
Parsimony Pressure versus Multi-objective

Optimization for Variable Length
Representations

Markus Wagner and Frank Neumann

School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. We contribute to the theoretical understanding of variable
length evolutionary algorithms. Such algorithms are very flexible but
can encounter the bloat problem which means solutions grow during
the optimization run without providing additional benefit. We explore
two common mechanisms for dealing with this problem from a theo-
retical point of view and point out the differences of a parsimony and
a multi-objective approach in a rigorous way. As an example to point
out the differences, we consider different measures of sortedness for the
classical sorting problem which has already been studied in the compu-
tational complexity analysis of evolutionary algorithms with fixed length
representations.

1 Introduction

Evolutionary algorithms that work with a variable length representation often
encounter the bloat problem which means that individuals grow without provid-
ing additional benefit to the quality of the solutions. Even worse such a growth
of the individuals can block the optimization process such that problems that
are relatively easy to optimize can not be handled by variable length evolution-
ary algorithms. Due to this problem, different methods have been introduced
to deal with the bloat problem. Our goal is to study the behavior of variable
length evolutionary algorithms from a mathematical perspective. We will exam-
ine algorithms for distinguished classes of problems and point out the impact of
different approaches for dealing with the bloat problem in a rigorous way.

The most prominent example of a variable length evolutionary algorithm is
genetic programming [7] which often evolves tree structures for a given problem.
Recently, the first computational complexity results on these type of algorithm
have been obtained. They follow the line of research that has successfully followed
for evolutionary algorithms with fixed length representation (see the books [1,
11] for an overview). Variable length representations increase the search space
significantly and in the light of genetic programming it seems to be wishful to
better understand the behavior of algorithms using such representations from a
theoretical point of view.

The computational complexity analysis of variable length evolutionary algo-
rithms has started just recently. For example, Cathabard et al. [2] investigated

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 133–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 M. Wagner and F. Neumann

non-uniform mutation rates for problems with unknown solution lengths. They
used a simple evolutionary algorithm to find a bitstring with an unknown number
of leading ones, and although the bitstring had some predetermined maximum
length, only an unknown number of initial bits was used by the fitness function.
Durrett et al. [3] investigated worst-case and average-case runtimes of a simple
tree-based genetic programming algorithm. The tackled problems were separa-
ble, with independent and additive fitness structures. Kötzing et al. [6] analysed
simple GP algorithms for the MAX problem.

One prominent way of dealing with the bloat problem is the parsimony ap-
proach. In the case, that two solutions have equal quality the solution of lower
complexity is preferred. Another way of coping with the bloat problem is to
use a multi-objective approach which uses in each iteration of a variable length
evolutionary algorithm a population which represents the different trade-offs
according to the original goal function and the complexity of a solution. The
solutions that represent the trade-offs are called Pareto optimal. Note that the
parsimony approach is a scalarization approach as it uses these Pareto optimality
and a lexicographic ordering. It is known that each global solution is also Pareto
optimal, but not all Pareto optimal solutions can necessarily be found through
scalarizations (e.g., see [13]). Both approaches of coping with the bloat problem
have recently been examined for the problems ORDER and MAJORITY in the
context of genetic programming [9, 14].

We further explore the use of parsimony pressure and multi-objective models.
In [9] it is shown that both approaches help for ORDER and MAJORITY,
but the differences between these two approaches are not examined. In this
paper, we point out that switching from the parsimony approach to the multi-
objective one can significantly reduce the runtime. In particular, we show that
the parsimony approach can have local optima which lead to an infinite runtime
whereas the multi-objective approach is able to compute the optimal solution
within a polynomial number of steps.

We show these results for a classical problem from the computational com-
plexity analysis of evolutionary algorithms with fixed-length representations,
namely the sorting problem (sorting). Scharnow, Tinnefeld, and Wegener [12]
considered sorting as an optimization problem and investigated different fitness
functions measuring the sortedness of a permutation of elements. Different fit-
ness functions lead to problems of different difficulties. Our goal is to explore how
variable-length evolutionary algorithms behave on these problems. We take it as
a prominent example to discuss the differences between a parsimony approach
and a multi-objective one. In particular, we show that the parsimony approach
can end up for a lot of the different sortedness measures in local optima when us-
ing a variable length representation whereas the multi-objective approach allows
to compute the whole Pareto front in expected polynomial time.

