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Charles Robert Darwin 5 Fotow - Google Scholar

naturalist (1809-1882)
life sciences, evolution, biogeography, speciation, natural selection Q
Verified email at unr.edu.ar - Homepage

Citation indices All Since 2012
Citations 131694 37156
h-index 104 59
i10-index 512 205

Title 1-20 Cited by Year

On the Orngin of Species

CR Darwin 34323 * 1859

London: John Murray 2009 2010 2011 2012 2013 2014 2015 2016 2017

Origin of species _
CMA Darwin 34234 * 1978 Co-authors View all...

DMP Alfred Russel Wallace (1823-1913)

R.(1859): On the Origin of Species by Means of Natural Selection
C Darwin 33019 * 1871

Murray. London

On the origin of species, facsimile of. 6th
CD Darwin 33842 * 1872

Cambridge: Harvard University Press

The decent of man, and selectionin relation to sex
C Darwin 18807 * 1871

Princeton, Princeton University Press

The descent ofman, andselection in relation to sex
C Darwin 18743 * 1871

London: Murray

The descent ofman, and selection in relation to sex (2 vols.)
C Darwin 18704 * 1871

London: Murray

The descent of man, and selection in relation to sex
C Darwin 18890 1888

Murray

The Descent of Man, and Selection in Relation to Sex.(1966)
C Darwin 18688 * 1871



Introductory Example

Computer-Automated Evolution
of an X-Band Antenna for
NASA's Space Technology 5
Mission

This evolved antenna design is the
first computer-evolved antenna to be
deployed for any application and is
the first computer-evolved hardware
in space.

PDF:
http://www.mitpressjournals.org/doi
/pdf/10.1162/EVCO a 00005

Youtube video:

https://www.youtube.com/watch?v=
HAjozNpBilL4&t=1261s

(b)

Figure 5: Photographs of prototype evolved antennas: (a) ST5-3-10; (b) ST5-4W-03.






A.E.Eiben - J.E. Smith

Introduction
to Evolutionary
Computing

NATURAL COMPUTING SERIES

Evolutionary orange = 1 exition (preferred)

Computation green = 29 edition




Text Books

A. E. Eiben, J. E. Smith: Introduction to Evolutionary
Computing, Springer, 2003. [strongly recommended]

= Z.Michalewicz, D. B. Fogel: How to Solve It: Modern
Heuristics, Springer, 2004.

= F. Neumann, C. Witt: Bioinspired Computation in
Combinatorial Optimization — Algorithms and Their
Computational Complexity, Springer, 2010. Free:
http://www.bioinspiredcomputation.com

= F. Rothlauf: Design of Modern Heuristics - Principles
and Applications, Springer, 2011. [strongly
recommended]




Today’s Contents

15t Session
= Positioning of EC and the basic EC metaphor
= Historical perspective
» Biological inspiration:
— Darwinian evolution theory (simplified!)
= Motivation for EC

ond Segsion
= Multi-modal problems
= Multi-objective optimisation



Positioning of EC

= ECis part of computer science

= ECis not part of life sciences/biology

= Biology delivered inspiration and terminology
= EC can be applied in biological research



The Main Evolutionary Computing Metaphor

EVOLUTION PROBLEM SOLVING

Environment <——p Problem
Individual <——p Candidate Solution

Fithess <——p Quality

Fitness = chance for survival and reproduction

Quality - chance for seeding new solutions



Brief History 1: the ancestors

1948, Turing:
proposes " genetical or evolutionary search”

" 1962, Bremermann

optimization through evolution and recombination
" 1964, Rechenberg

introduces evolution strategies
= 1965, Fogel, Owens and Walsh

introduce evolutionary programming
= 1975, Holland

introduces genetic algorithms
= 1992, Koza

introduces genetic programming
" 1992, Dorigo

introduces ant-colony optimisation
* 1995, Kennedy, Eberhardt and Shi
introduce particle swarm optimisation



Brief History 2: The rise of EC

1985: first international conference (ICGA)
1990: first international conference in Europe (PPSN)

1993: first scientific EC journal (MIT Press)



