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ABSTRACT
With this paper, we contribute to the understanding of ant
colony optimization (ACO) algorithms by formally analyz-
ing their runtime behavior. We study simple MAX-MIN ant
systems on the class of linear pseudo-Boolean functions de-
fined on binary strings of length n. Our investigations point
out how the progress according to function values is stored
in the pheromones. We provide a general upper bound of
O((n3 logn)/ρ) on the running time for two ACO variants
on all linear functions, where ρ determines the pheromone
update strength. Furthermore, we show improved bounds
for two well-known linear pseudo-Boolean functions called
OneMax and BinVal and give additional insights using an
experimental study.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Performance, Theory

Keywords
Ant colony optimization, MMAS, runtime analysis, pseudo-
Boolean optimization, theory

1. INTRODUCTION
Ant colony optimization (ACO) is an important class of

stochastic search algorithms that has found many applica-
tions in combinatorial optimization as well as for stochastic
and dynamic problems [5]. The basic idea behind ACO is
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that ants construct new solutions for a given problem by car-
rying out random walks on a so-called construction graph.
These random walks are influenced by the pheromone val-
ues that are stored along the edges of the graph. During
the optimization process the pheromone values are updated
according to good solutions found during the optimization
which should lead to better solutions in further steps of the
algorithm.

Building up a theoretical foundation of this kind of algo-
rithms is a challenging task as these algorithms heavily rely
on random decisions. The construction of new solutions de-
pends on the current pheromone situation in the used system
which varies highly during the optimization run. Capturing
the theoretical properties of the pheromone constellation is
a hard task but very important to gain new theoretical in-
sights into the optimization process of ACO algorithms.

With this paper, we contribute to the theoretical under-
standing of ACO algorithms. Our goal is to gain new in-
sights into the optimization process of these algorithms by
studying them on the class of linear pseudo-Boolean func-
tions. There are investigations of different depths on the
behavior of simple evolutionary algorithms for this class of
functions. The main result shows that each linear pseudo-
Boolean function is optimized in expected time O(n logn)
by the well known (1+1) EA [7, 10, 11]. Furthermore,
estimation-of-distribution algorithms have been analyzed
and compared to evolutionary algorithms [6, 2, 1].

With respect to ACO algorithms, initial results on sim-
plified versions of the MAX-MIN ant system [18] have been
obtained. These studies deal with specific pseudo-Boolean
functions defined on binary strings of length n. Such stud-
ies are primarily focused on well-known linear example func-
tions called OneMax and BinVal or the function Leading-
Ones [16, 9, 4, 14, 15]. Recently, some results on the run-
ning time of ACO algorithms on combinatorial optimiza-
tion problems such as minimum spanning trees [17] or the
traveling salesman [13] have been obtained. These analyses
assume that the pheromone bounds are attained in each iter-
ation of the algorithms. This is the case if a MAX-MIN ant
system uses an aggressive pheromone update which forces
the pheromone only to take on the maximum and minimum
value. The analyses presented in [17] and [13] do not carry
over to less aggressive pheromone updates. In particular,



there are no corresponding polynomial upper bounds if the
number of different function values is exponential with re-
spect to the given input size.

We provide new insights into the optimization of MAX-
MIN ant systems for smaller pheromone updates on func-
tions that may attain exponentially many functions values.
Our study investigates simplified versions of the MAX-MIN
ant system called MMAS* and MMAS [14] on linear pseudo-
Boolean functions with non-zero weights. For these algo-
rithms, general upper bounds of O((n + (logn)/ρ)D) and
O(((n2 logn)/ρ)D) respectively, have been provided for the
running time on unimodal functions attaining D different
function values [14]. As linear pseudo-Boolean function are
unimodal, these bounds carry over to this class of functions.
However, they only give weak bounds for linear pseudo-
Boolean functions attaining many function values (e. g. for
functions where the number of different function values is
exponential in n).

We show an upper bound of O((n3 logn)/ρ) for MMAS*
and MMAS optimizing any linear pseudo-Boolean function.
Furthermore, our studies show that the method of fitness-
based partitions may also be used according to pheromone
values as MAX-MIN ant systems quickly store knowledge
about high-fitness solutions in the pheromone values. This is
one of the key observations that we use for our more detailed
analyses on OneMax and BinVal in which we improve the
results presented in [14].

To provide further insights that are not captured by our
theoretical analyses, we carry out an experimental study.
Our experimental investigations give comparisons to simple
evolutionary algorithms, and consider the impact of the cho-
sen weights of the linear functions and pheromone update
strength with respect to the optimization time. One key
observation of these studies is that OneMax is not the sim-
plest linear function for the simple MAX-MIN ant systems
under investigation. Additionally, the studies indicate that
the runtime grows at most linearly with 1/ρ for a fixed value
of n.

We proceed as follows. In Section 2, we introduce the
simplified MAX-MIN ant systems that will be investigated
in the following. In Section 3, we provide general runtime
bounds for the class of linear pseudo-Boolean functions. We
present specific results for OneMax and BinVal in Sec-
tion 4. Our experimental study which provides further in-
sights is reported in Section 5. Finally, we discuss our results
and finish with some concluding remarks.

