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Computer-Automated Evolution 
of an X-Band Antenna for 
NASA's Space Technology 5 
Mission

This evolved antenna design is the 
first computer-evolved antenna to be 
deployed for any application and is 
the first computer-evolved hardware 
in space. 

PDF: 
http://www.mitpressjournals.org/doi
/pdf/10.1162/EVCO_a_00005
Youtube video:
https://www.youtube.com/watch?v=
HAjozNpBiL4&t=1261s

Introductory Example





Evolutionary
Computation

orange	=	1st edition	(preferred)
green	=	2nd edition



Text Books

§ A. E. Eiben, J. E. Smith: Introduction to Evolutionary 
Computing, Springer, 2003. [strongly recommended]

§ Z. Michalewicz, D. B. Fogel: How to Solve It: Modern 
Heuristics, Springer, 2004. 

§ F. Neumann, C. Witt: Bioinspired Computation in 
Combinatorial Optimization – Algorithms and Their 
Computational Complexity, Springer, 2010. Free: 
http://www.bioinspiredcomputation.com

§ F. Rothlauf: Design of Modern Heuristics - Principles 
and Applications, Springer, 2011. [strongly 
recommended]



Today’s Contents

1st Session
§ Positioning of EC and the basic EC metaphor
§ Historical perspective
§ Biological inspiration:

– Darwinian evolution theory (simplified!)
§ Motivation for EC

2nd Session
§ Multi-modal problems
§ Multi-objective optimisation



Positioning of EC

§ EC is part of computer science
§ EC is not part of life sciences/biology
§ Biology delivered inspiration and terminology
§ EC can be applied in biological research



EVOLUTION

Environment
Individual

Fitness

The Main Evolutionary Computing Metaphor

PROBLEM SOLVING

Problem

Candidate Solution

Quality

Quality à chance for seeding new solutions

Fitness à chance for survival and reproduction



Brief History 1: the ancestors
§ 1948, Turing:

proposes “genetical or evolutionary search”
§ 1962, Bremermann

optimization through evolution and recombination 
§ 1964, Rechenberg

introduces evolution strategies
§ 1965, Fogel, Owens and Walsh 

introduce evolutionary programming
§ 1975, Holland 

introduces genetic algorithms
§ 1992, Koza

introduces genetic programming
§ 1992, Dorigo

introduces ant-colony optimisation
§ 1995, Kennedy, Eberhardt and Shi

introduce particle swarm optimisation



Brief History 2: The rise of EC

1985: first international conference (ICGA)

1990: first international conference in Europe (PPSN)

1993: first scientific EC journal (MIT Press)



EC in the early 21st Century
§ 3 major EC conferences (GECCO, PPSN, CEC), about 10 small 

related ones

§ 2 scientific core EC journals (MIT Evolutionary Computation, 
IEEE Transactions on Evolutionary Computation) and many 
others

§ uncountable (meaning: many) applications

§ uncountable (meaning: ?) consultancy and R&D firms

Em/Prof Zbigniew Michalewicz: 
NuTech (now part of IBM)
SolveIT (now part of Schneider Electric)



Darwinian Evolution 1:
Survival of the fittest

§ All environments have finite resources
(i.e., can only support a limited number of individuals)

§ Life forms have basic instincts/lifecycles geared towards 
reproduction

§ Therefore some kind of selection is inevitable
§ Those individuals that compete for the resources most 

effectively have an increased chance of reproduction
§ Note: fitness in natural evolution is a derived, secondary 

measure, i.e., we (humans) assign a high fitness to 
individuals with many offspring (?)



Darwinian Evolution 2: 
Diversity drives change
§ Phenotypic traits:

– Behaviour / physical differences that affect response to 
environment

– Partly determined by inheritance, partly by factors during 
development

– Unique to each individual, partly as a result of random changes
§ “Suitable” phenotypic traits:

– Lead to higher chances of reproduction
– Can be inherited
then they will tend to increase in subsequent 

generations, 
§ leading to new combinations of traits …  



Darwinian Evolution: 
Summary
§ Population consists of a diverse set of individuals
§ Combinations of traits that are better adapted tend to 

increase representation in population
Individuals are “units of selection”

§ Variations occur through random changes yielding 
constant source of diversity, coupled with selection 
means that: 

Population is the “unit of evolution”

§ Note the absence of a “guiding force”



Adaptive landscape metaphor 
(Wright, 1932)

§ Can envisage population with n traits as existing in a 
n+1-dimensional space (landscape) with height 
corresponding to fitness

§ Each different individual (phenotype) represents a single 
point on the landscape

§ Population is therefore a “cloud” of points, moving on 
the landscape over time as it evolves - adaptation



Example with two traits



Adaptive landscape metaphor (cont’d)

§ Selection “pushes” population up the landscape

§ Genetic drift: 
• random variations in feature distribution 

(+ or -) arising from sampling error
• can cause the population to “melt down” hills, thus crossing 

valleys and leaving local optima



Motivations for EC: 1

§ Nature has always served as a source of inspiration for 
engineers and scientists

§ The best problem solver known in nature is:
– the (human) brain that created “the wheel, New 

York, wars and so on” (after Douglas Adams’ Hitch-
Hikers Guide)

– the evolution mechanism that created the human 
brain (after Darwin’s Origin of Species)

§ Answer 1 à neurocomputing
§ Answer 2 à evolutionary computing



Motivations for EC: 2

• Developing, analysing, applying problem solving
methods a.k.a. algorithms is a central theme in 
mathematics and computer science

• Time for thorough problem analysis decreases

• Complexity of problems to be solved increases

• Consequence: 
Robust problem solving technology needed



We have a model of our system and seek inputs that give us a specified goal

For example
– time tables for university, call centre, or hospital
– design specifications, etc.