EC in the early 215t Century

= 3 major EC conferences (GECCO, PPSN, CEC), about 10 small
related ones

= 2 scientific core EC journals (MIT Evolutionary Computation,
IEEE Transactions on Evolutionary Computation) and many
others

* uncountable (meaning: many) applications

= uncountable (meaning: ?) consultancy and R&D firms

Em/Prof Zbigniew Michalewicz:
NuTech (now part of IBM)
SolvelT (now part of Schneider Electric)



Darwinian Evolution 1:
Survival of the fittest

= All environments have finite resources
(i.e., can only support a limited number of individuals)
= Life forms have basic instincts/lifecycles geared towards
reproduction

» Therefore some kind of selection is inevitable

» Those individuals that compete for the resources most
effectively have an increased chance of reproduction

= Note: fitness in natural evolution is a derived, secondary
measure, i.e., we (humans) assign a high fitness to
individuals with many offspring (?)



Darwinian Evolution 2:
Diversity drives change

= Phenotypic traits:

— Behaviour / physical differences that affect response to
environment

— Partly determined by inheritance, partly by factors during
development

— Unique to each individual, partly as a result of random changes
= “Suitable” phenotypic traits:

— Lead to higher chances of reproduction

— Can be inherited

then they will tend to increase in subsequent
generations,

» leading to new combinations of traits ...



Darwinian Evolution:
Summary

= Population consists of a diverse set of individuals

= Combinations of traits that are better adapted tend to
increase representation in population

Individuals are “units of selection”

= Variations occur through random changes yielding
constant source of diversity, coupled with selection
means that:

Population is the “unit of evolution”

= Note the absence of a “guiding force”



Adaptive landscape metaphor
(Wright, 1932)

= Can envisage population with n traits as existing in a
n+1-dimensional space (landscape) with height
corresponding to fitness

= Each different individual (phenotype) represents a single
point on the landscape

= Population is therefore a “cloud” of points, moving on
the landscape over time as it evolves - adaptation



Example with two traits

i




Adaptive landscape metaphor (cont’ d)

= Selection “pushes” population up the landscape

= Genetic drift:

 random variations in feature distribution
(+ or -) arising from sampling error

« can cause the population to “melt down” hills, thus crossing
valleys and leaving local optima



Motivations for EC: 1

= Nature has always served as a source of inspiration for
engineers and scientists

=  The best problem solver known in nature is:

— the (human) brain that created “the wheel, New

York, wars and so on” (after Douglas Adams’ Hitch-
Hikers Guide)

— the evolution mechanism that created the human
brain (after Darwin’s Origin of Species)

= Answer 1 2 neurocomputing
= Answer 2 - evolutionary computing



Motivations for EC: 2

« Developing, analysing, applying problem solving
methods a.k.a. algorithms is a central theme in
mathematics and computer science

« Time for thorough problem analysis decreases

« Complexity of problems to be solved increases

* Consequence:
Robust problem solving technology needed



Problem type 1 : Optimisation

We have a model of our system and seek inputs that give us a specified goal

Model

Input QOutput

For example
— time tables for university, call centre, or hospital

— design specifications, etc.



Problem types 2: Modelling

We have corresponding sets of inputs & outputs and seek model that
delivers correct output for every known input

known —»

Input

Model

»  known
Output

For example: evolutionary machine learning



Problem type 3: Simulation

We have a given model and wish to know the outputs that arise under
different input conditions

Model

Known ———» known [——» ’)

Input Oulput

AUSTRALASIAN CONFERENCE ON ARTIFICIAL LIFE AND
COMPUTATIONAL INTELLIGENCE (ACALCI 2017)

31 January-2 February 2017, Melbourne, Australia
Home

Often us ed to answer “What_ Call For Paper g:::;:;;xlﬂfmmﬁon ::gg?ls?t[:ﬁou m::sg’;sanisem fvied Speskers
environments, e.g. Evolutior




Evolutionary Algorithms:
Overview

= Recap of Evolutionary Metaphor
= Basic scheme of an EA
= Basic Components:

— Representation / Evaluation / Population / Parent
Selection / Recombination / Mutation / Survivor
Selection / Termination



Recap of EC metaphor

= A population of individuals exists in an environment with
limited resources
= Competition for those resources causes selection of

those fitter individuals that are better adapted to the
environment

» These individuals act as seeds for the generation of new
individuals through recombination and mutation

» The new individuals have their fitness evaluated and
compete (possibly also with parents) for survival.

