
An Adaptive Data Structure for Evolutionary
Multi-Objective Algorithms with Unbounded

Archives
Joseph Yuen, Sophia Gao, Markus Wagner and Frank Neumann

School of Computer Science, The University of Adelaide, Australia

Abstract—Archives have been widely used in evolutionary
multi-objective optimization in order to store the optimal points
found so far during the optimization process. Usually the size of
an archive is bounded which means that the number of points
it can store is limited. This implies that knowledge about the
set of non-dominated solutions that has been obtained during
the optimization process gets lost. Working with unbounded
archives allows to keep this knowledge which can be useful for
the progress of an evolutionary multi-objective algorithm. In this
paper, we propose an adaptive data structure for dealing with
unbounded archives. This data structure allows to traverse the
archive efficiently and can also be used for sampling solutions
from the archive which can be used for reproduction.

Index Terms—Archive, Data Structures, Evolutionary Algo-
rithm, Multi-Objective Optimization

I. INTRODUCTION

Evolutionary algorithms (EAs) have been widely used in
the field of evolutionary multi-objective optimization (EMO)
[3], and is one of the techniques in evolutionary computation
that has seen a wide range of practical applications. In fact,
the use of evolutionary algorithms is particularly well suited
for MOO problems when the goal is not to simply compute a
single solution, but to obtain a diverse set of solutions that that
represents the trade-offs with respect to the given objective
functions. ‘ In general, the population of an EA is rather
small compared to the number of trade-offs that the objective
functions have. In the case of continuous problems, the number
of these trade-offs is usually infinite. For classical combinato-
rial optimization problems such as the computation of multi-
objective shortest paths or multi-objective minimum spanning
trees, the number of trade-offs may grow exponentially with
respect to the dimensionality of the given input (see [6] which
also shows the hardness of these problems).

Archives are frequently used in evolutionary multi-objective
optimization to store a set of non-dominated points that
have been found during the optimization process. One well-
known EMO algorithm is PAES (Pareto-Archived Evolution
Strategy) [10] which uses a grid structure for partitioning the
objective space, similar to a Quad-Tree [7] which recursively
partitions by a factor of 4 as certain regions in the archived
solution space becomes densely populated. Furthermore, the-
oretical studies have investigated the use of archives with
respect to convergence [11, 12] as well as their impact on the
runtime behavior of simple EMO algorithms [8, 9, 14]. All

these studies consider bounded archives and set the number
of partitions of the objective space in advance.

Bounded archives can lose information when its capacity
is reached and the archive is forced to discard some points.
While some research has focused on approaches employed
to preserve a good sample of all visited points (like PAES),
results from benchmark testing AGE cite show that NSGA-II
develops cyclic behaviour when it uses a bounded archive

In this paper, we introduce a new data structure based on
trees that allows to work efficiently with large unbounded
archive sizes in an adaptive way. Recently, an algorithm
called AGE (Approximation Guided EA) [2] working with
unbounded archives has been introduced. This algorithm stores
every non-dominated point found so far and uses the archive
to evaluate the quality of a population by computing its
approximation with respect to the archive. It has been shown
that this algorithm achieves very good results in terms of
ε-approximation for various benchmarks problems and high
dimensions. Our goal is to study how unbounded archives can
be used in a more efficient way to improve the performance
of archive-based algorithms such as AGE.

We propose an Adaptive Objective Space Partitioning Tree
(APT) structure to regionalise the objective space and archive
points in appropriate partitions. This tree structure stores
partitions in its leaf nodes, and the partition size, shape and
location in the objective space is determined by the traversal
path from the root node to the leaf node, which can be
further sub-divided/branched as necessary. Traversing down
the tree structure from the root is equivalent of ’zooming
in’ on a region of the objective space. This is comparable
to the approach of preserving non-dominated solutions using
an Adaptive Grid (AG) Archive in PAES. AG Archive breaks
down the objective space into bisections and adjusts the ranges
and granularity of each grid location based on the points added
to the archive.