2. SIMPLIFIED MAX-MIN ANT SYSTEMS
We first describe the simplified MAX-MIN ant systems

that will be investigated in the sequel. The following con-
struction graph is used to construct solutions for pseudo-
Boolean optimization, i. e., bit strings of n bits. It is based
on a directed multigraph C = (V,E). In addition to a start
node v0, there is a node vi for every bit i, 1 ≤ i ≤ n. This
node can be reached from vi−1 by two edges. The edge ei,1
corresponds to setting bit i to 1, while ei,0 corresponds to
setting bit i to 0. The former edge is also called a 1-edge,
the latter is called 0-edge. An example of a construction
graph for n = 5 is shown in Figure 1.

In a solution construction process an artificial ant se-
quentially traverses the nodes v0, v1, . . . , vn. The decision
which edge to take is made according to pheromones on
the edges. Formally, we denote pheromones by a function

τ : E → R+
0 . From vi−1 the edge ei,1 is then taken with

probability τ(ei,1)/(τ(ei,0)+τ(ei,1)). In the case of our con-
struction graph, we identify the path taken by the ant with
a corresponding binary solution x as described above and
denote the path by P (x).

All ACO algorithms considered here start with an equal
amount of pheromone on all edges: τ(ei,0) = τ(ei,1) = 1/2.
Moreover, we ensure that τ(ei,0) + τ(ei,1) = 1 holds, i. e.,
pheromones for one bit always sum up to 1. This im-
plies that the probability of taking a specific edge equals its
pheromone value; in other words, pheromones and traversal
probabilities coincide.

Given a solution x and a path P (x) of edges that have
been chosen in the creation of x, a pheromone update with
respect to x is performed as follows. First, a ρ-fraction of
all pheromones evaporates and a (1 − ρ)-fraction remains.
Next, some pheromone is added to edges that are part of
the path P (x) of x. To prevent pheromones from dropping
to arbitrarily small values, we follow the MAX-MIN ant sys-
tem by Stützle and Hoos [18] and restrict all pheromones
to a bounded interval. The precise interval is chosen as
[1/n, 1− 1/n]. This choice is inspired by standard muta-
tions in evolutionary computation where for every bit an
evolutionary algorithm has a probability of 1/n of flipping a
bit and hence potentially reverting a “wrong” decision made
for a bit.

Depending on whether an edge e is contained in the
path P (x) of the solution x, the pheromone values τ are
updated to τ ′ as follows:

τ ′(e) = min

{
(1− ρ) · τ(e) + ρ, 1− 1

n

}
if e ∈ P (x) and

τ ′(e) =max

{
(1− ρ) · τ(e),

1

n

}
if e /∈ P (x).

The algorithm MMAS now works as follows. It records the
best solution found so far, known as best-so-far solution. It
repeatedly constructs a new solution. This solution is then
compared against the current best-so-far and it replaces the
previous best-so-far if the objective value of the new solution
is not worse. Finally, the pheromones are updated with
respect to the best-so-far solution. A formal description is
given in Algorithm 1.

Note that when a worse solution is constructed then the
old best-so-far solution is reinforced again. In case no im-
provement is found for some time, this means that the
same solution x∗ is reinforced over and over again and the
pheromones move towards the respective borders in x∗. Pre-
vious studies [9] have shown that after (lnn)/ρ iterations of
reinforcing the same solution all pheromones have reached
their respective borders; this time is often called “freezing
time” [14] (see also Lemma 1).

Algorithm 1 MMAS

1: Set τ(u,v) = 1/2 for all (u, v) ∈ E.
2: Construct a solution x∗.
3: Update pheromones w. r. t. x∗.
4: repeat forever
5: Construct a solution x.
6: if f(x) ≥ f(x∗) then x∗ := x.
7: Update pheromones w. r. t. x∗.

We also consider a variant of MMAS known as
MMAS* [14] (see Algorithm 2). The only difference is that
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Figure 1: Construction graph for pseudo-Boolean optimization with n = 5 bits.

the best-so-far solution is only changed in case the new so-
lution is strictly better. This kind of strategy is often used
in applications of ACO. However, in [14] it was argued that
MMAS works better on functions with plateaus as MMAS
is able to perform a random walk on equally fit solutions.

Algorithm 2 MMAS*

1: Set τ(u,v) = 1/2 for all (u, v) ∈ E.
2: Construct a solution x∗.
3: Update pheromones w. r. t. x∗.
4: repeat forever
5: Construct a solution x.
6: if f(x) > f(x∗) then x∗ := x.
7: Update pheromones w. r. t. x∗.

In the following we analyze the performance of MMAS
and MMAS* on linear functions. We are interested in the
number of iterations of the main loop of the algorithms until
the first global optimum is found. This time is commonly
called the optimization time. In our setting this time equals
the number of function evaluations.

Note that the pheromones on the 1-edges ei,1 suffice to de-
scribe all pheromones as τ(ei,0) + τ(ei,1) = 1. When speak-
ing of pheromones, we therefore often focus on pheromones
on 1-edges.