= QOver time Natural selection causes a rise in the fitness
of the population



Recap 2:

= EAs fall into the category of “generate and test”
algorithms

» They are stochastic, population-based algorithms

= Variation operators (recombination and mutation) create
the necessary diversity and thereby facilitate novelty

= Selection reduces diversity and acts as a force pushing
quality



General Scheme of EAs

Parent selection
» Parents
Intilisation
Recombination
—>
Population
A Mutation
Y
h 4
Termination .
Offspring

Survivor selection



Pseudo-code for typical EA

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATEFE the resulting offspring;
4 FVALUATE new candidates;
5 SELECT individuals for the next generation;
0D
END




What are the different types of EAs

= Historically different flavours of EAs have been
associated with different representations

— Binary strings: Genetic Algorithms

— Real-valued vectors: Evolution Strategies

— Finite state Machines: Evolutionary Programming
— LISP trees: Genetic Programming

= These differences are largely irrelevant, best strategy
— choose representation to suit problem
— choose variation operators to suit representation

= Selection operators only use fitness and so are
independent of representation



~= = Representations
nnnnnnn ﬂ

= Candidate solutions (individuals) exist in phenotype
space

» They are encoded in chromosomes, which exist in
genotype space

— Encoding : phenotype => genotype (not necessarily one to one)

— Decoding : genotype => phenotype (must be one to one)
= Chromosomes contain genes, which are in (usually fixed)
positions called loci (sing. locus) and have a value (allele)

In order to find the global optimum, every feasible
solution must be represented in genotype space
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Evaluation (Fitness) Function

= Represents the requirements that the population should
adapt to

= a.k.a. quality function or objective function

» Assigns a single real-valued fitness to each phenotype
which forms the basis for selection

— So the more discrimination (different values) the
better

= Typically we talk about fitness being maximised

— Some problems may be best posed as minimisation
problems, but conversion is trivial



Parent selection
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Survivor selection
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Recombination

- Population :

s

Holds (representations of) possible solutions

Usually has a fixed size and is a multiset of genotypes
Some sophisticated EAs also assert a spatial structure on
the population, e.g., a grid.

Selection operators usually take whole population into
account i.e., reproductive probabilities are relative to
current generation

Diversity of a population refers to the number of
different fitnesses / phenotypes / genotypes present

(note not the same thing) Quick Question

)

”Small” or “large’
populations?
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Parent Selection Mechanism

= Assigns variable probabilities of individuals acting as
parents depending on their fitnesses

= Usually probabilistic

— high quality solutions more likely to become parents
than low quality

— but not guaranteed

— even worst in current population usually has non-zero
probability of becoming a parent

= This stochastic nature can aid escape from local optima



Variation Operators

= Role is to generate new candidate solutions
» Usually divided into two types according to their arity
(number of inputs):
— Arity 1 : mutation operators
— Arity >1 : recombination operators
— Arity = 2 typically called crossover
= There has been much debate about relative importance
of recombination and mutation
— Nowadays most EAs use both

— Choice of particular variation operators is representation
dependant



Mutation

= Acts on one genotype and delivers another

= Element of randomness is essential and differentiates it
from other unary heuristic operators

= Importance ascribed depends on representation and
dialect:

— Binary GAs — background operator responsible for preserving
and introducing diversity

— EP for FSM’s/continuous variables — only search operator
— GP - hardly used

= May guarantee connectedness of search space and hence

parent ] 0 ) 0 g e g uickuestion

How about TSP tours?

child 01110(0(1]0]11]|1]010]0{1[0(1(1[0]0]1




Recombination

= Merges information from parents into offspring
= Choice of what information to merge is stochastic
= Most offspring may be worse, or the same as the parents

= Hope is that some are better by combining elements of
genotypes that lead to good traits

= Principle has been used for millennia by breeders of
plants and livestock

o|0o|jo|o|o0|0(O(O|O|O|O(0|0|0|0|0|O0|O

parents
T R N R ek (R R VR (G uickuestion
How about TSP tours?
CRCEEORERes 1 | 1 |1 (1(1(111(1|1]1[1([1[1
children




Survivor Selection

= a.k.a. replacement

= Most EAs use fixed population size so need a way of
going from (parents + offspring) to next generation

= Often deterministic
— Fitness-based : e.g., rank parents+offspring and take best

— Age-based: make as many offspring as parents and delete all
parents

= Sometimes do combination (elitism)

Quick Question

Why is Survivor
Selection needed?