However, there are several significant differences between
PAES’s AG Archive and the APT Archive we are introduc-
ing. The ’adaptive’ behavior of the grid archive subdivides
according to the range limits (cut grid into two equally sized
pieces), regardless of how the solutions distribute into the two
new subdivided grid locations. In our tree structure we will
subdivide according to the range values (cut partition into
two pieces each containing equal number of points). PAES
requires each solution in the archive to be represented by

a binary string, which is used to identify the grid location
for comparison and selection, thus it can only perform fixed
number of N-sections. The length of the binary string is 2`·d,
where ` is the number of bisections for each objective and d
is the number of objectives. Considering problems with high
dimensions such a representation is unsuitable even if ` is
small, i.e. 2 or 3. Note that the default value for PAES is ` = 5
which implies a vector of length 25·5 = 225 for problems with
5 dimensions.

In our approach the ’grid location’ of the solutions will
be implied by the tree branching, and thus divisions at each
stage can actually be any number of cuts, which is a lot
more flexible. PAES performs density control by discarding
some points in crowded regions. In our approach we are
not discarding any points thus all non-dominated points are
kept, but the tree structure may be used for the selection
process of an evolutionary algorithm. For example denser
(more crowded) regions can be assigned a lower probability of
being selected from such that it is unlikely that over-crowding
would occur in our APT structure. PAES updates (add and
subdivide grids) has a worst case time of O((a+n)d) where a
is the Archive size, n is the population size and d is the number
of dimensions. The equivalent updates (add and subdivide
partition) we will employ in the APT archive has a worst case
time of O(Dp+plogp), where p is the number of points in the
partition and D is the depth of the tree. Selecting a point from
AG takes O(D · b) and APT archive O(D · b log b), where b is
the number of bi-sections or branches for each objective. This
is important as our Archive is unbounded compared to PAES’s
bounded archive (a = n) but can achieve in the worst case
similar or faster access and update time even as the archive
grows.

We proceed as follows. In Section II, we give an introduce
into archive-based multi-objective optimization. Our adaptive
data structure for dealing with unbounded archives is presented
in Section III. Section IV shows how to use this data structure
to sample points from the archive. We finish with some
conclusions and topics for future work.

II. ARCHIVE-BASED EVOLUTIONARY MULTI-OBJECTIVE
ALGORITHMS

In the case of multi-objective optimization, the fitness
function maps from the search space X to a vector of real
values, i e. f : X → Rk. We consider the case where each of
the d objectives should be maximized. For two search points
x ∈ X and x′ ∈ X , f(x) ≥ f(x′) holds iff fi(x) ≥ fi(x

′),
1 ≤ i ≤ d. In this case, we say that x weakly dominates x′

and write x � x′. A search point x dominates a search point
(x � x′) x′ iff f(x) ≥ f(x′) and f(x) 6= f(x′). In this case x
is considered strictly better than x′. The notion of dominance
and weak dominance transfers to the corresponding objective
vectors. A Pareto optimal search point x is a search point that
is not dominated by any other search point in X . The set of
non-dominated search points is called the Pareto optimal set
and the set of the corresponding objective vectors is called the

Pareto front. The archive preserves all points that belong to
the Pareto front.

Ranking is the process of performing dominance tests
between new candidate solutions with those in the archive
to determine if Pareto front has moved closer to the optimal
Pareto front. This process may involve adding non-dominated
candidate solutions to the archive as well as removing
points in the archive if they are now dominated. To perform
efficient ranking (dominance testing) with a growing archive,
we use internal storage of ranks and a modified ranking
update algorithm (see Algorithm 1) to achieve the same
ranking mechanism as traditional NSGA-II. The archive-
based ranking assumes all points in archive already have
a rank. The ranking mechanism itself is broken down into
four steps to assimilate the offspring solutions into the archive.

1) The current rank of archive points are placed in tem-
porarily storage. This will be used later for deciding
where to move points from if they have new ranks. This
is an O(A) operation, as each archive point is accessed
once at this step.