Our paper is organized as follows. In Section 2, we introduce the two models
and the different measures of sortedness. We examine the parsimony approach
in Section 3 and show that it leads to local optima in the search space. In Sec-
tion 4, we show that the multi-objective approach is able to compute the whole

Parsimony Pressure versus Multi-objective Optimization 135

Mutate Y by applying k operations. For each operation, randomly choose to either
substitute, insert, or delete.

– If substitute, replace a randomly chosen element of Y with a new element u ∈ E
selected uniformly at random.

– If insert, choose an element v inY uniformly at randomand selectu ∈ E uniformly
at random. Randomly decide whether u is inserted before or after v in Y.

– If delete, randomly choose an element v of Y and delete it.

Fig. 1. Mutation operator

Pareto front of the underlying optimization problem in expected polynomial
time. Finally, we finish with some conclusions.

2 Preliminaries

Our goal is to study the difference between a parsimony and a multi-objective
approach for variable length evolutionary algorithms. Solutions contain (possibly
multiple) elements from a set E of elements. We will consider mutation-based
algorithms which produce new solutions by applying the mutation operator out-
lined in Figure 1. The mutation operator is parametrized by a parameter k which
determines the number of operations applied to the individual Y . For single op-
erations k = 1 holds. In the case of multiple operations, k is chosen according to
1 + Pois(1) where Pois(1) denotes the Poisson distribution with expectation 1.

We will consider a given problem F and the complexity of a solution C mea-
sured by the number of elements in the solution. C should be minimized and we
assume that F should be maximized. The notions can be easily adjusted to the
minimization of a problem F , which will later on be considered.

In the parsimony approach, we optimize the multi-criteria fitness function
MO-F(X) = (F (X), C(X)) with respect to the lexicographic order, that is,
MO-F(X) ≥ MO-F(Y) holds iff

F (X) ≥ F (Y) ∨ (F (X) = F (Y) ∧ C(X) ≤ C(Y)) . (1)

In the multi-objective case, we treat the two criteria F and C as equally impor-
tant and consider the classical Pareto dominance relations:

1. A solution X weakly dominates a solution Y (denoted by X � Y) iff
(F (X) ≥ F (Y) ∧ C(X) ≤ C(Y)).

2. A solution X dominates a solution Y (denoted by X � Y) iff ((X � Y) ∧
(F (X) > F (Y) ∨ C(X) < C(Y)).

3. Two solution X and Y are called incomparable iff neither X � Y nor Y � X
holds.

A Pareto optimal solution is a solution that is not dominated by any other
solution in the search space. All Pareto optimal solutions together form the

136 M. Wagner and F. Neumann

Pareto optimal set, and the set of corresponding objective vectors forms the
Pareto front. The classical goal in multi-objective optimization is to compute for
each objective vector of the Pareto front a Pareto optimal solution. Alternatively,
if the Pareto front is too large, the goal then is to find a representative subset of
the front, where the definition of ‘representative’ depends on the choice of the
conductor.

2.1 Sortedness Measures

We will analyze our algorithms on different measures of sortedness for the clas-
sical sorting problem. It can be stated as follows. Given a totally ordered set
E = {1, . . . , n} of n elements, the task is to find a permutation πopt of the
elements of E such that

πopt(1) < πopt(2) < . . . < πopt(n)

holds, where< is the order on E. Without loss of generality, we assume πopt = id,
i. e. πopt(i) = i for all i, throughout this paper.

The set of all permutations π forms a search space that has already been in-
vestigated in [12] for the analysis of permutation-based evolutionary algorithms.
The authors of that paper investigate sorting as an optimization problem whose
goal is to maximize the sortedness of a given permutation. We will consider
the following fitness functions measuring the sortedness of a given permutation
introduced in [12]:

– HAM(π), measuring the number of elements at correct position, which is the
number of indices i such that π(i) = i,

– RUN(π), measuring the number of maximally sorted blocks, which is the
number of indices i such that π(i + 1) < π(i) plus one,

– EXC(π), measuring the minimal number of pairwise exchanges in π, in order
to sort the sequence.