Initialisation / Termination

Initialisation usually done at random
— Need to ensure even spread and mixture of possible allele values

— Can include existing solutions, or use problem-specific
heuristics, to “seed” the population

Quick Question

Seeding: what are
disadvantages?

Termination condition checked every generation
— Reaching some (known/hoped for) fitness
— Reaching some maximum allowed number of generations
— Reaching some minimum level of diversity

— Reaching some specified number of generations without fitness
improvement



General Scheme of EAs

Parent selection
» Parents
Intilisation
Recombination
—>
Population
A Mutation
Y
h 4
Termination .
Offspring

Survivor selection






Gusz Eiben, Jim Smith, From evolutionary computation to the evolution of things
(article in Nature 2015)

"... From the perspective of the underlying substrate in which the evolution takes
place, the emergence of evolutionary computation can be considered as a major
transition of the evolutionary principles from 'wetware', the realm of biology, to
software, the realm of computers. Today the field is at an exciting stage. New
developments in robotics and rapid prototyping (3D printing) are paving the way
towards a second major transition: from software to hardware, going from digital
evolutionary systems to physical ones. ...”
http://www.nature.com/nature/journal/v521/n7553/full/nature14544.html




Multimodal Problems,
Multi-Objective Optimization

Eiben/Smith Chapter 9




Multimodal Problems



Motivation 1: Multimodality

Most interesting problems have more than one locally
optimal solution.

Quick Question

Which solution is best?

ﬁs




Motivation 2: Genetic Drift

» Finite population with global (panmictic) mixing and
selection eventually convergences around one optimum

= Often might want to identify several possible peaks

= This can aid global optimisation when sub-optima has
the largest basin of attraction



Biological Motivation 1: Speciation

» In nature different species adapt to occupy different
environmental niches, which contain finite resources, so
the individuals are in competition with each other

= Species only reproduce with other members of the same
species (Mating Restriction)

= These forces tend to lead to phenotypic homogeneity
within species, but differences between species



Biological Motivation 1: Speciation

“Darwin’s finches” (19" century)

A group of ~15 species, only found on the Galapagos
Islands

1. Geospiza magnirostris, 2. Geospiza fortis.
3. Geospiza parvula, 4, Certhidea olivasea.



Biological Motivation 2: Punctuated
Equilbria

= Theory that periods of stasis are interrupted by rapid growth
when main population is “invaded” by individuals from

previously spatially isolated group of individuals from the
same species

= The separated sub-populations (demes) often show local

adaptations in response to slight changes in their local
environments

Additional reading:

Did wolf no. 93 (temporarily) save the wolf population on Isle Royale? (1997)
http://en.wikipedia.org/wiki/Wolves and moose on Isle Royale

2011: “The wolf population on Isle Royale is small, averaging only about 23 wolves.
By the end of his eight years of breeding, he produced 34 pups, those had produced
an additional 45 pups.”

2016: “[The] wolf population is now nearly extinct with only two severely inbred
wolves present.”




Implications for Evolutionary Optimisation

Two main approaches to diversity maintenance:

= Implicit approaches
— Impose an equivalent of geographical separation
— Impose an equivalent of speciation
= Explicit approaches
— Make similar individuals compete for resources (fitness)
— Make similar individuals compete with each other for survival



Implicit 1: “Island” Model Parallel EAs

\/ Quick Question

Not limited to EAs...

» Periodic migration of individual solutions between populations



Island Model EAs contd:

» Run multiple populations in parallel, in some kind of
communication structure (usually a ring or a torus).

