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The Need for Renewable Energy

Future Global Energy Demand
The world will require 56 percent more energy in 2040 than in 2010.
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Wave Energy

= Wave energy is a widely available but largely unexploited source of
renewable energy

" There are dozens of active wave energy converter (WEC) projects
exploring a variety of techniques for harnessing wave energy




CETO Wave Energy Converter

" In partnership with the School of Mechanical Engineering, we are
considering a wave energy converter (WEC) called CETO

= The CETO system consists of one or more fully submerged buoys




Related Work on Optimisation

Single WEC optimisation

= Ringwood (2004), McCabe (2010) and Hals (2011) optimise various
aspects of semi-submerged buoys, such as geometry and control

= Korde (2015) investigates different control strategies for maximising
power absorption of two buoys, one of which is fully submerged

WEC arrays and their optimisation

" Cruz (2009) and Weller (2010) explore the effect of various factors on
array performance, including device spacing and array layout

= Fitzgerald (2007), Child (2010) and Snyder (2014) optimise arrays of
semi-submerged WECs

There is a lack of research on optimising arrays of
fully submerged WECs




The CETO Model
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Submerged buoy

Tether

Shared
anchorage

Advantages ~—
+ Invisible from the shore

+ Higher survival in storm conditions

* Hydrodynamics allow 2 times more
power to be absorbed from surge
motion (e.g. via three-tether or
asymmetric mass)




Optimisation Problem

" The variables of the CETO model lead to an optimisation problem:
What is the best combination of buoy radii
to use for different array sizes?
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Results for 2x2 and 3x3 Arrays
Best (g-Factor) 0.999 0.996
Worst (g-Factor) 0.965 0.933
Best 2x2 Best 3x3
- ' ; ' — O5
160f 05 ] 550l
- 1401 . °?2 0?2
120¢ - 2007 '
100} © 2 1 o2
150¢
» . s
40- 1 50_ e 2
waves 20+
0 Qs . . 1 O Q@5 : . . °2 |
0 50 100 0 50 100 150 200

Xx.m Xx.m




Accuracy

Speeding up simulations (for non-grid arrays)
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Generations

Speed-up by frequency reduction from 2100 minutes to 42 minutes (50 buoys).

An old computer science trick... caching!!!
Matlab most frequently calls: integral, factorial, bessel.
For a 50-WEC-array, 1 million calls to integral are made (90% duplicates). =
Caching reduces the runtime by 85%.
Now: runtime 6 minutes (factor 350).




Non-grid-arrays: (2+2)-CMA-ES vs (1+1)-EA
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= Tuning in the
end with CMA-ES
is possible, though.




Drawbacks (example for n=100)

Computation time: 8 CPU days vs. 7 CPU years
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Algorithms: local optima not exploited
Speed-up: simplification not adequate




Summary so far & Next Steps

* Translation to C
* Parallelisation
" Increase in accuracy

= Multi-objective optimisation 0w w0 @ w0
- PPSN 2016: 142-fold speed-up
while still using 25 frequencies.

Actual next steps
= Wave directions: distribution (happening now)
" “mechanical engineering”-analysis of results (happening now)

= Carnegie to set up arrays of WECs around Australia (joint ARC
grant happening now)

= Power-take off-controller optimisation

* Machine learning models to learn the interaction (happening now)
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Wave Energy: Insights
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= Over 100 people B e caames
played the “optimise ——
power output” game Ben 1957672
using Android tablets 2

at OpenDay 2017
= Leader board:

= Refined version to be
used at Ingenuity —
2017 (31 Oct,
thousands of
attendees)
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* Goal: model & predict power output based on farm layout

= Machine learning technology as quick and precise surrogates for
Nataliia’s analytical model (frequency domain)

= https://mse.mewx.org
= 2 buoys doable, 4 buoys difficult (imprecise)

MATLAB

Nonlinear Fit Scikit-Learn Multi-Poly Regression

Optimization of Wave Energy

MACHINE *,* & " Converters

LEARNING -
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Boosted Regression Tree




M kernel_ridge

M knn

Honours project
Connie Pyromallis

M lin_reg
B multilayer_perceptron
M random_forest

M svm

" Goal: model & predict power output based on
spring constant k, damper coefficient d

= 4 buoys
= Scikit-learn (Python)
= https://github.cs.adelaide.edu.au/a1668648/HonoursWEC

Different settings for each buoy (best 100 settin;
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PhD student Mehdi Nesh

. MS student Yuanzhong Xi
Coming back to those layouts...

" Educated guess as a reference: What is a good layout? Grid?
Linear? Hexagonal?

= Waves come from the left...

The initial position of buoys=2 Wfreq=FULL The final position of buoys=2 Wfreq=FULL
v v v v 9 "o f v v o v

And the same for 4
and 9 buoys...




The buoys position and their power . 10°The impact of various distance on total power,buoy=2 ,Wfreq=FULL
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Similar for 4 and 9 buoys... |
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Power output of array (Watt)
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Output of 1 isolated buoy: 4.92e5W This is 1-dimensional... how about 2D?



2 buoys — Characterisation of effects for optimisation purposes
= Waves come from bottom left, 50m safety distance

= 15t buoy is at (100,0), shown is the wave farm’s total power output
landscape depending on the 2" buoy

Best: not next to each other
but slightly offset
<10°
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Best solution CMA-ES;NBuoy=4 Npop=10 Wi=Full Total Power=2077730,6,96,3
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Best solution 1+1EA;NBuoy= 16, Wi=Full Mutation Step=10 Total Power=7402584
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Layout optimisation

= Based on the characterisation, we can design problem-specific
algorithms. Why is this important?
£= -] iR = i . E I

The comparison of four Evolutionary Methods: PE, CMA-ES, DE, (1+1)EA: NBuoy=16, Wi=full

4 buoys: max output is very
similar across approaches
(scale not visible)

The power output of avay (Watd

16 buoys: +5% for the rightmost
two custom approaches

Total powat ouiput
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The power output of array (Watt)

One good solution of Iterative NM-(1+1)EA=7534160.3647
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The slides will be made available today.

Markus Wagner




