

A Generic Bet-and-run Strategy for Speeding Up Stochastic Local Search

Markus Wagner

markus.wagner@adelaide.edu.au

Code and results: https://bitbucket.org/markuswagner/restarts

Context in this session

Carola: change parameters during a run

Anja: change algorithms during a run

Markus: don't change anything during a run

Speeding Up Stochastic Local Search

Markus Wagner

markus.wagner@adelaide.edu.au

Code and results: https://bitbucket.org/markuswagner/restarts

Restarts

A desktop PC does not work properly \rightarrow we restart it.

Performance of stochastic algorithm and randomized search heuristics unsatisfactory \rightarrow we restart it again and again.

While this approach is well-known, few algorithms directly incorporate such restart strategies.

HELLO IT HELLO IT HAVE YOU TRIED TURNING IT OFF AND ON AGAIN?

Potential reason: added complexity of designing an appropriate restart strategy that is advantageous for the considered algorithm.

We are looking for: a generic framework for restart strategies that is not overly dependent on the algorithm used and the problem considered.

Related work

Luby, Sinclair, and Zuckerman (1993)

 for Las Vegas algorithms with known run time distribution: sequence of running times (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,...) optimal restarting strategy (up to constant factors)

Satisfiability problem

- empirical comparisons showing substantial impact on efficiency of SAT solvers [Biere 2008, Huang 2007]
- unsurprising as SAT/CSP solvers learn no-goods during backtracking [Cireé et al 2014]

Classic optimisation algorithms are often deterministic

- The underlying algorithm of IBM ILOG CPLEX is not random, but characteristics change with memory constraints and parallel computations.
- Lalla-Ruiz and Voss (2016) investigated different mathematical programming formulations to provide different starting points.

Related work Bet-and-Run by Fischetti and Monaci (2014)

Notes

Single-run: k=1Multi-run with restarts from scratch: $t_1=t/k$ and $t_2=0$

Fischetti and Monaci (2014)

"Exploiting erraticism in search" k=5, CPLEX, diversity, MIPlib 2010

de Perthuis de Laillevault, Doerr, and Doerr (2015)

1+1-EA on OneMax possible additive runtime gain of order sqrt(n log n)

Related work Bet-and-Run by Fischetti and Monaci (2014)

Taking the best of two random samples already decreases the $\Theta(n \log n)$ expected runtime of the (1+1) EA and Randomized Local Search on ONEMAX by an additive term of order \sqrt{n} . The optimal gain that one can achieve with iterated random sampling is an additive term of order $\sqrt{n \log n}$. This also determines the best possible mutation-based EA for ONEMAX, a question left open in [Sudholt, IEEE TEC 2013].

Notes

Single-run: k=1Multi-run with restarts from scratch: $t_1=t/k$ and $t_2=0$

Fischetti and Monaci (2014)

"Exploiting erraticism in search" k=5, CPLEX, diversity, MIPlib 2010

de Perthuis de Laillevault, Doerr,

possible additive runtime gain of order sqrt(n log n)

A Generic Bet-and-Run Strategy

Our experiments

Traveling Salesperson

Lin-Kernighan Heuristic (from Concorde)

1 restart

- 111 symmetric TSPlib instances with up to 100k cities This column:
- Minimum Vertex Cover □ FastVC (Cai 2015)
 - □ 86 large MVC instances
- Also, algorithms are pure black boxes: start with seed stop
- Lots of bet-and-run strategies Example: heatmap on the right ~450 bet-and-run setups for 1 instance

Example: FastVC on MVC instance shipsec1.mtx Total budget t=240s

A Generic Bet-and-Run Strategy Dependency on total time budget

Example: solution quality achieved by FastVC on instance sc-shipsec5 (average of 100 runs)

Cross Domain Study To-be-investigated Bet-And-Run Approaches

RESTARTS^k_{x%} refers to the strategy where k initial runs are performed, and each of the runs has a computational budget of x% of the total time budget.

RESTARTSLUBY^k_{x%} refers to the strategy that uses in its first phase runs whose lengths are defined by the Luby sequence. k refers to the sequence length used in the first phase, and each Luby time unit is x% of the total time.

