto optimal solutions have
been generated is:

n−1∑
i=0

(
1

Tinit + n+ 1
· 1

3
· 1

n

)−1

= 3n2(Tinit + n+ 1)

= O(n2Tinit + n3).

Summing up the number of steps to generate the empty tree
and all other Pareto optimal solutions, the expected optimi-
sation time is O(T 2

init + n2Tinit + n3)

5.2 SMO-GP-multi
In principle, when considering WORDER and WMAJORITY
in SMO-GP, it is possible to generate an exponential number
of trade-offs between solution fitness and complexity. For in-
stance, if wi = 2n−i, 1 ≤ i ≤ n, then one can easily generate
2n different individuals by considering different subsets of
variables. These solutions are dominated by the true Pareto
front, and our experimental analysis suggests that many of
them get discarded early in the optimization process.

In this section, we employ the Pmax measure collected in our
experimental analysis (see Figure 7) to consolidate some of
the theoretical bounds about WORDER and WMAJORITY
presented in Neumann (2012) and introduce new bounds for
their multi-operation variants.

LEMMA 2. The expected time before SMO-GP, initialized with
Tinit leaves, adds the empty tree to its population is bound by
O(TinitPmax).

Figure 7: Maximum population size distributions (as box-plots) reached before finding an optimal solution in SMO-GP.
The blue lines represent the medians divided by the corresponding polynomials and give an indication of the order of
magnitude of the Pmax measure.

PROOF. If the empty tree is the initial solution, i.e. Tinit =
0, then Lemma 2 follows immediately.

If Tinit > 0, then we need to perform Tinit deletions in order
to reach the empty tree. Let X be the individual of lowest
complexity, then the probability of selecting it for mutation
is at least 1/Pmax. The probability of performing a single
deletion is lower bounded by 1

3e
for both the single- and the

multi-operation variants of the HVL-Prime operator. There-
fore, the total probability of selecting the solution of lowest
complexity and deleting one of its nodes is Ω(1/Pmax), and
the expected time to make such a step is O(Pmax). Since we
need to delete Tinit leaves, the total expected time to add
the empty tree to the population is bounded by the repeated
deletion taking O(TinitPmax) steps.

Note that, contrary to Theorem 1, this lemma holds for both
the single- and the multi-mutation variants of SMO-GP. How-
ever, this lemma depends on Pmax, which is not under the
control of the user.

We now state an upper bound for SMO-GP on WORDER and
WMAJORITY in both single and multi-operation variants.

THEOREM 9. The expected optimization time of SMO-GP on
WORDER and WMAJORITY is O(Pmax(Tinit + n2)).

PROOF. This proof follows the structure of the proof of
Theorem 8. First, due to Lemma 2 we can assume that we
have added the empty tree to the population afterO(TinitPmax)
steps. We now recall that a solution of complexity j, 0 ≤ j ≤
n, is Pareto optimal for MO-WORDER and MO-WMAJORITY,
if it contains, for the j largest weights, exactly one positive
variable.

Similar to the second step of the proof of Theorem 8, we as-
sume that the population already contains the i Pareto opti-
mal solutions with complexities j, 0 ≤ j ≤ i. Then, a popu-
lation which includes all Pareto optimal solutions with com-
plexities j, 0 ≤ j ≤ i + 1, can be achieved by producing
a solution Y that is Pareto optimal and that has complexity
i + 1. Y can be obtained from a Pareto optimal solution X

with C(X) = i and F (X) =
∑k
i=1 wi by inserting the leaf

xk+1 (with associated weight wk+1) at any position. This op-
eration produces from a solution of complexity i a solution
of complexity i+ 1.

Again, based on this idea, we can bound the expected op-
timization time once we can bound the probability for such
steps to happen. Choosing X for mutation is lower bounded
by 1/Pmax, the inserting operation of the mutation opera-
tor is chosen with probability 1/3e, and as a specific element
out of a total of up to 2n elements has to be inserted at a ran-
domly chosen position, the probability to do so it 1/2n. Thus,

the total probability of such a generation is lower bounded
by 1/ (6enPmax).