Problem  type 1 : Optimisation 



We have corresponding sets of inputs & outputs and seek model that 
delivers correct output for every known input

For example: evolutionary machine learning

Problem types 2: Modelling



We have a given model and wish to know the outputs that arise under 
different input conditions

Often used to answer “what-if” questions in evolving dynamic 
environments, e.g.  Evolutionary economics, Artificial Life

Problem type 3: Simulation



Evolutionary Algorithms: 
Overview
§ Recap of Evolutionary Metaphor
§ Basic scheme of an EA
§ Basic Components:

– Representation / Evaluation / Population / Parent 
Selection / Recombination / Mutation / Survivor 
Selection / Termination



Recap of EC metaphor

§ A population of individuals exists in an environment with 
limited resources

§ Competition for those resources causes selection of 
those fitter individuals that are better adapted to the 
environment

§ These individuals act as seeds for the generation of new 
individuals through recombination and mutation

§ The new individuals have their fitness evaluated and 
compete (possibly also with parents) for survival.

§ Over time Natural selection causes a rise in the fitness 
of the population



Recap 2:

§ EAs fall into the category of “generate and test”
algorithms

§ They are stochastic, population-based algorithms
§ Variation operators (recombination and mutation) create 

the necessary diversity and thereby facilitate novelty
§ Selection reduces diversity and acts as a force pushing 

quality



General Scheme of EAs



Pseudo-code for typical EA



What are the different types of EAs

§ Historically different flavours of EAs have been 
associated with different representations
– Binary strings: Genetic Algorithms
– Real-valued vectors: Evolution Strategies
– Finite state Machines: Evolutionary Programming
– LISP trees: Genetic Programming

§ These differences are largely irrelevant, best strategy 
– choose representation to suit problem
– choose variation operators to suit representation

§ Selection operators only use fitness and so are 
independent of representation



Representations

§ Candidate solutions (individuals) exist in phenotype 
space

§ They are encoded in chromosomes, which exist in 
genotype space
– Encoding : phenotype => genotype (not necessarily one to one)
– Decoding : genotype => phenotype (must be one to one)

§ Chromosomes contain genes, which are in (usually fixed) 
positions called loci (sing. locus) and have a value (allele)

In order to find the global optimum, every feasible 
solution must be represented in genotype space



Evaluation (Fitness) Function

§ Represents the requirements that the population should 
adapt to

§ a.k.a. quality function or objective function
§ Assigns a single real-valued fitness to each phenotype 

which forms the basis for selection
– So the more discrimination (different values) the 

better
§ Typically we talk about fitness being maximised

– Some problems may be best posed as minimisation 
problems, but conversion is trivial



Population

§ Holds (representations of) possible solutions
§ Usually has a fixed size and is a multiset of genotypes
§ Some sophisticated EAs also assert a spatial structure on 

the population, e.g., a grid.
§ Selection operators usually take whole population into 

account i.e., reproductive probabilities are relative to 
current generation

§ Diversity of a population refers to the number of 
different fitnesses / phenotypes / genotypes present 
(note not the same thing) Quick	Question

”Small”	or	“large”	
populations?



Parent Selection Mechanism

§ Assigns variable probabilities of individuals acting as 
parents depending on their fitnesses

§ Usually probabilistic
– high quality solutions more likely to become parents 

than low quality
– but not guaranteed
– even worst in current population usually has non-zero 

probability of becoming a parent
§ This stochastic nature can aid escape from local optima



Variation Operators

§ Role is to generate new candidate solutions 
§ Usually divided into two types according to their arity 

(number of inputs):
– Arity 1 : mutation operators
– Arity >1 : recombination operators
– Arity = 2 typically called crossover

§ There has been much debate about relative importance 
of recombination and mutation
– Nowadays most EAs use both
– Choice of particular variation operators is representation 

dependant



Mutation

§ Acts on one genotype and delivers another
§ Element of randomness is essential and differentiates it 

from other unary heuristic operators
§ Importance ascribed depends on representation and 

dialect:
– Binary GAs – background operator responsible for preserving 

and introducing diversity
– EP for FSM’s/continuous variables – only search operator
– GP – hardly used

§ May guarantee connectedness of search space and hence 
convergence proofs

Quick	Question
How	about	TSP	tours?