2) Compare offsprings with archive points one at a time.
Once an offspring’s rank is determined with respect to
archive, it is added into the archive before the next
offspring is ranked. If an offspring dominates an archive
point, the archive point loses a rank, and vise versa. The
runtime complexity of this step is O(λ ·A), where λ is
the number of offsprings generated at each iteration, and
A is the archive.

3) Move each archive point that changed rank during Step
2 to its new front. The runtime complexity of this step
is O(M), where M is the number of archive points that
needs to be repositioned. In the worst case, all archive
points need to be moved and so the worst case runtime
complexity of this step is O(A).

4) Determine which archive points to discard. As men-
tioned, there is no archive size limit, however we retain
only non-dominated solutions and additional points (if
necessary) to form a complete parent population. So we
keep the non-dominated fronts plus enough fronts to
reach population size, then discard all other dominated
fronts. The worst case complexity of this step is O(f),
where f is the number of fronts that should be discarded.
This step is mostly used to keep the archive as small as
practically possible without throwing away any points
potentially belonging to the Pareto-optimal front.

Overall, the expected runtime complexity of Algorithm 1 is
O((λ+ 1) ·A+ f). The runtime is dominated by the size of
the archive and its impact will be more apparent for higher
dimension problems as majority of the archive will be made
up of non-dominated solutions (which won’t be discarded).

However, by having internal storage of existing ranks,
no redundant calculations are performed as would had been
necessary if the entire archive had to recalculate rank each
time, which otherwise would have a complexity of O(A2).

We expect that using an Archive with ranking will cause the
runtime to increase, but since all non-dominated points are
kept, overall performance in terms of approximation should
improve when using the same selection mechanism for any
equal number of iterations. Making use of such an archive
which includes for each non-dominated objective vector seen
so far is the key idea for AGE [2]. The unbounded archive
captures in some sense the whole knowledge about the as-
sumed Pareto front and does not loose this information as in
the case of bounded archives.

Algorithm 1: Ranking update
1: Input: A - Archive, O - Offsprings, F - Fronts, µ -

population size
2: Output: Y - points to Discard
3: Initialize empty set M (holds points that needs

repositioning later)
4: Initialize Map old ranks (ranks of points before they

were updated)
5: Y ← ∅
6: for P ∈M do
7: old ranks← old ranks ∪ P.rank;
8: end for
9: for P ∈ O do

10: P.rank ← 0;
11: old ranks[0]← P ;
12: for Q ∈ A do
13: if P ≺ Q then
14: P.rank++; Q.rank–;
15: else if P � Q then
16: Q.rank++; P.rank–;
17: end if
18: if Q.rank 6= old rank(P) && Q /∈M then
19: M ←M ∪Q
20: end if
21: end for
22: if P.rank != old rank(P) then
23: M ←M ∪ P
24: end if
25: end for
26: for P ∈M do
27: i← old ranks(P)
28: remove P from front i
29: add P to front P.rank
30: end for
31: archive size = Front(0).size()
32: for f ∈ F do
33: if archive size > µ then
34: Y ← Y ∪ f
35: else
36: archive size = archive size+ f.size()
37: end if
38: end for
39: return Y

III. ADAPTIVE TREE STRUCTURE

The idea of breaking down the archive into grids for regional
density analysis has been considered before, but mostly in the
context of a fixed-size archive stored as a List of sorts. Below
are the two most popular Archiving data structures:
• Linear Lists. Due to its simplicity in implementation and

use, a simple List is a popular choice for MOEAs with
elitism. This is most commonly used by SPEA [16].

• Adaptive Grid. breaks up the objective space into n-
section hypergrids, where n is the number of equally
sliced sub-regions each time an insert triggers a subdivi-
sion occurs. PAES [10] and some extensions of NSGA-II
[4] uses Adaptive Grid archives. A quad-tree is a special
type of Adaptive Grid.

Table below shows a quick comparison of runtime com-
plexity using different non-dominated Archive structures for
the basic two operations: insert into archive with dominance
check/update, and select (when choosing next generation of
parents). Let A be the Archive size, µ be the offspring
population size and d be the dimensionality of the objective
space.