Now, using the method of fitness-based partitions according
to the n + 1 different Pareto front sizes i, the expected time
until all Pareto optimal solutions have been generated (once
the empty tree was introduced) is bounded by

n−1∑
i=0

(
1

Pmax
· 1

3e
· 1

2n

)−1

= 6en2Pmax

= O(n2Pmax).

Therefore, the total expected optimization time when start-
ing from an individual with Tinit leaves is thusO(TinitPmax+
n2Pmax), which concludes the proof.

As we mentioned before, to date there is no theoretical un-
derstanding about how Pmax grows during an optimization
run and, in principle, its order of growth could be exponen-
tial in n. For this reason, similarly to what we did for Tmax,
we have investigated this measure experimentally. The ex-
perimental setup is the same described previously, and the
empirical distributions of Pmax are shown as box-plots in
Figure 7. The blue-toned line plots show the median Pmax
divided by n and log(n). Again, the nearly constant behav-
ior of the solid line suggests a magnitude of Pmax which is
linearly dependent on n and, in general, very close to n as
the factors, at most 1.1, suggest.

6. CONCLUSIONS
In this paper, we carried out theoretical investigations to com-
plement the recent results on the runtime of two genetic pro-
gramming algorithms (Durrett et al., 2011; Neumann, 2012;
Urli et al., 2012). Crucial measures in the theoretical analyses
are the maximum tree size Tmax that is attained during the
run of the algorithms, as well as the maximum population
size Pmax when dealing with multi-objective models.

We introduced several new bounds for different GP variants
on the different versions of the problems WORDER and WMA-
JORITY. Tables 2 and 3 summarise our results and the exist-
ing known bounds on the investigated problems.

Despite the significant theoretical and experimental effort,
the following open challenges still remain:

1. Almost no theoretical results for the multi-operation
variants are known to date. A major reason for this is
that it is not clear how to bound the number of accepted
operations when employing the multi-operation vari-
ants on the weighted cases.

2. Of particular difficulty seems to be the problem to bound
runtimes on WMAJORITY. There, in order to achieve
a fitness increment, the incrementing operation needs
to be preceded by a number of operations that reduce
the difference in positive and negative occurrences of a
variable. Said difference is currently difficult to control,
as it can increase and decrease during a run.

3. Several bounds rely on Tmax or Pmax measures, which
are not set in advance and whose probability to increase
or decrease during the optimization is hard to predict.
This is because their growth (or decrease) depends on
the content of the individual and the content of the pop-
ulation at a specific time step. Solving these problems
would allow bounds which only depend on parame-
ters the user can initially set. Observe that limiting
Tmax and Pmax is not an option, since we are consider-
ing variable length representation algorithms, and pop-
ulations that represent all the trade-offs between objec-
tives.

4. Finally, it is not known to date how tight these bounds
are.

References
Doerr, B., Johannsen, D., and Winzen, C. (2010). Multiplica-

tive drift analysis. In Pelikan, M. and Branke, J., editors,
GECCO, pages 1449–1456. ACM.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis
of the (1+1) evolutionary algorithm. Theoretical Computer
Science, 276:51–81.

Durrett, G., Neumann, F., and O’Reilly, U.-M. (2011). Com-
putational complexity analysis of simple genetic program-
ing on two problems modeling isolated program seman-
tics. In FOGA, pages 69–80. ACM.

Goldberg, D. E. and O’Reilly, U.-M. (1998). Where does the
good stuff go, and why? How contextual semantics influ-
ences program structure in simple genetic programming.
In EuroGP, volume 1391 of LNCS, pages 16–36. Springer.

Kötzing, T., Sutton, A. M., Neumann, F., and O’Reilly, U.-
M. (2012). The max problem revisited: the importance
of mutation in genetic programming. In Proceedings of the
fourteenth international conference on Genetic and evolutionary
computation conference, GECCO ’12, pages 1333–1340, New
York, NY, USA. ACM.