Recombination

§ Merges information from parents into offspring
§ Choice of what information to merge is stochastic
§ Most offspring may be worse, or the same as the parents
§ Hope is that some are better by combining elements of 

genotypes that lead to good traits
§ Principle has been used for millennia by breeders of 

plants and livestock

Quick	Question
How	about	TSP	tours?



Survivor Selection

§ a.k.a. replacement
§ Most EAs use fixed population size so need a way of 

going from (parents + offspring) to next generation
§ Often deterministic

– Fitness-based : e.g., rank parents+offspring and take best 
– Age-based: make as many offspring as parents and delete all 

parents 
§ Sometimes do combination (elitism)

Quick	Question
Why	is	Survivor	
Selection	needed?



Initialisation / Termination
Initialisation usually done at random 

– Need to ensure even spread and mixture of possible allele values
– Can include existing solutions, or use problem-specific 

heuristics, to “seed” the population

Termination condition checked every generation 
– Reaching some (known/hoped for) fitness
– Reaching some maximum allowed number of generations
– Reaching some minimum level of diversity
– Reaching some specified number of generations without fitness 

improvement

Quick	Question
Seeding:	what	are	
disadvantages?



General Scheme of EAs





Gusz Eiben,	Jim	Smith,	From	evolutionary	computation	to	the	evolution	of	things	
(article	in	Nature	2015)
"...	From	the	perspective	of	the	underlying	substrate	in	which	the	evolution	takes	
place,	the	emergence	of	evolutionary	computation	can	be	considered	as	a	major	
transition	of	the	evolutionary	principles	from	'wetware',	the	realm	of	biology,	to	
software,	the	realm	of	computers.	Today	the	field	is	at	an	exciting	stage.	New	
developments	in	robotics	and	rapid	prototyping	(3D	printing)	are	paving	the	way	
towards	a	second	major	transition:	from	software	to	hardware,	going	from	digital	
evolutionary	systems	to	physical	ones.	...”
http://www.nature.com/nature/journal/v521/n7553/full/nature14544.html



Multimodal Problems,
Multi-Objective Optimization

Eiben/Smith Chapter 9



Multimodal Problems



Motivation 1: Multimodality

Most interesting problems have more than one locally
optimal solution.

Quick	Question
Which	solution	is	best?



Motivation 2: Genetic Drift

§ Finite population with global (panmictic) mixing and 
selection eventually convergences around one optimum

§ Often might want to identify several possible peaks
§ This can aid global optimisation when sub-optima has 

the largest basin of attraction



Biological Motivation 1: Speciation

§ In nature different species adapt to occupy different 
environmental niches, which contain finite resources, so 
the individuals are in competition with each other

§ Species only reproduce with other members of the same 
species (Mating Restriction)

§ These forces tend to lead to phenotypic homogeneity 
within species, but differences between species



Biological Motivation 1: Speciation

“Darwin’s finches” (19th century)
A group of ~15 species, only found on the Galapagos 
Islands



Biological Motivation 2: Punctuated 
Equilbria

§ Theory that periods of stasis are interrupted by rapid growth 
when main population is “invaded” by individuals from 
previously spatially isolated group of individuals from the 
same species

§ The separated sub-populations (demes) often show local 
adaptations in response to slight changes in their local 
environments

Additional reading: 
Did wolf no. 93 (temporarily) save the wolf population on Isle Royale? (1997)
http://en.wikipedia.org/wiki/Wolves_and_moose_on_Isle_Royale
2011: “The wolf population on Isle Royale is small, averaging only about 23 wolves. 
By the end of his eight years of breeding, he produced 34 pups, those had produced 
an additional 45 pups.”
2016: “[The] wolf population is now nearly extinct with only two severely inbred 
wolves present.”



Implications for Evolutionary Optimisation

Two main approaches to diversity maintenance:
§ Implicit approaches

– Impose an equivalent of geographical separation
– Impose an equivalent of speciation

§ Explicit approaches
– Make similar individuals compete for resources (fitness)
– Make similar individuals compete with each other for survival



Periodic migration of individual solutions between populations

Implicit 1: “Island”Model Parallel EAs

EA

EA

EA EA

EA

Quick	Question
Not	limited	to	EAs…



Island Model EAs contd:

§ Run multiple populations in parallel, in some kind of 
communication structure (usually a ring or a torus). 

§ After a (usually fixed) number of generations (an 
epoch), 
exchange individuals with neighbours

§ Repeat until ending criteria met
§ Partially inspired by parallel/clustered systems



Island Model Parameters 1

§ Could use different operators in each island
§ How often to exchange individuals ?

