
Experimental Supplements
to the Computational Complexity Analysis

of Genetic Programming for Problems
Modelling Isolated Program Semantics

Tommaso Urli1, Markus Wagner2, and Frank Neumann2

1 DIEGM, Università degli Studi di Udine, 33100 Udine, Italy
2 School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. In this paper, we carry out experimental investigations that
complement recent theoretical investigations on the runtime of simple
genetic programming algorithms [3, 7]. Crucial measures in these theo-
retical analyses are the maximum tree size that is attained during the
run of the algorithms as well as the population size when dealing with
multi-objective models. We study those measures in detail by experimen-
tal investigations and analyze the runtime of the different algorithms in
an experimental way.

Keywords: genetic programming, problem complexity, multiple-
objective optimization, experimental evaluation.

1 Introduction

In the last decade, Genetic Programming algorithms have found various applica-
tions [8] in a number of domains, however their behaviour is hard to understand
in a rigorous manner. Recently, the first computational complexity results have
been presented for simple genetic programming algorithms [3, 7]. The algorithms
that have been considered are a stochastic hill-climber called (1+1)-GP and a
population-based multi-objective programming algorithm called SMO-GP that
takes into account the given problem F and the complexity C of a solution.
These algorithms have been analyzed on problems with isolated program seman-
tics taken from [5] which can be seen as the analogue of linear pseudo-Boolean
functions [2] known from the computational complexity analysis of evolutionary
algorithms working with fixed length binary representations.

The theoretical results provided in [3, 7] bring up several questions that re-
main unanswered in these papers. In particular, for different combinations of
algorithms and problems no (or no exact) runtime bounds are given. In our
paper, we explore the different open cases and questions in an experimental
way. Similar to [1, 6], this should guide further rigorous analyses by exploring
the important measures within a computational complexity analysis of the algo-
rithms and give experimental estimates on the actual runtime of the algorithms
on the different problems. Our experimental investigations, will concentrate on

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 102–112, 2012.
c⃝ Springer-Verlag Berlin Heidelberg 2012



Experimental Supplements to the Computational Complexity Analysis 103

important measures such as the maximum tree size during the run of the single-
objective algorithms analyzed in [3] and the maximum population size of the
multi-objective algorithm analyzed in [7]. It can be observed from the analyses
carried out in these two papers, that both measures have a different implication
on the runtime of the analyzed genetic programming algorithms. Other experi-
mental results indicate that both measures do not grow large during the run of
the algorithms which would imply a fast optimization process. Furthermore, our
experimental results on the actual runtime of (1+1)-GP and SMO-GP indicate
an efficient optimization process.

The paper is structured as follows. In Section 2, we introduce the prob-
lems and algorithms and summarize the computational complexity results for
them. (1+1)-GP is experimentally investigated in Section 3 and the behavior of
SMO-GP is examined in Section 4. We finish with some concluding remarks.

2 Preliminaries

In our experimental investigations, we will treat the algorithms and problems an-
alyzed in [3, 7]. We consider tree-based genetic programming, where a possible
solution to a given problem is given by a syntax tree. The inner nodes of such a
tree are labelled by symbols from a function set F , and the leaves of the tree are
labelled by terminals from a set T . The problems that we examine are Weighted
ORDER (WORDER) and Weighted MAJORITY (WMAJORITY). For all, the
only function is the binary join operation (denoted by J), and the terminal set is
a set of 2n variables, where xi represents the complement of xi. Thus, F := {J}
and T := {x1, x1, x2, x2, . . . , xn, xn}. With each variable xi, we associate a weight
wi ∈ R, 1 ≤ i ≤ n. Thus, the variables can differ in their contribution to the fitness
of a tree. Without loss of generality, we assume that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0.

For a given syntax treeX , its computed value S is obtained by parsing the syn-
tax tree in-order according to the problem semantics. For WORDER, xi is con-
tained in S iff it is present in the tree and there is no xi that is visited in the in-order
parse before xi. ForWMAJORITY, xi is in S iff xi occurs in the tree at least once,
and at least as often as its complement xi (see Algorithms 1 and 2). The weight
wi of a variable xi contributes to the fitness iff xi is positive and contained in set
S. We get the problems ORDER and MAJORITY as special cases where wi = 1,
1 ≤ i ≤ n, holds.