Archive type Insert with Update Select
Linear List O(d ·A · µ)[1] O(|A|)[1]
Adaptive Grid O((A+ µ) · d · µ)[10] O(d · µ)[10]

The majority of archived-based MOEAs use bounded
archives [13], and the general focus of different types of
archives is effective elite-preservation given the limited stor-
age. They usually set the number of partitions in advance,
and adaptive algorithms such as PAES [10] only adapt the
ranges for the partitions in the objective space. As a result,
existing gridding (even adaptive) and selection approaches in
EAs are designed for overall balance in spatial distribution
of archive points rather than to aid effective exploring and
pushing of the approximated Pareto front to the Pareto-optimal
front, especially in higher dimensions.

Before we start describing the structure we introduce some
definitions.
• For a tree representing an archive in a d-dimensional

objective space, the base tree contains the nodes residing
in first d levels. This excludes any leaf nodes that has been
sub-divided (which leads to further branching beneath
that leaf node).

• A partition is a subset of the archive where solutions
belonging in this subset resides in the same spatial
region of the objective space based on the bounds of the
partition. Partitions are stored at leaf nodes of the tree.

• The branching factor determines how many branches
are to be created when subdividing and as a result the
objective value ranges (bounds) that are set for each
branch node.

• the partition threshold determines the maximum number
of archive points that can be stored in any given partition.
If this threshold is breached the corresponding partition
will be sub-divided into smaller partitions.

Figure 1: Example of partitioning archive in 2-d objective space
(objectives x and y)

• A tree node is considered active if there is at least one
archive point residing in a partition at or below itself. All
other nodes are considered inactive (e.g. inactive branch
nodes may have been created if branching occured to add
a solution into a new partition).

• The density of an active node (branch or leaf) is
calculated here as the number of archive points at or
beneath this node (may include multiple partitions)
divided by its objective value range. This density value
is used in the population selection process.

A. General Tree Structure

Initially, each level of the base tree represents one dimension
of the objective space, and each branch node represents a value
range corresponding to the objective at that level. Thus, a
MOO problem with d objectives, the main tree will have d
levels, where the branch nodes in tree level i corresponds to
objective i. The branching factor and partition threshold will
affect the eventual sizes and number of partitions there will
be in the tree-structured archive. However when subdivision
occurs at the deepest level of the base tree, it could change
the objective to divide upon if deemed necessary, although the
leaf nodes must be grown beneath the base tree.

Figure 1 shows an example of a partitioned archive and
Figure 2 a corresponding APT representation. The first level
of the tree is branched based on the objective x, and the second
level of the tree is branched based on objective y. See table
of Figure 2 for more information regarding each node.

Each node on the tree is filled with information such as
its type (branch, leaf or inactive), its objective value range,
the objective used to determine branching from this node, its

Figure 3: Adding a point to the archive from Figure 1 causing
subdivision on the dimension with widest distribution (in this case,
y). The number of sub-partitions created by this process is the same
as the branching factor.

Figure 5: Given the distribution of points within the example
partition, a subdivision over objective x is preferred as there are
larger gaps over the x values than y

density value and the number of points that are beneath it.
Branch nodes can access its parent and child nodes, and leaf
nodes store the partition (set of solutions in this objective space
region). Self-contained nodes allows for faster access time
for adding, removing, subdividing and selecting points since
required information is always immediately available during a
tree traversal.

At the beginning the tree (archive) is empty, and so the APT
structure only consists of the root node (initially inactive, in
charge of objective 0). Branches are only grown on a needs
basis, usually as a result of adding a new point to the archive.

As the range of possible values for each objective of
solutions is unknown at the beginning of the algorithm, a
default global range of -10.0 to 10.0 is used on each objective
when setting up the base tree, and if any offspring solutions
presents an objective value outside this range, the branch
range nearest to its value will be widened to accommodate
it. Since branches can be expanded on-demand, the initial
branch ranges is inconsequential.

B. Subdividing partitions

When a partition contains more points than the allowed
threshold, it is forced to subdivide its partition into smaller

Figure 2: The adaptive tree representation for the partitioned archive from Figure 1. Branch factor is 2, and Partition Threshold is 5.