Note that EXC(π) can be computed in linear time, based on the cycle structure
of permutations. If the sequence is sorted, it has n cycles. Otherwise, it is always
possible to increase the number of cycles by exchanging an element that is not
sitting at its correct position with the element that is currently sitting there. For
any given permutation π consisting of n− k cycles, EXC(π) = k.

We do not consider the functions INV (pairs in order) and LAS (longest
ascending sequence) given in [12] as they are easy to be optimized for all the
algorithms that we consider.

We will investigate the different measures for variable-length evolutionary al-
gorithms. Consequently, we might have to deal with incomplete permutations as
not all elements have to be contained in a given individual. Most measures can
also be used for incomplete permutation, but we have to make sure that complete
permutations always obtain a better fitness than incomplete ones. Furthermore,
the sortedness measure should guide the algorithm from incomplete permutations
to complete ones.

Parsimony Pressure versus Multi-objective Optimization 137

Algorithm 1. Derivation of F (X)

1 Generate π by parsing X front to rear and adding an element to π only if it is
not yet in π;

2 Return F (π);

Algorithm 2. (1+1) GP-single for maximization

1 Choose an initial solution X;
2 repeat
3 Set Y := X;
4 Apply the mutation operator (given in Figure 1) with k = 1 to Y;
5 if f(Y) ≥ f(X) then set X := Y ;

We will use the sortedness measures as above and use the following special
fitness assignments that enforce the previously stated properties.

– RUN(π) = n + 1 if |π| = 0, otherwise RUN(π) = b + m is the sum of the
number of maximally sorted blocks b, and the number of elements missing
m = n− |π|,

– If |π| ≤ n then EXC(π) = e+m+ 1, otherwise EXC(π) = e, where e is the
number of necessary exchanges e, and m = n− |π| the number of elements
missing.

Note that e can be computed for incomplete permutations as well, as only the
order < on E has to be respected. This means that, the permutations π1 = (1, 4)
and π2 = (1, 2, 3, 4) require no changes, but EXC(π1) �= EXC(π2), as the number
of missing elements differs.

For example, for a tree X with π = (2, 3, 4, 5, 1, 6) and n = 7, the sortedness
results are HAM(X) = 1, RUN(X) = 2 + 1 = 3, and EXC(X) = 4 + 1 + 1 = 6.

We now define our multi-objective variants of sorting. When adding the com-
plexity of a data-structure as the second measure, we get the problems MO-
HAM, MO-RUN, and MO-EXC, respectively. Given a variable length solution
X and a problem F , we will refer by F (X) = F (π) to its fitness. Here π is
obtained from X (see Algorithm 1) by parsing X and adding an element x to π
if it is not yet contained in it.

3 Local Optima and the Parsimony Approach

In this section, we consider simple variable length evolutionary algorithms using
the parsimony approach. To stress the use of variable-length representations and
to make the connection to recent investigations on the computational complexity
of genetic programming [3, 9], we will view our algorithms as simple genetic
programming algorithms.

The single-objective variant called (1+1) GP-single starts with an initial so-
lution X , and produces in each iteration one single offspring Y by applying the

138 M. Wagner and F. Neumann

mutation operator given in Figure 1 with k = 1. This means that it is a stochastic
hillclimber which explores its local neighborhood. In the case of maximization,
Y replaces X if f(Y) ≥ f(X) holds. Minimization problems are tackled in the
analogous way.

In the following, we show that the parsimony approach leads to local optima
for various types of sortedness measure.

Let I1 = (n, 2, 3, . . . , n − 3, n − 2, n − 1, 1) be the initial solution. We point
out that this is a local optimum for (1+1) GP-single on MO-EXC leading to an
infinite optimization time.

Theorem 1. Let I1 be an initial solution. Then the optimization time of
(1+1) GP-single on MO-EXC is infinite.