3. GENERAL RESULTS
We first derive general upper bounds on the expected op-

timization time of MMAS and MMAS* on linear pseudo-
Boolean functions. A linear pseudo-Boolean function for an
input vector x = (x1, . . . , xn) is a function f : {0, 1}n 7→ R,
with f(x) =

∑n
i=1 wixi and weights wi ∈ R. We only con-

sider positive weights since a function with a negative weight
wi may be transformed into a function with a positive weight
w′i = −wi by exchanging the meaning of bit values 0 and
1 for bit i. This results in a function whose value is by an
additive term of w′i larger. This and exchanging bit values
does not impact the behavior of our algorithms. We also
exclude weights of 0 as these bits do not contribute to the
fitness. Finally, in this section we assume without loss of
generality that the weights are ordered according to their
values: w1 ≥ w2 ≥ . . . ≥ wn.

Two well-known linear functions are the function One-
Max where w1 = w2 = · · · = wn = 1 and the function
BinVal where wi = 2n−i. These functions represent two
extremes: for OneMax all bits are of equal importance,
while in BinVal a bit at position i can dominate all bits at
positions i+ 1, . . . , n.

3.1 Analysis Using Fitness-based Partitions
We exploit a similarity between MMAS, MMAS* and evo-

lutionary algorithms to obtain a first upper bound. We use

the method of fitness-based partitions, also called fitness-
level method, to estimate the expected optimization time.
This method has originally been introduced for the analysis
of elitist evolutionary algorithms (see, e. g., Wegener [20])
where the fitness of the current search point can never de-
crease. The idea is to partition the search space into sets
A1, . . . , Am that are ordered with respect to fitness. For-
mally, we require that for all 1 ≤ i ≤ m− 1 all search points
in Ai have a strictly lower fitness than all search points in
Ai+1. In addition, Am must contain all global optima.

Now, if si is (a lower bound on) the probability of dis-
covering a new search point in Ai+1 ∪ · · · ∪ Am, given that
the current best solution is in Ai, the expected optimization
time is bounded by

∑m−1
i=1 1/si as 1/si is (an upper bound

on) the expected time until fitness level i is left and each
fitness level has to be left at most once.

Gutjahr and Sebastiani [9] as well as Neumann, Sudholt,
and Witt [14] have adapted this method for MMAS*. If
the algorithm does not find a better search point for some
time, the same solution x∗ is reinforced over and over again,
until eventually all pheromones attain their borders corre-
sponding to the bit values in x∗. This happens after at
most (lnn)/ρ iterations (see [9, 14] or Lemma 1). We say
that then all pheromones are saturated. In this setting the
solution creation process of MMAS* equals a standard bit
mutation of x∗ in an evolutionary algorithm. If si is (a lower
bound on) the probability that the a mutation of x∗ creates a
search point in Ai+1∪· · ·∪Am, then the expected time until
MMAS* leaves fitness level Ai is bounded by (lnn)/ρ+1/si
as either the algorithm manages to find an improvement be-
fore the pheromones saturate or the pheromones saturate
and the probability of finding an improvement is at least si.
This results in an upper bound of m · (lnn)/ρ+

∑m−1
i=1 1/si

for MMAS*.
One restriction of this method is, however, that fitness

levels are only allowed to contain a single fitness value; in
the above bound m must equal the number of different fit-
ness values. Without this condition—when a fitness level
contains multiple fitness values—MMAS* may repeatedly
exchange the current best-so-far solution within a fitness
level. This can prevent the pheromones from saturating, so
that the above argument breaks down. For this reason, all
upper bounds in [14] grow at least linearly in the number of
function values.

The following lemma gives an explanation for the time
bound (lnn)/ρ for saturating pheromones (recall that this
time is also called freezing time). We present a formulation
that holds for arbitrary sets of bits. Though we do not
make use of the larger generality, this lemma may be of
independent interest.

Lemma 1. Given an index set I ⊆ {1, . . . , n} we say that
a bit is in I if its index is in I. Let x∗ be the current best-



so-far solution of MMAS or MMAS* optimizing an arbi-
trary function. After (lnn)/ρ further iterations either all
pheromones corresponding to bits in I have reached their re-
spective bounds in {1/n, 1− 1/n} or x∗ has been replaced by
some search point x∗∗ with f(x∗∗) ≥ f(x∗) for MMAS and
f(x∗∗) > f(x∗) for MMAS* such that x∗∗ differs from x∗ in
at least one bit in I.

Proof. Assume the bit values of the bits in I remain
fixed in the current best-so-far solution for (lnn)/ρ iterations
as otherwise there is nothing to prove. In this case for every
bit x∗i with i ∈ I the same bit value x∗i has been reinforced
for (lnn)/ρ iterations. This implies that for the edge in
the construction graph representing the opposite bit value
the lower pheromone border 1/n has been reached, as for
any initial pheromone 0 ≤ τi ≤ 1 on this edge we have
(1− ρ)(lnn)/ρτi ≤ e− lnnτi ≤ 1/n.

So far, the best known general upper bounds for MMAS
and MMAS* that apply to every linear function are
O((n2 logn)/ρ · 2n) and O((logn)/ρ · 2n), respectively, fol-
lowing from upper bounds for unimodal functions [14]. The
term 2n results from the fact that in the worst case a lin-
ear function has 2n different function values. This is the
case, for instance, for the function BinVal. An exponential
upper bound for linear functions is, of course, unsatisfac-
tory. The following theorem establishes a polynomial upper
bound (with respect to n and 1/ρ) for both algorithms.

Theorem 2. The expected optimization time of MMAS
and MMAS* on every linear function is in O((n3 logn)/ρ).