– too quick and all pops converge to same solution
– too slow and waste time
– most authors use range~ 25-150 gens
– can do it adaptively (stop each EA when there is no improvement for 

(say) 25 generations)



Island Model Parameters 2

§ How many, which individuals to exchange ?
– usually ~2-5, but depends on population size.
– more sub-populations usually gives better results but there can 

be a “critical mass”, i.e., minimum size of each sub population 
needed

– can select random/worst individuals to replace

Additional reading: 
Dirk Sudholt’s theoretical results on migration strategies (look for 
“migration” on http://dblp.uni-trier.de/pers/hd/s/Sudholt:Dirk, e.g. 
his 2015 book chapter 
http://staffwww.dcs.shef.ac.uk/people/D.Sudholt/parallel-eas.pdf) 



Implicit 2: 
Diffusion Model Parallel EAs
§ Impose spatial structure (usually grid) in 1 population

Current
individual

Neighbours



Diffusion Model EAs

§ Consider each individual to exist on a point on a (usually 
rectangular toroid) grid

§ Selection (hence recombination) and replacement 
happen using concept of a neighbourhood a.k.a. deme

§ Leads to different parts of grid searching different parts 
of space, good solutions diffuse across grid over a 
number of gens



Diffusion Model Example

§ Assume rectangular grid so each individual has 8 
immediate neighbours

§ equivalent of 1 generation is:
– pick point in pop at random
– pick one of its neighbours using roulette wheel
– crossover to produce 1 child, mutate
– replace individual if fitter
– circle through population until done



Implicit 3: 
Automatic Speciation
§ Either only mate with genotypically/phenotypically 

similar members or 
§ Add bits to problem representation 

– that are initially randomly set 
– subject to recombination and mutation
– when selecting partner for recombination, only pick members 

with a good match
– can also use tags to perform fitness sharing (see later) to try and 

distribute members amongst niches



Explicit Methods:
Fitness Sharing vs. Crowding



Explicit 1: Fitness Sharing
§ Restricts the number of individuals within a given niche by 
“sharing” their fitness, so as to allocate individuals to niches 
in proportion to the niche fitness

§ need to set the size of the niche s share in either genotype or 
phenotype space

§ run EA as normal but after each gen set

Nice idea, but difficult to master (for more details see 
http://www.cs.bham.ac.uk/~pkl/teaching/2009/ec/lecture_notes/l06-niching.pdf)
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Explicit 2: Crowding

§ Attempts to distribute individuals evenly amongst niches 
(new individuals replace similar existing ones)

§ relies on the assumption that offspring will tend to be 
close to parents

§ uses a distance metric in phenotype/genotype space
§ randomly shuffle and pair parents, produce 2 offspring, 

then 
2 parent/offspring tournaments - pair so that 
d(p1,o1)+d(p2,o2) < d(p1,o2) + d(p2,o1)
(subscript: the tournament number, e.g. p1 is participates in 
tournament 1)

p1

p2

o1

o2





Multi-Objective Optimisation



Multi-Objective Problems (MOPs)

§ Wide range of problems can be categorised by the 
presence of a number of n possibly conflicting objectives:
– buying a car: speed vs. price vs. reliability
– engineering design: lightness vs strength

§ Two part problem:
– finding set of good solutions
– choice of best for particular application



Many problems have more than one goal function

speed

comfort

There is no single optimal function value

Present the different trade offs 
to a decision maker

Example: Buying a new car

Multi-Objective Optimisation



MOPs 1: Conventional approaches 

rely on using a weighting of objective function values to 
give a single scalar objective function which can then be 
optimised

to find other solutions have to re-optimise with different wi.

å
=

=
n

i
ii xfwxf

1

)()('



Try to compute/approximate the Pareto front by EAs

Evolve the population of an EA into a set of 
Pareto optimal solutions

Evolutionary Multi-Objective Optimization



MOPs 2: Dominance

we say x dominates y if it is at least as good on all criteria 
and better on at least one

Dominated by x

f1

f2

Pareto front
x



Concept may be translated to search points

Non-dominated objective vectors constitute the Pareto front

Classical goal:
Compute for each Pareto optimal objective vector 
a corresponding solution

Dominance in the objective space

Neumann, Frank 4

Multi-Objective Optimization

Concept may be translated to search points

Non-dominated objective vectors constitute the Pareto front

Classical goal:
Compute for each Pareto optimal objective vector a corresponding solution
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Multi-Objective Optimization

Concept may be translated to search points

Non-dominated objective vectors constitute the Pareto front

Classical goal:
Compute for each Pareto optimal objective vector a corresponding solution

                   

    

             

      
      

Dominance in the objective space

f : Xn ! Rm

Multi-Objective	Optimisation



General assumption 
§ Multi-objective optimization is more (as least as) difficult 

as single-objective optimization.
§ True, if criteria to be optimized are independent.

Examples
§ Minimum Spanning Tree Problem (MST) (in P). 
§ MST with at least 2 weight functions (NP-hard).
§ Shortest paths (SP) (in P).
§ SP with at least 2 weight functions (NP-hard).

Single-Objective vs. Multi-Objective 
Optimization



MOPs 3: Advantages of EC approach

§ Population-based nature of search means you can 
simultaneously search for a set of points approximating 
Pareto front

§ Don’t have to make guesses about which combinations of 
weights might be useful

§ Makes no assumptions about shape of Pareto front,
can be convex/discontinuous etc.