Algorithm 1. WORDER(X)

input: a syntax tree X
init : an empty leaf list l, an empty

statement list S
1 Parse X in-order and insert each leaf

the rear of las it is visited;
2 Generate S by parsing l front to rear

and adding a leaf to S only if its
complement is not yet in S;

3 WORDER (X) =
∑

xi∈S wi;

Algorithm 2. WMAJORITY(X)

input: a syntax tree X
init : an empty leaf list l, an empty

statement list S
1 Parse X in-order and insert each leaf

the the rear of las is is visited;
2 For 1 ≤ i ≤ n: if

count(xi ∈ l) ≥ count(xi ∈ l) and
count(xi ∈ l) ≥ 1, then add xi to S;

3 WMAJORITY (X) =
∑

xi∈S wi;



104 T. Urli, M. Wagner, and F. Neumann

As GP mechanisms, we investigate the single-objective (1+1)-GP and the
Simple Multi-Objective Genetic Programming (SMO-GP) algorithm. For the
(1+1)-GP, we consider the problem of computing a solution X which maximizes
a given function F (X). In the case of the parsimony approach, we additionally
take into account the complexity C(X) of a solution (measured as the total
number of nodes in the tree). Here, we optimize the multi-criteria fitness function
MO-F(X) = (F (X), C(X)) with respect to the lexicographic order, that is,
MO-F(X) ≥ MO-F(Y ) holds iff F (X) > F (Y )∨(F (X) = F (Y )∧C(X) ≤ C(Y ).

For SMO-GP, we will treat the two objective F (X) and C(X) as equally im-
portant and use standard notations from the field of multi-objective
optimization. A solution Y weakly dominates a solution X (denoted by Y ≽ X)
iff (F (Y ) ≥ F (X) ∧ C(Y ) ≤ C(X)). A solution Y dominates a solution X (de-
noted by Y ≻ X) iff ((Y ≽ X) ∧ (F (Y ) > F (X) ∨ C(Y ) < C(X)). A Pareto
optimal solution is a solution that is not dominated by any other solution in the
search space. All Pareto optimal solutions together form the Pareto optimal set,
and the set of corresponding objective vectors forms the Pareto front. The clas-
sical goal in multi-objective optimization is to compute for each objective vector
of the Pareto front a Pareto optimal solution. SMO-GP starts with a single so-
lution and keeps at any time during the optimization a set of non-dominated
solutions among the set of all solutions seen so far.

Note that this trade-off between solution complexity and solution quality has
successfully applied in industry tools such as Datamodeller [4].

(1+1)-GP and SMO-GP only use the mutation operator HVL-Prime to gen-
erate offspring. HVL-Prime allows for the production of trees of varying com-
plexity, and is based on the operations substitution, deletion, and insertion.
For an application of HVL-Prime, a parameter k has to be chosen. k deter-
mines the number of operations that HVL-Prime performs: (1) in the single-
operation case k = 1 holds, (2) in the multi-operation case k = 1 + Pois(1)
holds, where Pois(1) denotes the Poisson distribution with parameter 1. We re-
fer the reader to [3, 7] for a detailed description on HVL-Prime. Depending on
the number of operations used in the mutation operator, we get the algorithms
(1+1)-GP-single and SMO-GP-single and their corresponding multi-mutation
variants (1+1)-GP-multi and SMO-GP-multi.

The complete algorithms are outlined in Algorithms 3 and 4.

Algorithm 3. (1+1)-GP

1 Choose an initial solution X;

2 repeat

3 Set Y := X;
4 Apply mutation to Y ;
5 If selection favors Y over X then

set X := Y ;

Algorithm 4. SMO-GP

1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Randomly choose X ∈ P ;
5 Set Y := X;
6 Apply mutation to Y ;
7 If {Z ∈ P |Z ≻ Y } = ∅ set

P := (P \ {Z ∈ P |Z ≽ Y }) ∪ {Y };