Proof. The proof is an application of the above-
described fitness-based partitions method. In the first step,
we consider the time needed to sample a solution which is
at least on the next higher fitness level. We analyze the
two situations when the pheromones are either saturated or
not. Our upper bound is the result of the repetition of such
advancing steps between fitness levels.

Following Wegener [19], we define the fitness levels
A0, . . . , An with

Ai =

{
x ∈ {0, 1}n

∣∣∣∣∣
i∑

j=1

wj ≤ f(x) <

i+1∑
j=1

wj

}

for 0 ≤ i ≤ n − 1 and An := {1n}. Recall that
∑i
j=1 wj

is the sum of the i largest weights. Since the weights are
non-decreasing, a solution x is at least on fitness level Ai if
the leftmost i bits have value 1.

The expected time spent sampling solutions on fitness
level Ai (i. e., without sampling a solution of a higher fit-
ness level) is the sum of the time spent in Ai with saturated
pheromone values and the time spent in Ai with unsatu-
rated pheromone values. In the following, we analyze for
both situations the probabilities to sample a solution of a
higher fitness level. In the end, as MMAS and MMAS*
might not remain in one of both situations exclusively, but
alternates between situations of saturated and unsaturated
pheromone values, we take the sum of both run times as an
upper bound.

First, when the pheromone values are saturated, the prob-
ability of setting the leftmost zero and keeping all other bits
as in the best-so-far solution is 1/n ·(1−1/n)n−1 ≥ 1/n ·1/e,
as (1 − 1/n)n−1 ≥ 1/e ≥ (1 − 1/n)n holds for all n ∈ N.
This results in a probability of Ω(1/n) of advancing in such

a situation. Thus, after an expected number of O(n) steps
with saturated pheromone values, the algorithm will sample
a solution on a higher fitness level.

For the second case, when the pheromone values are not
saturated, let i < n, and suppose x∗ ∈ Ai is the current
best solution. Our argument is intuitively as follows. If we
don’t find solutions with better fitness while unsaturated,
then we will be saturated after at most (lnn)/ρ steps. Oth-
erwise, we either make a good or a bad improvement: a good
improvement gets the EA to a higher fitness level; a bad im-
provement is an improvement which does not go to a higher
fitness level. This latter case is bad, since it prevents the
pheromones from getting saturated, and we cannot quantify
progress in this case. We will show that good improvements
are at least 1/n2 times as likely as bad ones, which gives a
limit on the number of bad improvements one can expect.

Then, let us denote by G =
⋃
j>iAj all good solutions

that are at least on the next higher fitness level, and by B =
{x ∈ {0, 1}n |f(x) ≥ f(x∗), x /∈ G} all bad solutions that are
in Ai with an equal or a higher function value than x∗. Thus,
every improving sampled solution belongs to G ∪B.

Let h : {0, 1}n 7→ {0, 1}n be the function that returns for
a given solution x ∈ G ∪ B a solution x′ ∈ G, where the
leftmost 0 (if any) was flipped to 1.

Let P (x) be the probability of sampling a new solution x.
Then the probability q(x) of sampling any of x and h(x) is
greater than or equal to P (x). The probability of sampling
h(x) is the probability of sampling any of x and h(x), times
the probability that the leftmost zero of x was sampled as a
one. Thus, for all x, P (h(x)) = q(x) · 1/n ≥ P (x)/n, as the
pheromone values are at least 1/n.

Furthermore, each solution h(x) has at most n preimages
with respect to h. Note that, for all x ∈ B, h(x) ∈ G.

Thus, the probability of sampling the next solution x ∈ G
is

P (x ∈ G) =
∑
x∈G

P (x) ≥
∑
x∈B P (h(x))

n

≥
∑
x∈B P (x)

n2
=
P (x ∈ B)

n2
.

So, sampling a good solution is at least 1/n2 times as likely
as sampling a bad one.

Furthermore, while no bad solutions are sampled, at most
(lnn)/ρ steps are spent before the pheromone values are
saturated (based on Lemma 1).

Thus, up to (lnn)/ρ steps are spent with unsaturated
pheromone values before sampling a new solution, and
O((n2 logn)/ρ) steps are spent in total sampling solutions
in B before sampling a solution in G.

Consequently, the time spent on one fitness level is the
sum of the times spent in either situation of the pheromone
values, that is, O(n) +O((n2 logn)/ρ) = O((n2 logn)/ρ).

Finally, as there are n fitness levels, the afore-described
steps have to be performed at most n-times, which yields a
total runtime of O((n3 logn)/ρ).

3.2 Fitness-based Partitions for Pheromones
We describe an approach for extending the argument on

f -based partitions to pheromones instead of the best-so-
far solution. This alternate approach is based on weighted
pheromone sums. Given a vector of pheromones τ and a lin-
ear function f , the weighted pheromone sum (wps) is f(τ).



The idea is that, during a run of the algorithm, the wps
should rise until value-saturated with respect to the current
best search point, and then a significant improvement should
have a decent probability.

Define a function v on bit strings as follows.

v(x) =

n∑
i=1

{
(1− 1

n
)wi, if xi = 1;

1
n
wi, otherwise.

A pheromone vector τ is called value-saturated with re-
spect to a search point x∗ iff

f(τ) ≥ v(x∗).

Note that this definition of value-saturation is very much
different from previous notions of saturation.

Let, for all i, ai be the bit string starting with i ones and
then having only zeros.