= After a (usually fixed) number of generations (an
epoch),
exchange individuals with neighbours

= Repeat until ending criteria met
= Partially inspired by parallel/clustered systems



Island Model Parameters 1

* Could use different operators in each island

= How often to exchange individuals ?
— too quick and all pops converge to same solution
— too slow and waste time
— most authors use range~ 25-150 gens

— can do it adaptively (stop each EA when there is no improvement for
(say) 25 generations)



Island Model Parameters 2

= How many, which individuals to exchange ?
— usually ~2-5, but depends on population size.

— more sub-populations usually gives better results but there can
be a “critical mass”, i.e., minimum size of each sub population
needed

— can select random/worst individuals to replace

Additional reading:

Dirk Sudholt’s theoretical results on migration strategies (look for
“migration” on http://dblp.uni-trier.de/pers/hd/s/Sudholt:Dirk, e.g.
his 2015 book chapter
http://staffwww.dcs.shef.ac.uk/people/D.Sudholt/parallel-eas.pdf)




Implicit 2:
Diffusion Model Parallel EAs

= Impose spatial structure (usually grid) in 1 population

@ @ L @ ®

! ! Current
individual

[ - ®

¢ ¢ Neighbours




Diffusion Model EAs

= Consider each individual to exist on a point on a (usually
rectangular toroid) grid

= Selection (hence recombination) and replacement
happen using concept of a neighbourhood a.k.a. deme

= Leads to different parts of grid searching different parts
of space, good solutions diffuse across grid over a
number of gens



Diffusion Model Example

= Assume rectangular grid so each individual has 8
immediate neighbours

= equivalent of 1 generation is:
— pick point in pop at random
— pick one of its neighbours using roulette wheel
— crossover to produce 1 child, mutate
— replace individual if fitter
— circle through population until done



Implicit 3:
Automatic Speciation

» Either only mate with genotypically/phenotypically
similar members or

= Add bits to problem representation
— that are initially randomly set
— subject to recombination and mutation

— when selecting partner for recombination, only pick members
with a good match

— can also use tags to perform fitness sharing (see later) to try and
distribute members amongst niches



Explicit Methods:
Fitness Sharing vs. Crowding

ftx)

fx)




Explicit 1: Fitness Sharing

= Restricts the number of individuals within a given niche by
“sharing” their fitness, so as to allocate individuals to niches
in proportion to the niche fitness

» need to set the size of the niche o share in either genotype or
phenotype space

= run EA as normal but after each gen set

(e S (/o) d~
S Zﬂlsh(d(i,j)) sh(d) = ( 0) ¢

Nice idea, but difficult to master (for more details see
http://www.cs.bham.ac.uk/~pkl/teaching/2009/ec/lecture notes/I06-niching.pdf)

0 otherwise




Explicit 2: Crowding

= Attempts to distribute individuals evenly amongst niches
(new individuals replace similar existing ones)

= relies on the assumption that offspring will tend to be
close to parents

= uses a distance metric in phenotype/genotype space

= randomly shuffle and pair parents, produce 2 offspring,
then

2 parent/offspring tournaments - pair so that
d(p,,0,)+d(p,,0,) < d(p,,0,) + d(p,,0,)

(subscript: the tournament number, e.g. p, is participates in
tournament 1)

P2

P1 %01 %

O,






Multi-Objective Optimisation



Multi-Objective Problems (MOPs)

= Wide range of problems can be categorised by the
presence of a number of n possibly conflicting objectives:
— buying a car: speed vs. price vs. reliability
— engineering design: lightness vs strength

= Two part problem:
— finding set of good solutions
— choice of best for particular application



Multi-Objective Optimisation

Many problems have more than one goal function
Example: Buying a new car

speed

There 1s no single optimal function value

Present the different trade offs
to a decision maker

> comfort



MOPs 1: Conventional approaches

rely on using a weighting of objective function values to
give a single scalar objective function which can then be

optimised

£ =2 ()

to find other solutions have to re-optimise with different w;



Evolutionary Multi-Objective Optimization

Try to compute/approximate the Pareto front by EAs

Evolve the population of an EA into a set of
Pareto optimal solutions




MOPs 2: Dominance

we say x dominates y if it is at least as good on all criteria
and better on at least one

Pareto front

/

Dominated by x

v

/2



Multi-Objective Optimisation

f: X" — R™

Dominance in the objective space

u weakly dominates v (u = v) iff u; > v; for all ¢ € {1,...

u dominates v (u > v) iff u > v and u # v.