The fast non-dominated sorting algorithm 
(NSGA-II)



Non-dominated Sorting

Idea
§ Search points that are non-dominated are really good.
§ Search points that are just dominated by a few other 

search points are not that bad.
§ Search points that are dominated by many other search 

points are really bad.

Procedure
Rank that individuals in a population according to the 

number of individuals that dominate it.



Assume minimization of fitness function

f : Xn ! Rm

a �Par b :, f(a) �Par f(b).

x �Par y :, xi  yi for 1  i  m.

Dominance in objective space

Dominance in search space

Non-dominated Sorting



f1

f2

Task:	minimise f1 and	f2

Non-dominated Sorting
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f1

f2

Task:	minimise f1 and	f2

Non-dominated Sorting
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f2

Task:	minimise f1 and	f2

Non-dominated Sorting
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f2

Task:	minimise f1 and	f2

Non-dominated Sorting
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f2

Task:	minimise f1 and	f2

Non-dominated Sorting



F3

f1

f2

Task:	minimise f1 and	f2

Non-dominated Sorting



Fast non-dominated Sorting
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front, the solutions of the first front are discounted temporarily
and the above procedure is repeated. In the worst case, the task
of finding the second front also requires computa-
tions, particularly when number of solutions belong to
the second and higher nondominated levels. This argument is
true for finding third and higher levels of nondomination. Thus,
the worst case is when there are fronts and there exists only
one solution in each front. This requires an overall
computations. Note that storage is required for this pro-
cedure. In the following paragraph and equation shown at the
bottom of the page, we describe a fast nondominated sorting
approach which will require computations.
First, for each solution we calculate two entities: 1) domi-

nation count , the number of solutions which dominate the
solution , and 2) , a set of solutions that the solution dom-
inates. This requires comparisons.
All solutions in the first nondominated front will have their

domination count as zero. Now, for each solution with ,
we visit each member ( ) of its set and reduce its domina-
tion count by one. In doing so, if for any member the domi-
nation count becomes zero, we put it in a separate list . These
members belong to the second nondominated front. Now, the
above procedure is continued with each member of and the
third front is identified. This process continues until all fronts
are identified.
For each solution in the second or higher level of nondom-

ination, the domination count can be at most . Thus,
each solution will be visited at most times before its
domination count becomes zero. At this point, the solution is
assigned a nondomination level and will never be visited again.
Since there are at most such solutions, the total com-

plexity is . Thus, the overall complexity of the procedure
is . Another way to calculate this complexity is to re-
alize that the body of the first inner loop (for each ) is
executed exactly times as each individual can be the member
of at most one front and the second inner loop (for each )
can be executed at maximum times for each individual
[each individual dominates individuals at maximum and
each domination check requires at most comparisons] results
in the overall computations. It is important to note
that although the time complexity has reduced to , the
storage requirement has increased to .

B. Diversity Preservation
We mentioned earlier that, along with convergence to the

Pareto-optimal set, it is also desired that an EAmaintains a good
spread of solutions in the obtained set of solutions. The original
NSGA used the well-known sharing function approach, which
has been found to maintain sustainable diversity in a popula-
tion with appropriate setting of its associated parameters. The
sharing function method involves a sharing parameter ,
which sets the extent of sharing desired in a problem. This pa-
rameter is related to the distance metric chosen to calculate the
proximity measure between two population members. The pa-
rameter denotes the largest value of that distance metric
within which any two solutions share each other’s fitness. This
parameter is usually set by the user, although there exist some
guidelines [4]. There are two difficulties with this sharing func-
tion approach.
1) The performance of the sharing function method in
maintaining a spread of solutions depends largely on the
chosen value.

- - -
for each

for each
if then If dominates

Add to the set of solutions dominated by
else if then

Increment the domination counter of
if then belongs to the first front

Initialize the front counter
while

Used to store the members of the next front
for each
for each

if then belongs to the next front

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T. 
Meyarivan: 
A fast and elitist multiobjective genetic algorithm: NSGA-II. 
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T. 
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front ) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism
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is introduced by comparing current population with previously
found best nondominated solutions, the procedure is different
after the initial generation. We first describe the th generation
of the proposed algorithm as shown at the bottom of the page.
The step-by-step procedure shows that NSGA-II algorithm is

simple and straightforward. First, a combined population
is formed. The population is of size . Then, the

population is sorted according to nondomination. Since all
previous and current population members are included in ,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the set for the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
their ranking. Thus, solutions from the set are chosen next,
followed by solutions from the set , and so on. This procedure
is continued until no more sets can be accommodated. Say that
the set is the last nondominated set beyond which no other
set can be accommodated. In general, the count of solutions in
all sets from to would be larger than the population size.
To choose exactly population members, we sort the solutions
of the last front using the crowded-comparison operator
in descending order and choose the best solutions needed to fill
all population slots. The NSGA-II procedure is also shown in
Fig. 2. The new population of size is now used for se-
lection, crossover, andmutation to create a new population
of size . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
both the rank and crowded distance of each solution in the pop-
ulation, we calculate these quantities while forming the popula-
tion , as shown in the above algorithm.
Consider the complexity of one iteration of the entire algo-

rithm. The basic operations and their worst-case complexities
are as follows:
1) nondominated sorting is ;
2) crowding-distance assignment is ;
3) sorting on is .