We let

Ai = {x | f(ai) ≤ f(x) < f(ai+1)}

and

Bi = {τ | v(ai) ≤ f(τ) < v(ai+1)}.

While (Ai)i captures the progress of the search points
towards the optimum, (Bi)i captures the progress of the
pheromones.

Lemma 3. For all i, if the best-so-far solution was in⋃
j≥iAj for at least (lnn)/ρ iterations, then τ ∈

⋃
j≥iBj.

Proof. Let h be such that ∀s : h(s) = min(s(1 − ρ) +
ρ, 1 − 1/n). Let τ0 be the vector of pheromones when the
algorithm samples a solution in

⋃
j≥iAj for the first time,

and let (τ t)t be the vectors of pheromones in the succes-
sive rounds. For all t we let ht be the t-times composi-
tion of h with itself. Further, we define the sequence of
capped-out pheromones (τ cap,t)t such that, for all t, τ cap,tj =

min(ht(1/n), τ tj ). For this capped-out version of pheromones
we have, for all t,

f(τ cap,t+1) ≥ min((1− ρ)f(τ cap,t) + ρf(ai), (1− 1/n)f(ai)),

as pheromones will evaporate and at least an f(ai) weighted
part of them will receive new pheromone ρ (note that the
old capped-out pheromone raised by h cannot exceed the
new cap). Thus, we get inductively

∀t : f(τ cap,t) ≥ ht(1/n)f(ai).

As we know from Lemma 1, for t ≥ (lnn)/ρ we have
ht(1/n) ≥ 1− 1/n, and, thus, τ t ∈

⋃
j≥iBj .

This argument opens up new possibilities for analyses and
we believe it to be of independent interest.

If it is possible to show, for all i, if τ ∈ Bi, then the
probability of sampling a new solution in

⋃
j>iAj is Ω(1/n),

then Lemma 3 would immediately improve the bound in
Theorem 2 to O

(
n2 + (n logn)/ρ

)
. However, this claim is

not easy to show.
It is possible to prove this for the special case of One-

Max using the following theorem by Gleser [8]. This theo-
rem gives a very nice handle on estimating probabilities for
sampling above-average solutions for OneMax.

Theorem 4 (Gleser [8]). Let τ, τ ′ be two pheromone
vectors such that, for all j ≤ n, the sum of the j least values

of τ is at least the sum of the j least values of τ ′. Let λ be
the sum of the elements of τ ′. Then it is at least as likely to
sample bλ+ 1c ones with τ as it is with τ ′.

We can use this theorem to get a good bound for One-
Max: the worst case for the probability of an improvement
is attained when all but at most one pheromones are at their
respective borders. In this situation, when there are still i
ones missing, the probability of an improvement is at least

i · 1

n
·
(

1− 1

n

)n−1

≥ i

en
.

Combining this with Lemma 3, we get the following result.

Corollary 5. The expected optimization time of MMAS
and MMAS* on OneMax is bounded by

n∑
i=1

en

i
+ n · (lnn)/ρ = O((n logn)/ρ).

This re-proves the O((n logn)/ρ)-bound for MMAS* in [14]
and it improves the current best known bound for MMAS
on OneMax by a factor of n2. We will present an even
improved bound for OneMax in Section 4.1.

However, with regard to general linear functions it is not
clear how this argument can be generalized to arbitrary
weights. In the following section we therefore turn to the
investigation of concrete linear functions.

4. IMPROVED BOUNDS FOR SELECTED
LINEAR FUNCTIONS

Using insights from Section 3.2 we next present improved
upper bounds for the function OneMax (Section 4.1). Af-
terwards, we focus on the special function BinVal (Sec-
tion 4.2). These resulting bounds are much stronger than
the general ones given in Section 3 above.

4.1 OneMax
Recall the bound O((n logn)/ρ) for MMAS and MMAS*

from Corollary 5. In the following we prove a bound of
O(n logn+ n/ρ) for both MMAS and MMAS* by more de-
tailed investigations on the pheromones and their dynamic
growth over time. This shows in particular that the term
1/ρ has at most a linear impact on the total expected opti-
mization time.

Let v and ai be as in Section 3.2. For all i ≤ n, we let
αi = i(1 − 1/n). Observe that v(ai) = αi + (n − i)/n and,
in particular, αi ≤ v(ai) ≤ αi + 1.

The following lemma gives a lower bound on the
pheromone f(τ+) after on iteration. Note that for One-
Max f(τ+) corresponds to the sum of pheromones.

Lemma 6. Let i < j and let τ be the current pheromones
with v(ai) ≤ f(τ) < v(ai+1) and suppose that the best-
so-far solution has at least j ones. We denote by τ+ the
pheromones after one iteration of MMAS or MMAS*. Then
we have f(τ+) ≥ v(ai+1) or

f(τ+)− αi ≥ (f(τ)− αi)(1− ρ) + (j − i)ρ ≥ v(ai). (1)

Proof. Suppose that in rewarding bit positions from τ to
get τ+, exactly k positions cap out at the upper pheromone
border 1 − 1/n. From f(τ+) < v(ai+1) (otherwise there is
nothing left to show), we have k ≤ i. We decompose f(τ+)



into the contribution of the capped-out bits (which is αk,
being k of the j rewarded positions) and the rest. Then we
have

f(τ+) ≥ αk + (f(τ)− αk)(1− ρ) + (j − k)ρ.