Non-dominated objective vectors constitute the Pareto front

Classical goal:
Compute for each Pareto optimal objective vector
a corresponding solution



Single-Objective vs. Multi-Objective
Optimization

General assumption

= Multi-objective optimization is more (as least as) difficult
as single-objective optimization.

= True, if criteria to be optimized are independent.

Examples

= Minimum Spanning Tree Problem (MST) (in P).
= MST with at least 2 weight functions (NP-hard).
= Shortest paths (SP) (in P).

= SP with at least 2 weight functions (NP-hard).



MOPs 3: Advantages of EC approach

= Population-based nature of search means you can
simultaneously search for a set of points approximating
Pareto front

= Don’t have to make guesses about which combinations of
weights might be useful

= Makes no assumptions about shape of Pareto front,
can be convex/discontinuous etc.



The fast non-dominated sorting algorithm
(NSGA-II)




Non-dominated Sorting

Idea
= Search points that are non-dominated are really good.

» Search points that are just dominated by a few other
search points are not that bad.

= Search points that are dominated by many other search
points are really bad.

Procedure

Rank that individuals in a population according to the
number of individuals that dominate it.



Non-dominated Sorting

Assume minimization of fitness function
f: X" — R™
Dominance in objective space
T 2par Y& x; <y forl <i<m.

Dominance in search space

a jPa/r b &= f(a/) jPCL’F f(b)



Non-dominated Sorting

o

Task: minimise f, and f,

hi



Non-dominated Sorting

o

Task: minimise f, and f,

hi



Non-dominated Sorting

o

Task: minimise f, and f,

hi



Non-dominated Sorting
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Task: minimise f, and f,

hi



Non-dominated Sorting

o

Task: minimise f, and f,

hi



Non-dominated Sorting

F3

o

Task: minimise f, and f,

hi
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fast-non-dominated-sort(FP)

foreachp € P
S, =0
n, =0
foreachq € P
if (p < ¢) then
Sp =5, U{q}
else if (g < p) then
Ny = Ny + 1
if n, = O then
Prank = 1
Fi=F1LU{p}
t=1
while F; # ()
Q=10
foreach p € F;
for each g € 5,
ng =ng — 1
if n, = 0 then

Qrank:i+1
Q=QuUl{qg}
t=1+1
F=Q

If p dominates ¢
Add ¢ to the set of solutions dominated by p

Increment the domination counter of p
p belongs to the first front

Initialize the front counter

Used to store the members of the next front

q belongs to the next front

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



Crowding distance
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Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



Crowding distance assignment

crowding-distance-assignment(7)

= 1]
for each ¢, set Z[¢|qistance = 0
for each objective m
T =sort(Z, m)
I[l]distance — I[l]distance = 00
fori =2to(l —1)

number of solutions in Z
initialize distance

sort using each objective value
so that boundary points are always selected
for all other points

Tilaistance = Tlilaistance + (Z[i + 1.m — Z[i — .m)/(f™ = fu™)

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



Crowded Comparison Operator

Crowded comparison operator ( < )
1) nondomination rank (¢,ank);

2) crowding distance (2distance)-

We now define a partial order <,, as

1 <p g 1f (?:ra,nk < jrank)
or ((irank — jrank)
and (idistance > jdistance))



Selection

Non-dominated Crowding
sorting distance
sorting

-—Rejected

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



1 Iteration for NSGA-II

Ry =P, U@y combine parent and offspring population

F = fast-non-dominated-sort(f%;) F = (F1, Fa, ...), all nondominated fronts of R,

Piypy=0andi=1

until |Pogq |+ |Fi| £ N until the parent population is filled
crowding-distance-assignment(JF;) calculate crowding-distance in F;
Pi1=PFP 1 UF include 7th nondominated front in the parent pop
1=1+1 check the next front for inclusion