Proof. The individual I1 has an EXC-value of 1 and a length of n. In order to
reduce the fitness down to 0, it would be necessary to move the n from the head
of the permutation to its end.

For this to happen, deletions and substitutions cannot be considered, as they
would produce incomplete permutations, and incomplete permutations have
EXC-values of at least 2.

Similarly, this situation cannot be solved using a single insertion: it is not
possible to introduce n at its correct position within the permutation, as the
existing n is preventing the new one from becoming expressed.

Therefore, it it not possible to improve the number of elements sitting at
their correct (relative) position via a single mutation. Thus, (1+1) GP-single
takes infinitely long, when initialized with I1. 	

We continue by investigating the sortedness measure RUN. Without loss of gen-
erality, let n be even and I2 =

(
n
2 + 1, n

2 + 2, . . . , n− 1, n, 1, 2, . . . , n
2 − 1, n

2

)
be

an initial solution. The following theorem shows that I2 is a local optimum for
(1+1) GP-single on MO-RUN.

Theorem 2. Let I2 be the initial solution. Then the optimization time of
(1+1) GP-single on MO-RUN is infinite.

Proof. The individual I2 has a RUN-value of 2, which cannot be improved via a
single insertion: n/2 elements have to change their positions in the inorder parsed
list that is used for the computation of the RUN-value. Furthermore, a single
deletion or substitution results in a worse sortedness value as one element is then
missing (as defined in Section 2.1). Therefore, the runtime of the single-operation
case of (1+1) GP is infinite, when initialised with this particular individual. 	

Finally, we consider the sortedness measure HAM and investigate the initial
solution I3 = (1, n− 2, 3, 4, 5, . . . , n− 3, 2, n− 1, n) . We show that this is a local
optimum for MO-HAM.

Theorem 3. Let I3 be the initial solution. Then the optimization time of
(1+1) GP-single on MO-HAM is infinite.

Parsimony Pressure versus Multi-objective Optimization 139

Algorithm 3. SMO-GP

1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Choose X ∈ P uniformly at random;
5 Set Y := X;
6 Apply mutation to Y;
7 if {Z ∈ P | Z � Y } = ∅ then set P := (P \ {Z ∈ P | Z � Y }) ∪ {Y };

Proof. The individual I3 has the elements 2 and n − 2 at incorrect positions,
resulting in a HAM-value of n− 2. It is not possible to maintain the HAM-value
(or improve it) via deletions, as they decrease the number of elements at correct
positions. Substitutions can also not maintain the HAM-value. A substitution
of the n − 2 by a 2 would result in the elements to the right to shift away
from their correct position as in both cases the element at the third position
would no longer get expressed. This leaves only the option of using insertions,
in order to generate an individual that is accepted. The element n− 2 cannot be
introduced successfully at its correct position as its current occurrence is blocking
a later expression. If the 2 is introduced at its correct position, then the resulting
permutation is (1, 2, n− 2, 3, 4, 5, . . . , n− 3, n− 1, n) as the second 2 is no longer
gets expressed, and the corresponding HAM-value for this permutation is 4.

Thus, the runtime of the single-operation case of (1+1) GP is infinite, when
initialised with this particular individual. 	

4 Multi-objective Approach

We consider the Simple Evolutionary Multi-Objective Genetic Programming
(SMO-GP) algorithm introduced in [9] and motivated by the SEMO algorithm
for fixed length representations of Laumanns et al. [8]. Variants of SEMO have
been frequently used in the runtime analysis of evolutionary multi-objective
optimization for fixed length representations [4, 5, 10, 11]. SMO-GP (see Algo-
rithm 3) is a population-based approach that starts with a single solution and
keeps in each iteration a set of non-dominated solutions obtained during the
optimization run. In each iteration, it picks one solution uniformly at random
and produces one offspring Y by mutation. Y is introduced into the population
iff it is not weakly dominated by any other solution in P . If Y is added to the
population all individuals that are dominated by Y are discarded.