The overall complexity of the algorithm is , which is
governed by the nondominated sorting part of the algorithm. If

Fig. 2. NSGA-II procedure.

performed carefully, the complete population of size need
not be sorted according to nondomination. As soon as the sorting
procedure has found enough number of fronts to have mem-
bers in , there is no reason to continue with the sorting pro-
cedure.
The diversity among nondominated solutions is introduced

by using the crowding comparison procedure, which is used in
the tournament selection and during the population reduction
phase. Since solutions compete with their crowding-distance (a
measure of density of solutions in the neighborhood), no extra
niching parameter (such as needed in the NSGA) is re-
quired. Although the crowding distance is calculated in the ob-
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is introduced by comparing current population with previously
found best nondominated solutions, the procedure is different
after the initial generation. We first describe the th generation
of the proposed algorithm as shown at the bottom of the page.
The step-by-step procedure shows that NSGA-II algorithm is

simple and straightforward. First, a combined population
is formed. The population is of size . Then, the

population is sorted according to nondomination. Since all
previous and current population members are included in ,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the set for the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
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To choose exactly population members, we sort the solutions
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selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
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tion , as shown in the above algorithm.
Consider the complexity of one iteration of the entire algo-

rithm. The basic operations and their worst-case complexities
are as follows:
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Dominance relation on sets is not total.
We may move between solutions if they are incomparable

Deteriorative Cycles
a

b

c

EA may not converge!!!
(theoretical proof are 
available upon request)

Deteriorative	Cycles



The Hypervolume Indicator



We are interested in sets of search points
Extend dominance relation to sets (assume maximization)

Let A,B 2 2X then

A ⌫
dom

B :, (8b 2 B 9a 2 A : a ⌫
Par

b).

Let A,B 2 2

X
and � be an arbitrary relation on 2

X
. Then

A � B :, (A ⌫ B) ^ (B 6⌫ A)

Set-Based	Multi-Objective
Optimisation



We denote the set of maximal elements containing exactly µ elements of X by

Maxµ(2
X
,⌫), i.e

Maxµ(2
X
,⌫) := Max{R | R 2 2

X ^ |R| = µ}.

Goal in multi-objective optimization: 



Unary Indicators

We want to assign to a set of search points (population) a 
value that determines the quality of this set

If ≼I is strictly Pareto compliant then ≼Alg4=≼I . If ≼I is in also transitive,
then ≼Alg4=≼I does not contain a deteriorative cycle. We state this property
in the following corollary.

Corollary 4.5 If ≼I is strictly Pareto compliant and transitive then ≼Alg4

does not contain a deteriorative cycle.

5 Unary Indicators

We now want to examine the common approach to define refinements via
indicator functions (see e. g. [19]). In this section we focus on unary indicator
functions while the next section examines binary indicator functions. Unary
indicator functions assign to each set a real number that somehow reflects
their quality, i.e.,

I1 : 2
X → R.

To define a relation based on an unary indicator function, we use the following
definition.

Definition 5.1 For an unary indicators I1 we set

A ≼I1 B :⇔ I1(A) ≤ I1(B),

A ≺I1 B :⇔ I1(A) < I1(B).

Note that the relation ≼I1 is total and also transitive as the order on real
values forms a transitive relation.

Also observe the following simple property, which follows directly from Theo-
rem 4.4 and Corollary 4.5.

Lemma 5.2 Let I be an unary indicator.

• If the corresponding relation ≼I is Pareto-compliant, then ≼I contains no
deteriorative cycles.

• If the corresponding relation ≼I is strictly Pareto-compliant, then ≼Alg4=≼I

contains no deteriorative cycles.

5.1 The hypervolume indicator with a fixed reference point

Lemma 5.2 shows that unary indicators can help to avoid in a natural way
the problem of cyclic behavior and why the property of Pareto-compliance
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For an unary indicators I1 we set

A ⌫I1 B :, I1(A) � I1(B),

A �I1 B :, I1(A) > I1(B).



MOPs 4: Requirements of EC approach

§ Way of assigning fitness, 
– usually based on dominance

§ Preservation of diverse set of points
– similarities to multi-modal problems

§ Remembering all the non-dominated points 
you’ve seen
– usually using elitism or an archive



MOPs 5: Fitness Assignment

§ Could use aggregating approach and change weights 
during evolution
– no guarantees

§ Different parts of pop use different criteria
– e.g. VEGA, but no guarantee of diversity

§ Dominance
– ranking or depth based
– fitness related to whole population



MOPs 6: Diversity Maintenance

§ Usually done by niching techniques such as:
– fitness sharing
– adding amount to fitness based on inverse distance to nearest 

neighbour (minimisation)
– (adaptively) dividing search space into boxes and counting 

occupancy
§ All rely on some distance metric in genotype / phenotype 

space



MOPs 7: Remembering Good Points

§ Could just use elitist algorithm 
– e.g. ( µ + l ) replacement 

§ Common to maintain an archive of non-
dominated points
– some algorithms use this as second population that 

can be in recombination etc
– others divide archive into regions too e.g. PAES



Which indicator to measure 
the quality of a population? 