We now get

αi + (f(τ)− αi)(1− ρ) + (j − i)ρ
= αk + αi−k + (f(τ)− αk − αi−k)(1− ρ) + (j − k)ρ+ (k − i)ρ
≤ f(τ+) + αi−k − αi−k(1− ρ) + (k − i)ρ
= f(τ+) + ρ(αi−k − (i− k))

≤ f(τ+).

From v(ai) ≤ f(τ) we get

f(τ+) ≥ αi + (f(τ)− αi)(1− ρ) + (j − i)ρ
≥ αi + (v(ai)− αi)(1− ρ) + (j − i)ρ
= v(ai) + ρ(j − i− v(ai) + αi).

From v(ai) − αi < 1 and j > i we get the desired conclu-
sion.

One important conclusion from Lemma 6 is that once the
sum of pheromones is above some value v(ai), it can never
decrease below this term.

Now we extend Lemma 6 towards multiple iterations. The
following lemma shows that, unless a value of v(ai+1) is
reached, the sum of pheromones quickly converges to αj
when j is the number of ones in the best-so-far solution.

Lemma 7. Let i < j and let τ be the current pheromones
with v(ai) ≤ f(τ) < v(ai+1) and suppose that the best-so-far
solution has at least j ones. For all t, we denote by τ t the
pheromones after t iterations of MMAS or MMAS*. Then
we have for all t f(τ t) ≥ v(ai+1) or

f(τ t)− αi ≥ (j − i)(1− (1− ρ)t).

Proof. Inductively for all t, we get from Lemma 6
f(τ t) ≥ v(ai+1) or

f(τ t)− αi ≥ (f(τ0)− αi)(1− ρ)t + (j − i)ρ
t−1∑
i=0

(1− ρ)i

= (f(τ0)− αi)(1− ρ)t + (j − i)ρ1− (1− ρ)t

1− (1− ρ)

= (f(τ0)− αi)(1− ρ)t + (j − i)(1− (1− ρ)t)

≥ (j − i)(1− (1− ρ)t).

Theorem 8. The expected optimization time of MMAS
and MMAS* on OneMax is O(n logn+ n/ρ).

Proof. Define v(a−1) = 0. Let τ be the current
pheromones and τ t be the pheromones after t iterations of
MMAS or MMAS*. We divide a run of MMAS or MMAS*
into phases: the algorithm is in Phase j if f(τ) ≥ f(aj−1),
the current best-so-far solution contains at least j ones, and
the conditions for Phase j + 1 are not yet fulfilled. We
estimate the expected time until each phase is completed,
resulting in an upper bound on the expected optimization
time.

We first deal with the last n/2 phases and consider some
Phase j with j ≥ n/2. By Lemma 7 after t iterations we

either have f(τ t) ≥ v(aj+1) or f(τ t) ≥ αj−1 + 1− (1− ρ)t.
Setting t := d1/ρe, this implies f(τ t) ≥ αj−1 + 1 − e−ρt ≥
αj−1+1−1/e. We claim that then the probability of creating
j + 1 ones is Ω((n− j)/n).

Using j ≥ n/2, the total pheromone αj−1 +1−1/e can be
distributed on an artificially constructed pheromone vector
τ ′ as follows. We assign value 1 − 1/n to j − 1 entries and
value 1/n to n−j entries. As (n−j)/n ≤ 1/2, we have used
pheromone of αj−1 + 1/2 and so pheromone 1−1/2−1/e =
Ω(1) remains for the last entry. We now use Theorem 4 to
see that it as least as likely to sample a solution with j + 1
ones with the real pheromone vector τ t as it is with τ ′. By
construction of τ ′ this probability is at least (1 − 1/n)j−1 ·
(1/2−1/e)·(n−j)/n·(1−1/n)n−j−1 ≥ (n−j)(1/2−1/e)/(en)
as a sufficient condition is setting all bits with pheromone
larger than 1/n in τ ′ to 1 and adding exactly one 1-bit out
of the remaining n− j bits.

Invoking Lemma 7 again for at least j+1 ones in the best-

so-far solution, we get f(τ t+t
′
) ≥ αj−1 + 2(1 − (1 − ρ)t

′
),

which for t′ := d2/ρe yields f(τ t+t
′
) ≥ αj−1 + 3/2 ≥ αj +

1/2 ≥ v(aj) as j ≥ n/2.
For the phases with index j < n/2 we construct a pes-

simistic pheromone vector τ ′ in a similar fashion. We as-
sign value 1 − 1/n to j − 2 entries, value 1/n to n − j
entries, and put the remaining pheromone on the two last
bits such that either only one bit receives pheromone above
1/n or one bit receives pheromone 1 − 1/n and the other
bit gets the rest. To show that the pheromones raise ap-
propriately, we aim at a larger gain in the best number
of ones. The probability of constructing at least j + 2
ones with any of the above-described vectors is at least
(1 − 1/n)j−2 ·

(
n−j+2

3

)
· 1/n3 · (1 − 1/n)n−j ≥ 1/(48e) =

Ω((n− j)/n).
Using the same choice t′ := d2/ρe as above, Lemma 7

yields f(τ t+t
′
) ≥ αj−1 + 3(1− (1−ρ)t

′
) ≥ αj−1 + 2 ≥ v(aj).