Experimental Supplements to the Computational Complexity Analysis 105

2.1 Theoretical Results

The computational complexity analysis of genetic programming analyzes the
expected number of fitness evaluations until an algorithm has produced an opti-
mal solution for the first time. This is called the expected optimization time. In
the case of multi-objective optimization the number of fitness evaluations until
the whole Pareto front has been computed is analyzed and referred to as the
expected optimization time. The bounds from [3, 7] are listed in Table 1. As
it can be seen, all results take into account tree sizes of some kind: either the
maximum tree size Tmax during the search plays a role in the bound, or the size
of the initial tree Tinit does. It is also unknown how tight the given bounds are.
The maximum tree size for (1+1)-GP and the population size for SMO-GP play
a relevant role in the theoretical analysis and will be further investigated in the
rest of the paper. Lastly, note that the upper bounds marked with ⋆ hold only
if the algorithm has been initialized in the particular, i.e. non-redundant, way
described in [7].

Table 1. Computational complexity results from [3, 7]

F(X)
(1+1)-GP, F(X) [3] (1+1)-GP, MO-F(X) [7] SMO-GP, MO-F(X) [7]

k=1 k=1+Pois(1) k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORD O(nTmax) O(nTmax) O(Tinit + n log n)

?

O(nTinit + n2 logn)

WORD ? ? O(Tinit + n log n) O(n3)⋆ ?

MAJ O(n2Tmax log n) ? O(Tinit + n log n) O(nTinit + n2 logn)

WMAJ ? ? O(Tinit + n log n) O(n3)⋆ ?

2.2 Experimental Setup

In the remainder of this paper, we will empirically confirm and verify the the-
oretical results from [3, 7]. We consider (1+1)-GP and SMO-GP, each in their
single and multi-operation variants, and investigate problems of sizes n =20, 40,
60, . . . , 200 (although, for space reasons, the results in tables are shown only
for n = 100). For the initialization, we consider the schemes init0 (empty tree)
and init2n (in which a 2n leaves tree is generated by applying 2n insertion mu-
tations at random positions). In total, our experiments span twelve problems:
WORDER and WMAJORITY in their F(X) and MO-F(X) variants. The weight
settings are set as follows: (1) wi = 1, 1 ≤ i ≤ n, for ORDER and MAJORITY,
(2) wi ∈ [0, 1] chosen uniformly at random, 1 ≤ i ≤ n, for WORDER-RAN and
WMAJORITY-RAN, and (3) wi = 2n−i, 1 ≤ i ≤ n, for WORDER-BIN and
WMAJORITY-BIN.

The following experiments were performed on AMD Opteron 250 CPUs
(2.4GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.6 and were given a
maximum runtime of 3 hours and a budget of 109 evaluations. Furthermore, each
experiment has been repeated 400 times, which results in a standard error of the
mean (the standard deviation of the sampling distribution) of 1/

√
400 = 5%.



106 T. Urli, M. Wagner, and F. Neumann

3 (1+1)-GP

3.1 Tree size

The theoretical bounds for (1+1)-GP on ORDER and MAJORITY presented
in [3] depend on the maximum tree size that is encountered during the run of
the algorithms. We investigate the maximum tree size experimentally in order
to see whether bloat occurs when applying the algorithms. For (1+1)-GP-single
using the parsimony approach, i. e. using the function MO-F(X), the difference
between the solution value S and the number of leaves not preceded by their
complements can not increase during the run of the algorithm [7].

First, we investigate the tree sizes typically observed during the optimization
for the different (1+1)-GP algorithms. Table 2 reports results for n = 100, but
similar results hold for the other input sizes. The maximum tree size observed
during the run of (1+1)-GP on MO-F(X) when using single-operation and empty
initialization is 2n−1 , which is the minimum possible size of an optimal solution.
This was expected, since the algorithm can only increase the tree by a single leaf
in every accepting step. These values increase by about 10-20% in the case of
init0, when multiple HVL-Prime applications are allowed per mutation step.
When the acceptance criteria is weakened by switching to the F(X) variant (i.e.
the current tree can be replaced by larger ones of identical fitness), then the tree
sizes are about 2.5 times larger in the single-operation case, and about 3 times
larger in the multi-operation case.

Similarly, when running (1+1)-GP onMO-F(X), if the population is initialized
with trees of 2n leaves, the largest trees encountered are of size 2 · (2n)− 1, i.e.
the tree size of the initial solution, in the single-operation case, and are just
minimally larger (about 1%) in the multi-operation case.