One popular choice: Hypervolume indicator

Reference point

Set-Based	Multi-Objective
Optimisation



Hypervolume Indicator
Which population is better?

HYP({   ,   ,   })=4.9
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1st Objective (to be maximized)

HYP({   ,   ,   })=5.3



Hypervolume

Hypervolume of a set of points A with respect to a 
reference point 

is given by

is especially important for unary indicators. Unfortunately, there is currently
only one unary indicator known that is Pareto-compliant. This is the hy-
pervolume indicator. For minimization problems it measures the volume of
the dominated portion of the objective space relative to a reference point
R = (R1, R2, . . . , Rd) ∈ Rd that lies above the Pareto front.

For our following investigations, we assume that the reference point does not
change during the run of the algorithm. In our setting where an indicator
should be minimized, the hypervolume indicator of a set of solutions A ∈ 2X

can be defined as

IRHYP(A) := −vol

⎛

⎝
⋃

x∈A
[f1(x), R1]× . . .× [fd(x), Rd]

⎞

⎠

with vol(·) being the usual Lebesgue measure. Note, that minimizing IRHYP(A)
is equivalent to maximizing the volume covered by A with respect to the ref-
erence point R. As the reference point R is fixed in this section, we just set
IHYP := IRHYP. The hypervolume indicator was first introduced for perfor-
mance assessment in multiobjective optimization by Zitzler and Thiele [18]
and hypervolume-based optimizers have become very popular in recent years
(see e.g. [3, 8, 16]).

The problem with the hypervolume indicator is that it is computationally
expensive, i. e., the runtime for the computation of the hypervolume for a given
set of search points grows exponentially with the number of objectives [4].
Compared to this the test whether A ≼dom B holds can always be done in
time polynomial in the size of the given two sets and the number of objectives.

The following theorem describes another nice property of the hypervolume
indicator.

Theorem 5.3 Let A,B ∈ 2X . If A ≡dom B then IHYP(A) = IHYP(B) holds.

Proof. Let A ≡dom B. Then Lemma 2.3 implies Min(f(A),≼Par) =
Min(f(B),≼Par). As the hypervolume of a given set of points is only de-
termined by its set of minimal elements in the objective space, this implies
HYP(A) = HYP(B).

Note that the above theorem actually not only holds for HYP, but for all
unary indicators whose value only depends on the minimal elements in the
objective space.
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Simple Indicator-based EA18 Dimo Brockhoff

Algorithm 1 Simple Indicator-Based Evolutionary Algorithm (SIBEA)
Given: population size µ; number of generations N

Step 1 (Initialization): Generate an initial set of decision vectors P of size µ; set
the generation counter m := 0

Step 2 (Environmental Selection): Iterate the following three steps until the size of
the population does no longer exceed µ:

1. Rank the population using dominance rank (number of dominating solutions)
and determine the set of solutions P ′ ⊆ P with the worst rank

2. For each solution x ∈ P ′ determine the loss of hypervolume d(x) = IH(P ′)−
IH(P ′ \ {x}) if it is removed from P ′

3. Remove the solution with the smallest loss d(x) from the population P (ties
are broken randomly)

Step 3 (Termination): If m ≥ N then output P and stop; otherwise set m := m+1.
Step 4 (Mating): Randomly select elements from P to form a temporary mating
pool Q of size λ. Apply variation operators such as recombination and mutation to
the mating pool Q which yields Q′. Set P := P +Q′ (multi-set union) and continue
with Step 2.

To circumvent this costly strategy of taking the best set of µ solutions,
most known hypervolume-based evolutionary algorithms use a greedy strat-
egy that is not always optimal: When a population P of µ + λ solutions has
to be reduced to µ solutions, the solution s with the smallest hypervolume
loss d(s) := IH(P ) − IH(P \ {s}) is deleted iteratively until the desired size is
reached; the hypervolume loss is recalculated every time a solution is deleted.
Algorithm 1 shows a general framework of such a hypervolume-based algorithm
with greedy strategy in terms of the Simple Indicator Based Evolutionary Al-
gorithm (SIBEA) [Zitzler et al., 2007]. To be even more efficient, a Pareto
dominance based ranking is often used before the reduction, such that only
pairwisely incomparable solutions are taken into account within P 9. Note that
in general, many other strategies are possible to optimize the hypervolume indi-
cator in an evolutionary algorithm, e.g., the k-greedy strategy of [Zitzler et al.,
2008] or the one in HypE [Bader and Zitzler, 2008]. However, practically rele-
vant algorithms such as SMS-EMOA and MO-CMA-ES are using the described
greedy strategy which explains the interest of theoretical studies into the greedy
approach.

One of the most basic questions for such hypervolume-based algorithms with
greedy environmental selection, for which often λ = 1 is chosen to reduce the
runtime further, is whether they are able to find an optimal µ-distribution.