Figure 4: Updated tree structure on Figure 3. Changes are highlighted in red.

partitions using Algorithm 2. In higher dimensions it is very
likely to end up with too many partitions, so during each
partitioning, subdivision is performed using only the objective
with the widest distribution of values.

To determine which objective value has the widest dis-
tribution for the given set of points in the partition, the
standard deviation is calculated for each objective value set,
and the objective with highest deviation is chosen as the one to
subdivide along (see Figure 5 for example). Then the partitions
are sorted and evenly grouped by that objective value to form
their prospective new partitions. The new value ranges are
set using the midpoints between the upper/lower values of
adjacent sub-groups.

The most time-consuming part of the subdivision algorithm
is determining the standard deviation of each objective value in
the partition and sorting partitiong by those objective values,
which takes O(p × (1 + logp)) for each dimension of the
objective space. As such, runtime complexity of adding a
solution to an existing partitiong and breaching threshold using
this strategy is O(d · (p+ plogp)), where d is the depth of the

tree and p is the number of points in partition.

C. Adding and removing solutions

Algorithm 3 shows how to add a solution to the archive.
Adding and removing solutions from the archive is as

follows. Each active branch node stores an ordered list of links
to branches or leaves directly beneath it, and stores information
such as the objective (dimension) its range values are based
on, as well as its own value range for which it will accept
points from the branch above itself. Starting from the root
node of the tree, the new point is passed down the branches
of the tree until it reaches the leaf node it belongs in, and each
leaf node stores the partition of points represents a particular
region of the objective space.

While traversing, the current branch node will check the
relevant objective value of the solution. If value is outside the
current branch ranges, the accepting range of the appropriate
branch is increased and the point is passed to that branch.
Otherwise the point is passed to the branch with an objective
value in its accepting range. If point is being added to an

Algorithm 2: Subdividing overfull partition
1: Input: n - node to be subdivided
2: best← 0
3: for O ← 1 to no of objectives do
4: tmp← standard deviation of objective O values in

partition
5: if tmp > best then
6: best = tmp
7: end if
8: end for
9: set n to branch node, and branching objective to best

10: go up parents to get current value range of objective best
11: create leaf nodes beneath n
12: sort solutions by objective value best
13: group solutions into partition.size/branch factor

groups
14: set branch ranges to midpoints between group ends
15: for b ∈ leaves do
16: add corresponding group of solutions to b
17: end for
18: update node info for n
19: return

inactive branch, that branch will be flagged active and its
branches and leaves will be grown according to the objective
it will be in charge of. If adding a leaf causes the partition
to breach the allowed threshold, the leaf will subdivide itself
(see Algorithm 2).

Note that even with the expanding of branch ranges and
subdivision occuring, no two partitions will ever overlap in
the objective space. This is because the need to increase range
only occurs on the global minimum and maximum values (i.e.
left-most and right-most value ranges for each objective). Also,
subdividing occurs within the existing partition space, and any
sub-divided partitions will never expand its range unless it is
the left-most or right-most range for the objective it is dividing
over. Thus, there is never any ambiguity on which partition a
point belongs in.

Runtime complexity of adding a solution to a new partition
is O(D·b), where D is the depth of the tree and b is the number
of branches checked at each node traversed. In the worst case,
we could have a skewed tree where all points are added to
the right-most branch (branches are checked left to right), and
tree grows very deep in that direction. In this worst case, d =
archiveSize/partition threshold and b = branch factor.
Thus adding N new points to the tree will take no worse than
O(N · (A/t) · f ·O(D · p+ p log p)) time, where A is size of
the archive, t is the partition threshold, and f is branch factor,
and we assume there is need for subdivision of the partition
the point is added to. However subdivision only occurs once
when the threshold is breached, thus if we assume that N < t,
the worst case becomes O(N · (A/t) · f +O(D · p+ p log p))

Removing points is much simpler, as the traversal path
down to the corresponding partition will again be determined