Table 2. Maximum tree sizes encountered until the individual Xmax with maximum
fitness is found. Shown are median m and median interquartile ranges iqr. Here k = 1
and k = 1 + Pois(1) refer respectively to the single and multi-operation variants.

k F(X) n
(1+1)-GP, F(X) (1+1)-GP, MO-F(X)
init0 init2n init0 init2n

m iqr m iqr m iqr m iqr

k
=
1

ORDER 100 519 94.5 593 100 199 0 399 2
WORDER-RAN 100 513 85 594 90 199 0 399 0.5
WORDER-BIN 100 513 94 591 88.5 199 0 399 0
MAJORITY 100 507 78.5 563 72 199 0 399 0

WMAJORITY-RAN 100 499 76.5 567 74.5 199 0 399 0
WMAJORITY-BIN 100 499 74.5 567 75 199 0 399 0

k
=
1+

P
oi
s(
1)

ORDER 100 670 138 742 143 223 12 399 6
WORDER-RAN 100 667 136.5 713 131 229 12 399 6
WORDER-BIN 100 665 150.5 735 132.5 231 12 399 4
MAJORITY 100 624 96 668 102 239 14 401 8

WMAJORITY-RAN 100 617 104 678 116.5 241 16 401 8
WMAJORITY-BIN 100 635 114.5 671 116.5 243 14 401 8



Experimental Supplements to the Computational Complexity Analysis 107

Fig. 1. Number of evaluations required by (1+1)-GP until the individual Xmax with
maximum fitness is found, shown as box plots. The solid line is the median of the number
of evaluations divided by n log n, the dashed line is the same median divided by n2.



108 T. Urli, M. Wagner, and F. Neumann

For the non-parsimony variants, however, the largest trees are about 50%
larger when solving ORDER, and almost 100% when solving MAJORITY.

3.2 Runtime

Figure 1 shows the distributions of the required evaluations for the (1+1)-GP
variants as box plots. The line plots represent the medians divided by different
polynomials and suggest the asymptotic behavior of the algorithms: the solid
line is the median number of evaluations needed to produce the individual with
the optimal fitness value divided by n logn, and the dashed line is the same
number, but divided by n2.

For all combinations of algorithms and problems these plots indicate an ex-
pected optimization time of O(n log n), as the solid lines closely resemble con-
stant functions (see the y-values for n = 20 and n = 200), and the y-values of the
dashed lines are decreasing with increasing values of n. The constant factor ob-
tained by dividing the median number of evaluations by n logn is overall higher
in the single-operation variants of the algorithm, suggesting that applying multi
mutations can help getting earlier to the optimal solution.

One important observation is that the algorithms’ asymptotic behavior ap-
pears to be same, when initialized with the empty tree, and with trees with
2n leaves. For the setups where a theoretical bound in Table 1 is missing, the
experimental results give a strong indication about the expected optimization
time being O(n logn).

4 SMO-GP

4.1 Tree Size and Population Size

Table 3 shows the maximum tree sizes and maximum population sizes that were
observed up to the following two events. Firstly, until the individual Xmax with
maximum fitness is found, and secondly, until the population represents the
entire true Pareto front PPareto.

It can be seen that tree and population sizes observed by SMO-GP-single are
independent of the initialization. In all cases, no trees with more than the size
of the Pareto optimal solution X with F (X) = n (size 2n − 1) (when using
init0) and the initial tree size 2 · (2n) − 1 (when using init2n) ever belong to
the population. In the multi-operation cases, the maximum population sizes are
rarely higher, and the same holds for the maximum tree sizes.

4.2 Runtime

Just as in the previous section, we show now the distributions of the required
evaluations as box plots in Figure 2. As before, yellow box plots represent the
number of evaluations to get to Xmax, while red box plots represent now the
number of evaluations to get to PPareto. In this plot, the lines are the medians



Experimental Supplements to the Computational Complexity Analysis 109

Table 3. Maximum tree sizes and maximum population sizes encountered for SMO-GP
on the MO-F(X) problem variants: (1) until the individual Xmax with maximum fitness
is found, (2) until the population represents the entire true Pareto front PPareto. Shown
are median m and interquartile ranges iqr. init0 denotes the initialization with the
empty tree, and init2n the one with randomly constructed trees with 2n leaf nodes.