Cross Domain Study First Results (10 instances per domain only, 14 strategies)

Budget: $400 \cdot t_{init}$ RESTARTS¹_{100%} RESTARTS⁴_{25%} **RESTARTS**⁴_{10%} RESTARTS¹⁰ RESTARTS⁴⁰ RESTARTS⁴_{2.5%} RESTARTS¹⁰ RESTARTS⁴⁰_{0.25%} RESTARTS⁴_{1%} RESTARTS¹⁰_{0.4%}

TSP	MVC
12.3	9.4
3.0	5.4
3.7	4.4
2.3	1.8
3.0	1.3
6.2	5.2
5.6	3.2
7.7	3.7
9.9	6.5
9.0	4.5

Shown are average ranks across 10 instances.

More tables in the paper.

Cross Domain Study Summary (~200 instances, 1 Bet-and-Run strategy vs 1 single run)

Universally good (given our experiments): Restarts⁴⁰1%

Phase 1: 40 runs, each with a time budget of 1% of the total time budget Phase 2: use the remaining 60% to continue the best run of Phase 1

Comparison of our "universal" Restarts⁴⁰_{1%} with a single run: Wilcoxon-rank-sum test (p=0.05): green shows where Restarts⁴⁰_{1%} is significantly better,

grey (identical or insignificant), red (single run is better)

Summary so far

We studied a generic bet-and-run restart strategy

- easy to implement as an additional speed-up heuristic
- demonstrated effectiveness on two classical NP-complete optimisation problems with state-of-the-art solvers
- Significant advantage of Restarts⁴⁰_{1%}:
 - Phase 1: 40 runs with 1% each of the total time Phase 2: continue the best of these 40 for 60% of the total time

Published:

AAAI Conference on Artificial Intelligence 2017 A Generic Bet-and-run Strategy for Speeding Up Stochastic Local Search *Tobias Friedrich, Timo Kötzing, and Markus Wagner*

Code and results: https://bitbucket.org/markuswagner/restarts

More work on this (1/3) – Theory

Genetic and Evolutionary Computation Conference (GECCO) 2017 Theoretical results on bet-and-run as an initialisation strategy Andrei Lissovoi, Dirk Sudholt, <u>Markus Wagner</u>, and Christine Zarges

$$f_h(x) = \begin{cases} |x|_1 & \text{if } |x|_1 > n/2 \\ h & \text{otherwise} \end{cases}$$

We define a family of pseudo-Boolean functions (\leftarrow):

- the plateau shows a high fitness, but does not allow for further progression
- the slope has a low fitness initially, but does lead to the global optimum.

Results:

- non-trivial k and t1 are necessary,
- t1 is linked to properties of the function,
- fixed budget analysis to guide selection of the betand-run parameters to maximise expected fitness after $t = k \cdot t1 + t2$ fitness evaluations.

HE UNIVERSITY

More work on this (2/3) – Generalised Bet-and-Run

AAAI 2019

An Improved Generic Bet-and-Run Strategy for Speeding Up Stochastic Local Search Thomas Weise, Zijun Wu, and <u>Markus Wagner</u>

Major result of 78 million experiments:

Decision maker "take current best" is difficult to beat, but it is possible.

More work on this (3/3) – Reactive Restarts

Learning and Intelligent Optimisation (LION) 2017 Learning a Reactive Restart Strategy to Improve Stochastic Search Serdar Kadioglu, Meinolf Sellmann and <u>Markus Wagner</u>

Drawback of previous work: Whether a run looks promising or abysmal, it gets run exactly until the predetermined limit is reached.

We train (offline) a controller. It then decides online:

- 1. Continue the current run.
- 2. Continue an old run.
- 3. Start a new run.

 \rightarrow It considers: performance and performance projections of the individual runs, and the remaining time budget.

More work on this (4/3) – Future work

- Other domains: continuous optimisation, multi-objective optimisation, ...
- Heterogeneous setups:
 - different hierarchies/races/... of the independent runs
 - different algorithms
 - different algorithm configurations
 - configure on-the-fly

→ this might be a hot topic, and it has a connection to algorithm control, hyperheuristics, partial restarts (perturbations), ...

Markus Wagner

markus.wagner@adelaide.edu.au