Algorithm 3: Adding solution to Adaptive Objective
Space Partitioning Tree

1: Input: n - node of tree, s - new solution
2: Output: boolean
3: if n is a leaf node then
4: add s to n.partition
5: if partition.size > threshold then
6: subdivide(n);
7: end if
8: return true
9: else if n is a branch node then

10: i← n.objective id
11: if s.obj(i).value < objMin(i) then
12: objMin(i) = s.obj(i).value
13: update left-most branch’s range
14: end if
15: if s.obj(i).value > objMax(i) then
16: objMax(i) = s.obj(i).value
17: update right-most branch’s range
18: end if
19: for b ∈ n.branches do
20: if s.obj(i).value <= b.upperLimit &

s.obj(i).value > b.lowerlimit then
21: addToAPTArchive(b, s)
22: update node info if add was successful
23: end if
24: end for
25: else
26: create branches and add to corresponding branch
27: end if

by its objective values. If the to-be-removed point does not
exist in the tree, it will not affect the tree structure. As
removing points from the archive will never cause partitions
to subdivide, the worst case complexity of removing a point
on the worst case tree is O((A/t) · f).

IV. SELECTION BASED ON TREE STRUCTURE

Different variants for selecting a point based on the tree
structure are possible as different type of information can be
stored at the nodes of the tree. These points could for example
be used to produce offspring in the next iteration.

In the following, we present two approaches based on a
measure of density. The notion of density is very common
in evolutionary multi-objective algorithms (see for example
NSGA-II [5] and SPEA2 [15]) and it seems to be useful make
use of density information when traversing the tree structure.
When traversing down the APT structure to select a point, we
prefer to take branches (representing objective space regions)
with lower density. To select a parent population from the
APT archive we will need to traverse the tree once for each
point, and because we favor less dense regions, more points
will probably be selected from them.

Algorithm 4: selectPoint
1: if node is a leaf && partition.size() > 0 then
2: randomly select one point from partition
3: return point
4: end if
5: branch arr ← ∅
6: for b ∈ branches do
7: branch arr ← branch arr ∪ b
8: end for
9: sort ascending branch arr by density

10: i = 0
11: while branch not chosen && i < branches.size− 1 do
12: select branch arr(i) with probability p
13: if branch chosen, break loop
14: i++
15: end while
16: if branch not chosen then
17: chosen branch = densest branch
18: end if
19: return chosen branch.selectPoint()

The simplest approach based on density is density-strict
selection. This requires that at each level the branch with the
lowest density is chosen. Where multiple branches have the
same density value, the path less travelled is chosen. This
option allows for even greater focus on the sparse regions, but
remains fair due to the incremental nature of the archive. Once
sufficient points are explored in the least dense regions it will
no longer be least dense and the next least dense partition will
become preferred.

A. Density-probability selection

In the following, we present a density-probability approach
to select point from the archive. We store at each node of the
tree the number of points that belong to this interval of the
tree. Based on the number of points that are in an interval
its density is determined. An example algorithm for selecting
a point from the archive is outlined in Algorithm 4. We sort
each branch based on its density. Then we select the least
dense branch with probability 1/p, or second least dense
branch with probability (1−1/p) · (1/p), the third least dense
branch with probability (1 − 1/p)2 · (1/p), etc (0 < p < 1).
And once we reach a leaf node we randomly select a point
from that partition. Using this method all partitions have a
chance of being selected, but points in less explored regions
of the objective space will definitely be preferred. Selecting p
is very important as it will determine the degree of focus in
our selection. If p is large, the focus is greater, and vice versa.
The runtime complexity of density-probability selection is
O(D · f log f), where D is the depth of the tree and f is the
branching factor.

Comparing the runtime complexity of the Adaptive Tree
structure with other existing structures, Adaptive Tree has

better worst case runtime performance than Archive structures
currently preferred by state-of-the-art EAs and is expected to
scale particularly well for higher dimensions.