F(X) n
maximum tree size max. population size

to Xmax to PPareto to Xmax to PPareto

m iqr m iqr m iqr m iqr

S
M

O
-G

P
,
w
it
h

k
=
1

in
it

0

ORDER 100 199 0 199 0 101 0 101 0

WORDER-RAN 100 199 0 199 0 101 0 101 0

WORDER-BIN 100 199 0 199 0 101 0 101 0

MAJORITY 100 199 0 199 0 101 0 101 0

WMAJORITY-RAN 100 199 0 199 0 101 0 101 0

WMAJORITY-BIN 100 199 0 199 0 101 0 101 0

in
it

2
n

ORDER 100 399 0 399 0 101 0 101 0

WORDER-RAN 100 399 0 399 0 101 0 101 0

WORDER-BIN 100 399 0 399 0 101 0 101 0

MAJORITY 100 399 0 399 0 101 0 101 0

WMAJORITY-RAN 100 399 0 399 0 101 0 101 0

WMAJORITY-BIN 100 399 0 399 0 101 0 101 0

S
M

O
-G

P
,
w
it
h

k
=
1
+
P
o
is
(1

)

in
it

0

ORDER 100 207 6.5 207 6.5 101 0 101 0

WORDER-RAN 100 211 8 211 8 102 2 102 1

WORDER-BIN 100 211 6 211 6 102 1 102 2

MAJORITY 100 215 10.5 215 10.5 101 0 101 0

WMAJORITY-RAN 100 223 12 223 12 103 2 103 1

WMAJORITY-BIN 100 219 10 219 10 102 2 103 2

in
it

2
n

ORDER 100 399 4 399 4 101 0 101 0

WORDER-RAN 100 399 4 399 4 102 2 102 1

WORDER-BIN 100 399 4 399 4 102 1 102 2

MAJORITY 100 399 4 399 4 101 0 101 0

WMAJORITY-RAN 100 400 6 400 6 103 2 104 2

WMAJORITY-BIN 100 401 6 401 6 102 2 103 1

divided by different polynomials and suggest the asymptotic behavior of the
algorithms: the solid line is the median number of evaluations needed to get to
the Pareto front divided by n2 logn, and the dashed line is the same number,
but divided by n3. For all combinations of algorithms and the problems, these
plots indicate an expected optimization time of O(n2 log n) for ORDER and
MAJORITY, as the solid lines closely resemble constant functions, and the y-
values of the dashed lines are decreasing with increasing values of n. For the
weighted variants, however, the solid lines appear to be slowly rising, indicating
a runtime in Ω(n2 logn) ∩ O(n3), although the runtime is extremely close to
O(n2 logn).

Furthermore, it can be observed that there is a significant time difference, for
SMO-GP-multi, between finding the individual with the optimal fitness value
and finding the entire Pareto front. For SMO-GP-single, this time difference
is negligible, which is the reason why the corresponding orange box plots are
scarcely identifiable behind the red ones.



110 T. Urli, M. Wagner, and F. Neumann

Fig. 2. Shown as box plots is the number of evaluations required: (1) until the individ-
ual Xmax with maximum fitness is found (orange), (2) until the population represents
the entire true Pareto front PPareto (red). The solid line is the median of the latter
number of evaluations divided by n2 log n, the dashed line is it divided by n3.

5 Conclusions

In this paper, we carried out experimental investigations to complement recent
theoretical results on the runtime of two genetic programming algorithms [3, 7].
Crucial measures in these theoretical analyses are the maximum tree size that
is attained during the run of the algorithms, as well as the population size when
dealing with multi-objective models. Furthermore, virtually no theoretical results
for the multi-operation variants are known to date. It is also unknown how tight
the given bounds are. The analysis of our empirical investigations allowed us to
fill in the gaps in the theory with conjectures about the expected optimization
time (see Tables 4 and 5) of these algorithms.