Summing up the expected times for all phases yields a
bound of

O

(
n−1∑
i=0

n

n− i + n(t+ t′)

)
= O(n logn+ n/ρ).

4.2 BinVal
The function BinVal has similar properties as the well-

known function LeadingOnes(x) :=
∑n
i=1

∏i
j=1 xj that

counts the number of leading ones. For both MMAS and
MMAS* the leading ones in x∗ can never be lost as setting
one of these bits to 0 will definitely result in a worse solu-
tion. This implies for both algorithms that the pheromones
on the first LeadingOnes(x∗) bits will strictly increase over
time, until the upper pheromone border is reached.

In [14] the following upper bound for LeadingOnes was
shown.

Theorem 9 ([14]). The expected optimization time of
MMAS and MMAS* on LeadingOnes is bounded by O(n2+

n/ρ) and O
(
n2 · (1/ρ)ε + n/ρ

log(1/ρ)

)
for every constant ε > 0.

The basic proof idea is that after an average waiting time
of ` iterations the probability of rediscovering the leading
ones in x∗ is at least Ω(e−5/(`ρ)). Plugging in appropriate
values for ` then gives the claimed bounds.



Definition 10. For ` ∈ N and a sequence of bits
x1, . . . , xi ordered with respect to increasing pheromones we
say that these bits form an (i, `)-layer if for all 1 ≤ j ≤ i

τj ≥ min(1− 1/n, 1− (1− ρ)j`).

With such a layering the considered bits can be redis-
covered easily, depending on the value of `. The following
lemma was implicitly shown in [14, proof of Theorem 6].

Lemma 11. The probability that in an (i, `)-layer all i
bits defining the layer are set to 1 in an ant solution is
Ω(e−5/(`ρ)).

Assume we have k = LeadingOnes(x∗) and the
pheromones form a (k, `)-layer. Using Lemma 11 and
the fact that a new leading one is added with proba-
bility at least 1/n, the expected waiting time until we
have LeadingOnes(x∗) ≥ k + 1 and a (k + 1, `)-layer of

pheromones is at most O(n · e5/(`ρ) + `). As this is nec-
essary at most n times, this gives us an upper bound on
the expected optimization time. Plugging in ` = d5/ρe and
` = d5/(ερ ln(1/ρ))e yields the same upper bounds for Bin-
Val as we had in Theorem 9 for LeadingOnes.

Theorem 12. The expected optimization time of MMAS
and MMAS* on BinVal is bounded by O(n2 + n/ρ) and

O
(
n2 · (1/ρ)ε + n/ρ

log(1/ρ)

)
for every constant ε > 0.

These two bounds show that the second term “+n/ρ” in
the first bound—that also appeared in the upper bound for
OneMax—can be lowered, at the expense of an increase in
the first term. It is an interesting open question whether
for all linear functions when ρ is very small the runtime
is o(n/ρ), i. e., sublinear in 1/ρ for fixed n. The relation
between the runtime and ρ is further discussed from an ex-
perimental perspective in the next section.

5. EXPERIMENTS
In this section, we investigate the behavior of our algo-

rithms using experimental studies. Our goal is to examine
the effect of the pheromone update strength as well as the
impact of the weights of the linear function that should be
optimized.

Our experiments are related to those in [3, 14]. The au-
thors of the first article concentrate their analyses of 1-ANT
and MMAS on OneMax, LeadingOnes, and random linear
functions. A single problem size n for each function is used,
and a number of theory-guided indicators monitors the algo-
rithms’ progress at every time step, in order to measure the
algorithms’ progress within individual runs. In the second
article, the runtime of MMAS and MMAS* is investigated
on OneMax and other functions, for two values of n and a
wide range of values of ρ.

First, we investigate the runtime behavior of our algo-
rithms for different settings of ρ (see Figure 2). We inves-
tigate OneMax, BinVal, and random functions where the
weights are chosen uniformly at random from the interval
]0, 1]. For our investigations, we consider problems of size
n = 100, 150, . . . , 1000. Each fixed value of n is run for
ρ ∈ {1.0, 0.5, 0.1, 0.05} and the results are averaged over
1000 runs. Remember that, for ρ = 1.0, MMAS* is equiv-
alent to the (1+1) EA*, and MMAS is equivalent to the
(1+1) EA (see [12] for the definition of the evolutionary al-
gorithms). As a result of the 1000 repetitions, the curves in

the plots of Figure 2 are fairly smooth, as the standard er-
ror of the mean of the average of 1000 identically distributed
random variables is only 1/

√
1000 ≈ 3.2% of the standard

error of the mean of any single such variable.
One general observation is that the performance of

MMAS* on random linear functions and BinVal is practi-
cally identical to that of MMAS. This was expected, as sev-
eral bit positions have to have the same associated weights
in order for MMAS to benefit from its weakened acceptance
condition. Furthermore, we notice that OneMax is not the
simplest linear function for MMAS* to optimize. In fact,
for certain values of ρ, OneMax is as difficult to optimize
as BinVal.