Neumann, F. (2012). Computational complexity analysis of
multi-objective genetic programming. In Proceedings of the
fourteenth international conference on Genetic and evolutionary
computation conference, GECCO ’12, pages 799–806, New
York, NY, USA. ACM.

Oliveto, P. S. and Witt, C. (2011). Simplified drift analysis for
proving lower bounds in evolutionary computation. Algo-
rithmica, 59(3):369–386.

Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field
Guide to Genetic Programming. lulu.com.

Urli, T., Wagner, M., and Neumann, F. (2012). Experimen-
tal supplements to the computational complexity analysis
of genetic programming for problems modelling isolated
program semantics. In PPSN. Springer. (to be published).

Wagner, M. and Neumann, F. (2012). Parsimony pressure
versus multi-objective optimization for variable length
representations. In PPSN. Springer. (to be published).

Wegener, I. (2002). Methods for the analysis of evolutionary
algorithms on pseudo-Boolean functions. In Evolutionary
Optimization, pages 349–369. Kluwer.

F(X)
(1+1)-GP, F(X)

k=1 k=1+Pois(1)

ORDER
O(nTmax) Durrett et al. (2011) O(nTmax) Durrett et al. (2011)

O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

WORDER
O(nTmax) ? O(nTmax(logn+ logwmax)) ?

O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

MAJORITY
O(n2Tmax logn) Durrett et al. (2011) ?
O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

WMAJORITY
? ?

O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

F(X)
(1+1)-GP, MO-F(X)

k=1 k=1+Pois(1)

ORDER
O(Tinit + n logn)Neumann (2012) O(n2 logn) ? †
O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

WORDER
O(Tinit + n logn)Neumann (2012) ?
O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

MAJORITY
O(Tinit + n logn)Neumann (2012) ?
O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

WMAJORITY
O(Tinit + n logn)Neumann (2012) ?
O(Tinit + n logn) Urli et al. (2012) O(Tinit + n logn) Urli et al. (2012)

Table 2: Summary of our bounds (?) and the existing theoretical upper bounds from Table 1. The average-case conjectures
from Urli et al. (2012) are listed to indicate tightness. Note that (?) mark the cases for which no theoretical bounds are known,
and bounds marked with (†) require special initialisations.

F(X)
SMO-GP, MO-F(X)

k=1 k=1+Pois(1)

ORDER
O(nTinit + n2 logn)Neumann (2012) O(nTinit + n2 logn)Neumann (2012)
O(nTinit + n2 logn) Urli et al. (2012) O(nTinit + n2 logn) Urli et al. (2012)

WORDER
O(T 2

init + n2Tinit + n3) ? O(TinitPmax + n2Pmax) ?

O(n3) Neumann (2012) †
O(nTinit + n2 logn) Urli et al. (2012) O(nTinit + n2 logn) Urli et al. (2012)

MAJORITY
O(nTinit + n2 logn)Neumann (2012) O(nTinit + n2 logn)Neumann (2012)
O(nTinit + n2 logn) Urli et al. (2012) O(nTinit + n2 logn) Urli et al. (2012)

WMAJORITY
O(T 2

init + n2Tinit + n3) ? O(TinitPmax + n2Pmax) ?

O(n3) Neumann (2012) †
O(nTinit + n2 logn) Urli et al. (2012) O(nTinit + n2 logn) Urli et al. (2012)

Table 3: Summary of our bounds (?) and the existing theoretical upper bounds from Table 1. The average-case conjectures
from Urli et al. (2012) are listed to indicate tightness. Note that the bounds marked with (†) require special initialisations.

	Introduction
	Preliminaries
	Theoretical results
	(1+1)@let@token --GP
	(1+1)@let@token --GP on F(X) Problems
	Algorithms on MO-F(X) Problems

	Multi-Objective Algorithms
	SMO@let@token --GP@let@token --single
	SMO@let@token --GP@let@token --multi

	Conclusions