Our experimental evaluation shows that the expected optimization time of
(1+1)-GP F(X) is very close to O(n logn). Our results, however, are based on
an initial tree size, i.e. Tinit, which is always linear in n, and thus the Tinit term
suggested by theoretical results is always dominated by the O(n log n) term.
Nevertheless, it is easy to show that by using arbirarily large initial tree sizes
it is possible to obtain expected optimization times in which the Tinit term is



Experimental Supplements to the Computational Complexity Analysis 111

Table 4. Summary of our conjectures (†) and the existing upper bounds from Table 1

F(X)
(1+1)-GP, F(X) (1+1)-GP, MO-F(X)

k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORDER
O(nTmax) [3] O(nTmax) [3]

O(Tinit + n logn)[7] O(Tinit + n log n) †
O(Tinit + n logn) † O(Tinit + n log n) †

WORDER O(Tinit + n logn) † O(Tinit + n log n) † O(Tinit + n logn)[7] O(Tinit + n logn) †

MAJORITY
O(n2Tmax logn) [3]

O(Tinit + n log n) † O(Tinit + n log n)[7] O(Tinit + n log n) †
O(Tinit + n logn) †

WMAJORITY O(Tinit + n logn) † O(Tinit + n log n) † O(Tinit + n logn)[7] O(Tinit + n logn) †

Table 5. Summary of our conjectures (†) and the existing upper bounds from Table 1

F(X)
SMO-GP, MO-F(X)

k=1 k=1+Pois(1)

ORDER O(nTinit + n2 logn)[7] O(nTinit + n2 logn)[7]

WORDER
O(n3)⋆ [7]

O(nTinit + n2 logn) †
O(nTinit + n2 log n) †

MAJORITY O(nTinit + n2 logn)[7] O(nTinit + n2 logn)[7]

WMAJORITY
O(n3)⋆ [7]

O(nTinit + n2 logn) †
O(nTinit + n2 log n) †

relevant. For this reason we conjecture an expected optimization time ofO(Tinit+
n logn). Following the same reasoning for SMO-GP, we conjecture a runtime of
O
(
nTinit + n2 logn

)
by noting that the observed runtimes are very close to

O(n2 logn) and that the algorithm has to evolve a population of size O(n).
As a further development for this line of research, it would be interesting to

prove these conjectured bounds theoretically and to show how they are related
to maximum population size reached during an optimization run.

References

[1] Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen,
T., Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum,
S., Wegener, I.: Experimental Supplements to the Theoretical Analysis of EAs on
Problems from Combinatorial Optimization. In: Yao, X., Burke, E.K., Lozano, J.A.,
Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A.,
Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 21–30. Springer, Heidelberg
(2004)

[2] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276, 51–81 (2002)

[3] Durrett, G., Neumann, F., O’Reilly, U.-M.: Computational complexity analysis of
simple genetic programing on two problems modeling isolated program semantics.
In: FOGA, pp. 69–80. ACM (2011)



112 T. Urli, M. Wagner, and F. Neumann

[4] Evolved Analytics LLC. DataModeler 8.0. Evolved Analytics LLC (2010)
[5] Goldberg, D.E., O’Reilly, U.-M.: Where Does the Good Stuff Go, and Why? How

Contextual Semantics Influences Program Structure in Simple Genetic Program-
ming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998.
LNCS, vol. 1391, pp. 16–36. Springer, Heidelberg (1998)

[6] Lässig, J., Sudholt, D.: Experimental Supplements to the Theoretical Analysis of
Migration in the Island Model. In: Schaefer, R., Cotta, C., Ko"lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 224–233. Springer, Heidelberg (2010)

[7] Neumann, F.: Computational complexity analysis of multi-objective genetic
programming. In: GECCO. ACM (to be published, 2012); arxiv.org: CoRR
abs/1203.4881

[8] Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
lulu.com (2008)

View publication statsView publication stats

https://www.researchgate.net/publication/262209180

	Experimental Supplements
to the Computational Complexity Analysis of Genetic Programming for Problems Modelling Isolated Program Semantics
	Introduction
	Preliminaries
	Theoretical Results
	Experimental Setup

	(1+1)
--GP
	Tree size
	Runtime

	SMO
--GP
	Tree Size and Population Size
	Runtime

	Conclusions
	References