For all experiments, the performance of MMAS* with
ρ = 1.0 is very close to that of MMAS with ρ = 1.0. How-
ever, with different values of ρ, several performance differ-
ences are observed. For example, MMAS* with ρ = 0.5
and ρ = 0.1 optimizes random linear functions faster than
MMAS* with ρ = 1.0, which is on the other hand the
fastest setup for OneMax. Furthermore, the performance
of MMAS increased significantly with values of ρ < 1.0, e. g.,
MMAS with ρ = 0.1 is 30% faster than MMAS with ρ = 1.0.
Another general observation is that MMAS* performs bet-
ter on random linear functions, than on OneMax, e. g. for
n = 1000 and ρ = 0.1 the runtime decreases by roughly 10%.

In the following, we give an explanation for this behavior.
During the optimization process, it is possible to replace a
lightweight 1 at bit i (i. e., a bit with a relatively small associ-
ated weight wi) with a heavyweight 0 at bit j (i. e., a bit with
a relatively large associated weight wj). Afterwards, during
the freezing process, the probability for sampling again the
lightweight 1 at bit i (whose associated τi is in the process
of being reduced to τmin) is relatively high. Unlike in the
case of OneMax, it is indeed possible for MMAS* to collect
heavyweight 1-bits in between, and the “knowledge” of the
lightweight 1-bits is available for a certain time, stored as
a linear combination of the pheromones’ values. This effect
occurs in the phase of adjusting the pheromones, not when
the pheromone values are saturated. Otherwise, the effect
could be observed for the (1+1) EA and the (1+1) EA* as
well.

We have already seen that the choice of ρ may have a high
impact on the optimization time. The runtime bounds given
in this paper increase with decreasing ρ. In the following,
we want to investigate the impact of ρ closer by conduct-
ing experimental studies. We study the effect of ρ by fixing
n = 100 and varying ρ = 1/x with x = 1, 11, 21, . . . , 1001.
Note that these ρ-values are much smaller than the ones
shown in Figure 2. The results are shown in Figure 3 and
are averaged over 10.000 runs. As a result of the large num-
ber of repetitions, the standard error of the mean of the
average is only 1/

√
10000 = 1% of the standard error of the

mean of any run. The effect that small values of ρ can im-
prove the performance on OneMax is observable again. The
fitted linear regression lines, which are based on the mean
iterations for 1/ρ ∈ (500, 1000], support our claim that the
runtime grows at most linear with 1/ρ for a fixed value of
n. In fact, the fitted lines indicate that the growth of the
average runtime is very close to a linear function in 1/ρ. The
real curves appear to be slightly concave, which corresponds
to a sublinear growth. However, the observable effects are
too small to allow for general conclusions.



Figure 2: Runtime of MMAS* (left column) and MMAS (right column).

6. CONCLUSIONS AND FUTURE WORK
The rigorous analysis of ACO algorithms is a challeng-

ing task as these algorithms are of a high stochastic nature.
Understanding the pheromone update process and the infor-
mation that is stored in pheromone during the optimization
run plays a key role in strengthening their theoretical foun-
dations.

We have presented improved upper bounds for the perfor-
mance of ACO on the class of linear pseudo-Boolean func-

tions. The general upper bound of O((n3 logn)/ρ) from
Theorem 2 applies to all linear functions, but in the light
of the smaller upper bounds for OneMax and BinVal we
believe that this bound is still far from optimal. Stronger
arguments are needed in order to arrive at a stronger result.

We also have developed novel methods for analyzing
ACO algorithms without relying on pheromones freez-
ing at pheromone borders. Fitness-level arguments on a
pheromone level have revealed one possible way of reason-



Figure 3: Impact of pheromone evaporation factor in MMAS* (left column) and MMAS (right column).

ing. For OneMax this approach, in combination with re-
sults from [8], has led to a bound of O(n logn+n/ρ), both for
MMAS and MMAS*. This is a major improvement to the
previous best known bounds O((n3 logn)/ρ) for MMAS and
O((n logn)/ρ) for MMAS* and it finally closes the gap of
size n2 between the upper bounds for MMAS and MMAS*.
We conjecture that our improved bound holds for all linear
functions, but this is still a challenging open problem.

Furthermore, our proof arguments have given more

detailed insight into the precise dynamic growth of
pheromones. For a fixed sum of pheromones, we have
learned which distributions of pheromones among n bits are
best and worst possible for increasing the best-so-far One-
Max value. We believe that this will prove useful for further
theoretical studies of ACO.

The experimental results have revealed that a slow adap-
tion of pheromone is beneficial for MMAS on OneMax as
MMAS was faster than the (1+1) EA for all investigated ρ-



values not larger than 0.5. We also argued why MMAS* is
faster on random-weight linear functions than on OneMax.
The experiments also gave more detailed insights into the
impact of the evaporation factor on the average runtime.

We conclude with the following two open questions and
tasks for future work:

1. Do MMAS and MMAS* optimize all linear pseudo-
Boolean functions in expected time O(n logn+ n/ρ)?

2. Analyze ACO for combinatorial problems like mini-
mum spanning trees and the TSP in settings with slow
pheromone adaptation.
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[11] J. Jägersküpper. A blend of Markov-chain and drift
analysis. In Proc. of PPSN 2008, pages 41–51.
Springer, 2008.

[12] T. Jansen and I. Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and
when to reject strings of the same fitness. IEEE
Transactions on Evolutionary Computation,
5(6):589–599, 2001.

[13] T. Kötzing, F. Neumann, H. Röglin, and C. Witt.
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