SMO-GP-single uses the mutation operator given in Figure 1 with k=1. We
also consider SMO-GP-multi which differs from SMO-GP-single by choosing k
according to 1 + Pois(1).

In this section, we analyze the performance of the SMO-GP variants on each
one of the fitness functions introduced in Section 2.1. In particular, we analyze
the expected number of iterations to compute the optimal solution. We call this
the expected optimization time of the algorithms.

140 M. Wagner and F. Neumann

The following lemma bounds the expected time until the empty solution has
been included into the population, when considering an arbitrary optimization
problem:

Lemma 1 (Neumann [9]). Let Iinit be the size of the initial solution and k
be the number of different fitness values of a problem F . Then the expected time
until the population of SMO-GP-single and SMO-GP-multi applied to MO-F
contains the empty solution is O (kIinit).

Theorem 4. The expected optimization time of SMO-GP-single and SMO-GP-
multi is O(nIinit + n3 logn) on MO-EXC and MO-RUN and O(nIinit + n4) on
MO-HAM.

Note that for all three problems, only solutions of complexity i, 0 ≤ i ≤ n
can be Pareto optimal. For RUN, these are solutions X with C(X) = i and
RUN(X) = n+ 1− i, 0 ≤ i ≤ n.

Proof. In the following, we will first prove the theorem for MO-RUN. The proofs
for MO-EXC and MO-HAM follow the same structure.

RUN has n+1 different fitness values. Using Lemma 1, the empty solution is
produced after an expected number of O (kIinit) steps.

In the following steps, we will bound the time needed to discover the whole
Pareto front, once the empty solution is introduced into the population. Let us
assume that the population contains all Pareto optimal solutions with complexi-
ties j, 0 ≤ j ≤ i. Then, a population which includes all Pareto optimal solutions
with complexities j, 0 ≤ j ≤ i + 1, can be achieved by producing a solution Y
that is Pareto optimal and that has complexity i+1. Y can be obtained from a
Pareto optimal solution X with C(X) = i by inserting any of the n− i missing
elements into the correct position. This operation produces from a solution of
complexity i a solution of complexity i+ 1.

Based on this idea we can bound the expected optimization time once we
can bound the probability for such steps to happen. Choosing X for mutation
has probability at least 1/(n + 1) as the population size is upper bound by
n+ 1. Next, the mutation step carrying out just one operation happens with at
least 1/e, and the inserting operation of the mutation operator is chosen with
probability 1/3. As n − i out of the n elements are missing, any of those can
be inserted. However, the correct position for such a randomly chosen element
has to be chosen, in order to produce the Pareto optimal solution of complexity
i+1. This probability is at least 1/2 · 1/n, as the number of leaf nodes is bound
by n, and the probability to insert as the correct child of the newly introduced
inner node is at least 1/2. Thus, the total probability of such a generation is

1

n+ 1
· 1

3e
· 1

2n
· n− i

n
.

Now, we use the method of fitness-based partitions [15] according to the n + 1
different fitness values of i. Thus, as there are only n Pareto-optimal improve-
ments possible once the empty solution is introduced into the population, the
expected time until all Pareto optimal solutions have been generated is:

Parsimony Pressure versus Multi-objective Optimization 141

n∑

i=0

(
1

n+ 1
· 1

3e
· 1

2n
· n− i

n

)−1

= 6en2(n+ 1) ·
n∑

i=0

1

n− i
= O(n3 logn).

Taking into account the expected time to produce the empty solution, the ex-
pected time until the whole Pareto front of MO-RUN has been computed is
O
(
nIinit + n3 logn

)
.

The proof for MO-EXC follows the same structure. First, note that if the
ordering within the permutation requires an exchange, then this individual is
dominated by individuals of same complexity that require fewer exchanges. Just
as with MO-EXC, let us assume that the population contains all Pareto optimal
solutions with complexities j, 0 ≤ j ≤ i. Then, a population which includes all
Pareto optimal solutions with complexities j, 0 ≤ j ≤ i + 1, can be achieved
by inserting any of the n − i missing elements into the correct position of the
Pareto optimal individual X with C(X) = i. The probability for such a step
to happen is at least 1

n+2 · 1
3e · 1

2n · n−i
n . Now, as n + 2 different EXC-values

are possible, and by summing up the waiting times as done for MO-RUN, the
expected optimization time is O(nIinit + n3 logn).

