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Introduction

= Pareto front: set of all the (many)
different trade-offs
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» EMOASs restrict themselves to a smaller set that should be a
good approximation of the Pareto front

= Different EMOASs (e.g., NSGA-II, SPEA2, IBEA, SMS-EMOA,
MOEA/D, ...) try to achieve approximations by preferring
diverse sets of non-dominated solutions.

= The typical lack of a formal notion of approximation makes it
hard to evaluate and compare algorithms for MOO problems.



Approximation-Guided Evolution (AGE)

= Motivated by studies in theoretical computer science
[initially: formal notion [Cheng, Janiak, Kovalyov 1998]
then: comparison with the hypervolume indicator [Papadimitriou, Yannikakis 2000, 2001]

now: an efficient framework] [Vasilvitskii, Yannakakis 2005]
) [Diakonikolas, Yannakakis 2009]

[Daskalakis, Diakonikolas, Yannakakis 2010]
[Bringmann, Friedrich 2010]

= The AGE framework

— allows to incorporate a formal notion of approximation
— improves the approximation quality iteratively
— uses the best knowledge obtained so far (“archive”)

= Given a fixed time-+evaluations budget, AGE outperforms
other EMOAs in terms of the desired additive
approximation, as well as the covered hypervolume (see
our IJCAI ‘11 article)



Contribution

= Approximation-Guided Evolution (AGE) [LJCAI "11]
1. Its runtime of AGE can suffer in high-dimensional spaces
2. It has a mediocre performance on “easy” problems

= Parent Selection for AGE **today**
1. Non-random
2. Computationally efficient
3. Not detrimental in high-dimensional spaces



What is approximation? @ Archive

O Population




What is approximation? @ Archive

O Population

o@):= nsweaxmin max(s - t)
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On Problems with Many Objectives (see Section IIb)
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Fig. 1. Achievable additive approximations of the Pareto fronts, when only
all corner points are found for DTLZ 1 (—e—) and for DTLZ 2/3/4 (—=—),
and when only the centre of the Pareto front is found for DTLZ 1 (—o—) and
for DTLZ 2/3/4 (—O—)



Approximation-Guided EA

= a(f,X) is the approximation ratio achieved by the set X
with respect to the Pareto front f

= Aim: find X such that a(f,X) is minimised
= Problem: we do not know the Pareto front f

= Solution: use the union of all non-dominated points seen
so far (“archive”) as an approximation of the Pareto front
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Parent Selection

approximation for DTLZ3

(smaller = better)
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Parent Selection

approximation for DTLZ3

(smaller = better)
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Parent Selection

approximation for DTLZ3

(smaller = better)
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Parent Selection

approximation for DTLZ3

(smaller = better)
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Parent Selection

approximation for DTLZ3

(smaller = better)
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Parent Selection

All eight investigated approaches are
= computationally inexpensive
= increase the selection pressure

Approaches
1. Random selection

2. Focus on the first fronts of the population
— Variant 1: exclusive focus on the first front
— Variant 2: bias towards the first front

3. Use of crowding distance
4. Random omission of solutions
... and several combinations of these



Experiments

= NSGA-IIL, IBEA, SPEA2, SMS-EMOA

AGE with eight parent selection strategies

= DTLZ family can be scaled in the number of objectives:
DTLZ 1/2/3/4 (each with d=2,...,20)
- 48 functions, plenty of plots

= Limits: 100.000 evaluations, 4h
= u=100, SBX, PM, implemented in jMetal

(Psst... code is available online...
http://tinyurl.com/age2013)



http://tinyurl.com/age2013

Results

approximation for DTLZ4
(smaller = better)
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Results

approximation for DTLZ4
(smaller = better)
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Results
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Results

approximation for DTLZ4
(smaller = better)
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Conclusions

Approximation-Guided Evolution with non-random
Parent-Selection

= an efficient approach to solve multi-objective optimisation
problems with few and many objectives

" 1no parameters

= enables practitioners
1. toadd objectives with only minor consequences
2. to explore problems for even higher dimensions

Future work
= Use it!

» (Code is available online... http://tinyurl.com/age2013
Java + C (soon)

= Bonus: AGE will be in the next jMetal version! ©



http://tinyurl.com/age2013