Sort(F;, <) sort in descending order using <,

Pii1 =P UFR[L (N — |Pya])] choose the first (N — |P,41|) elements of F;

(041 = make-new-pop(Fry1) use selection, crossover and mutation to create

a new population )44 1
t=1t4+1 increment the generation counter

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



1 Iteration for NSGA-II

Ry =P, U@y combine parent and offspring population
F = fast-non-dominated-sort(f%;) F = (F1, Fa, ...), all nondominated fronts of R,

PH_l:@andi:l

until |Pogq |+ |Fi| £ N until the parent population is filled

Poi=FP UK

include 7th nondominated front in the parent pop

1 =1+ 1 check the next front for inclusion

Sort(F;, <n)
Pop1=hpUF
(041 = make-new-pop(

t=1t+1

step

sort in descending order using =,
N — |Piy1])] choose the first (N — |P;41]) elements of F;
use selection, crossover and mutation to create
a new population )44 1
increment the generation counter

Compute crowding distance as part of this

Source: Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.
Meyarivan:

A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation 6(2): 182-197 (2002)



Deteriorative Cycles

Dominance relation on sets is not total.

We may move between solutions if they are incomparable

Deteriorative Cycles

EA may not converge!!!
(theoretical proof are
available upon request)

v



The Hypervolume Indicator



Set-Based Multi-Objective
Optimisation

We are interested in sets of search points

Extend dominance relation to sets (assume maximization)

Let A, B € 2% then

Argom B (Vbe Bda€ A: a >pgrb).

Let A, B € 2% and < be an arbitrary relation on 2*. Then

A= B:s (A= B)A (B # A)



Goal in multi-objective optimization:

We denote the set of maximal elements containing exactly p elements of X by
Mazx, (2%, =), i.e

Maz, (2% ,=) := Max{R | R € 2* A |R| = u}.



Unary Indicators

We want to assign to a set of search points (population) a
value that determines the quality of this set

Iq: QX%R

For an unary indicators I; we set

A i[l B < Il(A) > ]1(3),
A=, B: 1(A) > 1(B).



MOPs 4: Requirements of EC approach

= Way of assigning fitness,
— usually based on dominance

= Preservation of diverse set of points
— similarities to multi-modal problems

= Remembering all the non-dominated points
you’ve seen

— usually using elitism or an archive



MOPs 5: Fitness Assignment

= Could use aggregating approach and change weights
during evolution
— no guarantees

= Different parts of pop use different criteria
— e.g. VEGA, but no guarantee of diversity

* Dominance
— ranking or depth based
— fitness related to whole population



MOPs 6: Diversity Maintenance

= Usually done by niching techniques such as:
— fitness sharing

— adding amount to fitness based on inverse distance to nearest
neighbour (minimisation)

— (adaptively) dividing search space into boxes and counting
occupancy
= All rely on some distance metric in genotype / phenotype
space



MOPs 7: Remembering Good Points

= Could just use elitist algorithm
— e.g. (n+ A)replacement

= Common to maintain an archive of non-
dominated points

— some algorithms use this as second population that
can be in recombination etc

— others divide archive into regions too e.g. PAES



Set-Based Multi-Objective
Optimisation

Which indicator to measure
the quality of a population?

One popular choice: Hypervolume indicator

N

Reference point



Hypervolume Indicator

Which population is better?

HYP({®, ® @})=5.3

HYP({e. @ @1)=4.9

2nd Objective (to be maximized)

T )

15t Objective (to be maximized)




Hypervolume

Hypervolume of a set of points A with respect to a

reference point
P R=(Ri,Rs,...,Ry) € R

1s given by

oo (A) = VOL( U fi(z), Ry] X ... X [fd(a;),Rd])

rcA



Simple Indicator-based EA

Algorithm 1 Simple Indicator-Based Evolutionary Algorithm (SIBEA)

Given: population size p; number of generations NV
Step 1 (Initialization): Generate an initial set of decision vectors P of size u; set
the generation counter m := 0