Similarly, we can prove an upper bound for MO-HAM. First, note that each
Pareto optimal solution with HAM-value i represents a perfectly sorted permuta-
tion of the i elements 1, . . . , i. Just as above, let us assume that the population
contains all Pareto optimal solutions with complexities j, 0 ≤ j ≤ i. Then,
a population which includes all Pareto optimal solutions with complexities j,
0 ≤ j ≤ i + 1, can be achieved by inserting the element i + 1 into its correct
position (i. e., as the rightmost leaf) in the Pareto optimal individual X with
HAM(X) = C(X) = i. The probability for such a step to happen is at least
1

n+1 · 1
3e · 1

2n · 1n = Ω
(

1
n3

)
and the corresponding waiting time is O(n3). There are

n+1 different HAM-values. This implies that the expected optimization time is
O(nIinit + n4). 	

5 Conclusions

Variable length representations are frequently used in evolutionary algorithms.
The most prominent example using such a representation is genetic program-
ming. With this paper, we have contributed to the theoretical understanding
when using such a representation. We discussed two methods for dealing with
bloat which frequently occurs when using such a representation. To point out
the differences between these two approaches, we examined different measures of
sortedness that have been analyzed for evolutionary algorithms with fixed length
representations. Our analysis for the parsimony approach shows that variable
length representations might have difficulties when dealing with simple mea-
sures of sortedness due to the presence of local optima. Our runtime analysis
for simple multi-objective algorithms shows that they compute the whole Pareto
front for the examined sortedness measures in expected polynomial time.

142 M. Wagner and F. Neumann

References

[1] Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations
and Recent Developments. World Scientific (2011)

[2] Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems
with unknown solution lengths. In: FOGA, pp. 173–180. ACM, New York (2011)

[3] Durrett, G., Neumann, F., O’Reilly, U.-M.: Computational complexity analysis of
simple genetic programing on two problems modeling isolated program semantics.
In: FOGA, pp. 69–80. ACM (2011)

[4] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multiobjective models.
Evolutionary Computation 18(4), 617–633 (2010)

[5] Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multiobjective
optimisation. Evolutionary Computation 18(3), 335–356 (2010)

[6] Kötzing, T., Sutton, A., Neumann, F., O’Reilly, U.-M.: The Max problem revis-
ited: the importance of mutation in genetic programming. In: GECCO (to appear,
2012)

[7] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

[8] Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evolutionary
Computation 8(2), 170–182 (2004)

[9] Neumann, F.: Computational complexity analysis of multi-objective genetic pro-
gramming. In: GECCO (to appear, 2012), http://arxiv.org/abs/1203.4881

[10] Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-
objective optimization. In: GECCO, pp. 763–770. ACM Press (2005)

[11] Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer (2010)

[12] Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and
Algorithms 3, 349–366 (2004)

[13] Shukla, P.K., Deb, K.: On finding multiple Pareto-optimal solutions using classi-
cal and evolutionary generating methods. European Journal of Operational Re-
search 181(3), 1630–1652 (2007)

[14] Urli, T., Wagner, M., Neumann, F.: Experimental Supplements to the Compu-
tational Complexity Analysis of Genetic Programming for Problems Modelling
Isolated Program Semantics. In: Coello Coello, C.A., et al. (eds.) PPSN 2012,
Part I. LNCS, vol. 7491, pp. 102–112. Springer, Heidelberg (2012)

[15] Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-
boolean functions. In: Evolutionary Optimization. International Series in Opera-
tions Research and Management Science, vol. 48, pp. 349–369. Springer, US (2003)

http://arxiv.org/abs/1203.4881

	Parsimony Pressure versus Multi-objectiveOptimization for Variable Length Representations
	Introduction
	Preliminaries
	Sortedness Measures

	Local Optima and the Parsimony Approach
	Multi-objective Approach
	Conclusions
	References