Theorem 4 ([Zitzler et al., 2008]). Hypervolume-based evolutionary algorithms
with a greedy environmental selection step as in Algorithm 1 do not guarantee
to find an optimal µ-distribution in general.

Proof. We consider a simple biobjective problem with 4 solutions x1, . . . , x4,
where f(x1) = (1, 6), f(x2) = (6, 2), f(x3) = (5, 3), f(x4) = (7, 1) and the
reference point is r = (10, 7). By simply computing the hypervolume indi-

nλ). However, this is still exponential in the number of objectives and might be inapplicable
in practice.

9Although in SIBEA the dominance rank is used, also non-dominated sorting or other
ranking techniques can be used and do not change the theoretical results shown below.
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Source: Dimo Brockhoff. Theoretical Aspects of Evolutionary Multiobjective Optimization—A Review



Hypervolume Indicator

Property of “strict Pareto compliance”:

§ Consider two Pareto sets A and B:

§ Hypervolume indicator values A higher than B
if the Pareto set A dominates the Pareto set B



by B but not by A with respect to a predefined reference point Z. While the
calculation of the IHD(A,B)-values is computationally expensive for approxi-
mations containing several decision vectors, it is of order O(n) if two decision
vectors are compared. The IHD-indicator will be used in addition to the Iϵ+-
indicator later in this paper. A graphical interpretation for IHD can be found on
the right hand side of Fig. 1.

Other examples for binary quality indicators that could be used here are
described in Hansen and Jaszkiewicz’s study [9].
3.3 Basic Algorithm
Based on the above fitness assignment scheme, we propose a general indicator-
based evolutionary algorithm (IBEA) that performs binary tournaments for mat-
ing selection and implements environmental selection by iteratively removing the
worst individual from the population and updating the fitness values of the re-
maining individuals. Its running-time complexity is O(α2) with regard to the
population size α. Details of the algorithm are given below; note that it rep-
resents only the basic version of IBEA (denoted B-IBEA in the following), an
extended version will be specified later.
Algorithm 1 (Basic IBEA)
Input: α (population size)

N (maximum number of generations)
κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialization: Generate an initial population P of size α; set the generation counter m
to 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in P , i.e., for all x1 ∈ P set

F (x1) =
∑

x2∈P\{x1} −e−I({x2},{x1})/κ.
Step 3: Environmental selection: Iterate the following three steps until the size of population P

does not exceed α:
1. Choose an individual x∗ ∈ P with the smallest fitness value, i.e., F (x∗) ≤ F (x)

for all x ∈ P .
2. Remove x∗ from the population.
3. Update the fitness values of the remaining individuals, i.e.,

F (x) = F (x) + e−I({x∗},{x})/κ for all x ∈ P .
Step 4: Termination: If m ≥ N or another stopping criterion is satisfied then set A to the set

of decision vectors represented by the nondominated individuals in P . Stop.
Step 5: Mating selection: Perform binary tournament selection with replacement on P in order

to fill the temporary mating pool P ′.
Step 6: Variation: Apply recombination and mutation operators to the mating pool P ′ and add

the resulting offspring to P . Increment the generation counter (m = m + 1) and go to
Step 2.

3.4 Simulation Results
The proposed algorithm was tested on several well-known benchmark problems:
the 2-dimensional knapsack problem instance from [17] with 100 items, a net-
work processor application comprising problem instances with two (EXPO2),
three (EXPO3), and four (EXPO4) objectives (cf. [14]), and four continuous
test functions, namely ZDT6 [15] and KUR [12] with two objectives as well as
DTLZ2 and DTLZ6 [6] with three objectives each.3 For all problems, the popu-
lation size α was set to 100 and the maximum number of generations N to 200.
3 For the continuous problems, the individuals are coded as real vectors, where the

SBX-20 operator is used for recombination and a polynomial distribution for muta-
tion [4]. The recombination and mutation probabilities were set to 1.0 and to 0.01,
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Hypervolume Indicator

§ Given: n axis-parallel boxes in d-dimensional space
(boxes all have (0,...,0) as bottom corner)

§ Task:  Measure (volume) of their union

§ Popular Algorithms:

§ HSO: [Zitzler’01, Knowles’02]

§ BR: [Beume Rudolph’06]

§ Many (heuristical) improvements and
specialized algorithms for small dimensions

§ Only Lower Bound:                  [Beume et al.’07]



General Scheme of EAs



http://cs.adelaide.edu.au/~optlog/TTP2017Comp
Advertisement: Competition with AUD 1,000 prize



Applications in Adelaide

Energy consumption optimisation of apps 
on smart-phones. Our test bed: 
https://www.youtube.com/watch?v=C7WHoLW1KYw

Optimisation of submerged wave energy converters:
http://cs.adelaide.edu.au/~optlog/research/energy.php
In collaboration with Carnegie Wave Pty Ltd and School of 
Mechanical Engineering

And much more:
http://cs.adelaide.edu.au/~optlog/
http://cs.adelaide.edu.au/~markus/publications.html