Step 2 (Environmental Selection): Iterate the following three steps until the size of
the population does no longer exceed u:
1. Rank the population using dominance rank (number of dominating solutions)
and determine the set of solutions P’ C P with the worst rank

2. For each solution x € P’ determine the loss of hypervolume d(z) = Iy (P’) —
I (P"\ {z}) if it is removed from P’

3. Remove the solution with the smallest loss d(x) from the population P (ties
are broken randomly)
Step 8 (Termination): 1f m > N then output P and stop; otherwise set m := m+ 1.
Step 4 (Mating): Randomly select elements from P to form a temporary mating
pool @ of size X\. Apply variation operators such as recombination and mutation to
the mating pool @ which yields Q’. Set P := P+ Q' (multi-set union) and continue
with Step 2.

Source: Dimo Brockhoff. Theoretical Aspects of Evolutionary Multiobjective Optimization—A Review



Hypervolume Indicator

Property of “strict Pareto compliance™.
= Consider two Pareto sets A and B:

= Hypervolume indicator values A higher than B
If the Pareto set A dominates the Pareto set B



« (population size)

N (mazimum number of generations)
K (fitness scaling factor)

A (Pareto set approximation)

Initialization: Generate an initial population P of size o; set the generation counter m
to 0.

Fitness assignment: Calculate fitness values of individuals in P, i.e., for all &' € P set
2 1

F(z') = EmQGP\{ml} _e—ITHz"} A= )/~

Environmental selection: Iterate the following three steps until the size of population P

does not exceed o:

1. Choose an individual ™ € P with the smallest fitness value, i.e., F(x™) < F(x)
for all x € P.

2. Remove ¥ from the population.
3.  Update the fitness values of the remaining individuals, i.e.,

F(x) = F(x) + e~ I{="} {x})/r for all x € P.



Hypervolume Indicator

= Given: n axis-parallel boxes in d-dimensional space
(boxes all have (0,...,0) as bottom corner)

= Task: Measure (volume) of their union
= Popular Algorithms:

= HSO: O(n?) [zitzlero1, Knowles'02]

= BR: O(nd/ % log 1) [Beume Rudolph'06]

= Many (heuristical) improvements and
specialized algorithms for small dimensions

. Only Lower Bound: Q(n log TL) [Beume et al.’07]
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Advertisement: Competition with AUD 1,000 prize

http://cs.adelaide.edu.au/~optlog/TTP2017Comp

3rd Competition on the Optimisation of Problems with Multiple Interdependent Components

June/july 2017

Motivation

all cities visited (when applicable), starting and end city is city with ID 1, etc.

Online Leaderboard

Evaluation

Prize

Important Dates

Organizers

We are currently developing an online leaderboard that will allow all participants to continuously compare their performances. Potentially, this system will

replace your submission via email - we will inform you in time.

a280_n1395_uncorr-similar-weights_05.ttp
groupID ;score.time

Group2,123422.23424234342 2014-08-12 21:11:23
Group6.104363.01731367875.2014-08-11 22:09:15
Group7.34225.1341415121321.2014-08-12 10:11:24
Group5.23442.254215435134.2014-08-10 11:11:43
Groupl .- .

Group3.-.-

Group4 .- -

Group8.- .-

Group9.-.-

Groupl0.-.-

Markus.- .-

150.000

100,000

50,000

-50.000

Line-graph

pd

~—

Aug Aug Aug

1, 13,

2014 2014 2014

Aug
17,
2014

Aug
21,
2014

B Group1
B Group2
Group3
Il Group4
B Group5
B Group6
B Group7
B Group8
B Group9
Il Group10
B Markus

Important Dates

1 May 2017 (anywhere on Earth): submission deadline
Please contact us if you want to receive notifications via email.



Applications in Adelaide

Energy consumption optimisation of apps
on smart-phones. Our test bed:
https://www.youtube.com/watch?v= C7WH0LW1KYW

Optimisation of submerged wave energy converters:
http://cs.adelaide.edu.au/~optlog/research/energy.php

In collaboration with Carnegie Wave Pty Ltd and School of
Mechanical Engineering S =

And much more:
http://cs.adelaide.edu.au/~optlog/
http://cs.adelaide.edu.au/~markus/publications.html