Archive type Insert with Update Select
Linear List O(d ·A · µ)[1] O(|A|)[1]
Adaptive Grid O((A+ µ) · d · µ)[10] O(d · µ)[10]
Adaptive Tree O(µ · (At) · f + d · p log p) O(d · f log f)

CONCLUSIONS

Archives have been frequently used in evolutionary multi-
objective optimization. They are usually used to store a set of
non-dominated objective vectors. There are different methods
for partitioning the objective space but they are all non-
adaptive with respect to the number of partitions. Furthermore,
the size of an archive is often bounded.

The benefit of unbounded archives has been recently shown
by the success of the algorithm AGE proposed in [2] and it
is desirable to have efficient data structures for unbounded
archives. With this paper, we have introduced a new adaptive
data structure that can be used in such algorithms. It is based
on a tree structure that partitions the objective space in an
adaptive way that depends on the set of points stored so
far. We have shown that various operations such as insertion,
deletion and selection based on density measures are efficiently
supported. In the future, we are planning to integrate this new
data structure into archive-based multi-objective evolutionary
algorithms such as AGE.

BIBLIOGRAPHY

[1] Quad-trees: A data structure for storing pareto sets
in multiobjective evolutionary algorithms with elitism.
Evolutionary Multiobjective Optimization, pages 81–104,
2005.

[2] K. Bringmann, T. Friedrich, F. Neumann, and M. Wag-
ner. Approximation-guided evolutionary multi-objective
optimization. In Proceedings of 21nd International
Joint Conference on Artificial Intelligence (IJCAI 2011),
pages 1198–1203, Barcelona, Spain, 16-22 July 2011.
IJCAI/AAAI.

[3] K. Deb. Multi-objective optimization using evolutionary
algorithms. Wiley, 2001.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: NSGA–
II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, Apr. 2002.

[5] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions Evolutionary Computation, 6(2):182–
197, 2002.

[6] M. Ehrgott. Multicriteria optimization. Berlin, Springer,
2nd edition, 2005.

[7] R. Finkel and J. Bentley. Quad Trees: A Data Structure
for Retrieval on Composite Keys. Springer, 1974.

[8] C. Horoba. Analysis of a simple evolutionary algorithm
for the multiobjective shortest path problem. In I. I.

Garibay, T. Jansen, R. P. Wiegand, and A. S. Wu, ed-
itors, Proceedings of Foundations of Genetic Algorithms
(FOGA X), pages 113–120. ACM, 2009.

[9] C. Horoba and F. Neumann. Benefits and drawbacks
for the use of epsilon-dominance in evolutionary multi-
objective optimization. In C. Ryan and M. Keijzer,
editors, Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO 2008), pages 641–648.
ACM, 2008.

[10] J. D. Knowles and D. Corne. Approximating the
nondominated front using the pareto archived evolution
strategy. Evolutionary Computation, 8(2):149–172, 2000.

[11] J. D. Knowles and D. Corne. Properties of an adaptive
archiving algorithm for storing nondominated vectors.
IEEE Transactions Evolutionary Computation, 7(2):100–
116, 2003.

[12] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combin-
ing convergence and diversity in evolutionary multiobjec-
tive optimization. Evolutionary Computation, 10(3):263–
282, 2002.

[13] M. López-Ibáñez, J. Knowles, and M. Laumanns. On
sequential online archiving of objective vectors. In
R. H. C. Takahashi, K. Deb, E. F. Wanner, and S. Greco,
editors, Proceedings of Evolutionary Multi-criterion Op-
timization (EMO 2011), volume 6576 of Lecture Notes
in Computer Science, pages 46–60. Springer, 2011.

[14] F. Neumann and J. Reichel. Approximating minimum
multicuts by evolutionary multi-objective algorithms. In
Proceedings of Parallel Problem Solving from Nature X
(PPSN ’08), volume 5199 of Lecture Notes in Computer
Science, pages 72–81. Springer, 2008.

[15] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Im-
proving the strength Pareto evolutionary algorithm for
multiobjective optimization. In Proceedings of Evolution-
ary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001),
pages 95–100, 2002.

[16] E. Zitzler and L. Thiele, editors. Multiobjective evolu-
tionary algorithms: A comparative case study and the
strength pareto approach. IEEE.

