Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

. Vector operators — grad, div and curl
. Vector Identities, curvilinear co-ordinate systems
. Gauss’ and Stokes’ Theorems and extensions

. Engineering Applications




8. Engineering applications

1.
2.
3.
4.
D
0.
7.
8.

Electricity — Ampere’s Law

Fluid Mechanics - The Continuity Equation
Thermo: The Heat Conduction Equation
Mechanics/Electrostatics - Conservative fields
The Inverse Square Law of force

Gravitational field due to distributed mass
Gravitational field inside body

Pressure forces in non-uniform flows



1. Electricity — Ampeére's Law

e |f the frequency is low, the displacement current in Maxwell's equation
curlH = J + 6D /0t is negligible, and we find

curlH = J

/curIH-dS:/J-dS
S S

;{H-drzfj-ds
S

e But < J- dS is total current / through the surface ...




Electricity — Ampere’s Law /ctd 8.3

e Repeat: $ H- dr= [.J - dS. Consider wire, radius a carrying current / ...

r
-

. . i . .
Top view | wire ' Outside wire
for r<a

e Inside r <A: [J-dS=1(r?/a®) = H2mr = H= (Ir/2ma%
e Qutside r >a: [J-dS=I/=H2r = H=(I/2nr)

e H is everywhere in the 8 direction.




2. Fluid Mechanics - The Continuity Equation 1 8.4

e The Continuity Equation expresses conservation of mass in a fluid flow.

e Apply to a control volume: dS q

The net rate of mass flow of fluid out of the ).
control volume must equal the rate of decrease of

the mass of fluid within the control volume

Velocity of the fluid is q(r) (vector field)
Density of the fluid is p(r) (scalar field) Bontiol ek 4

e Element of rate-of-volume-gain from surface dS:
d(V)=—q-dS

= the element of rate-of-mass-gain is

d(M) = d (%(m/)) — —pq-dS.




Fluid Mechanics - The Continuity Equation 2

e Integrate! So total rate of mass gain from V is

0
atl/w,o(r)d\/—/S,m:]-ds.

e Assuming that the volume of interest is fixed, this is the same as

/—dV——/pq-dS.
S

e Now use Gauss to transform the RHS into a volume integral

/—d\/ = —/dw (pq)dV

v (pq)




Fluid Mechanics - The Continuity Equation 3

e [0 summarize:
the Continuity Equation(s):

for time-invariant p
div (oq) =0
for uniform (space-invariant), time-invariant p:

div (q) =0 . q solenoidal




3. Thermodynamics: The Heat Conduction Equation

e Consider heat current density q(r)
— heat flow per unit area per unit time.

e Assuming
— no mass flow out of control volume
— no source of heat inside control volume ...

e /< q-dS out of control volume by conduction
= decrease of internal energy (constant volume)
= decrease of enthalpy (constant pressure) ...

oT
/;qde = /Vpcatd\/

= dv q = — or

— p Is const. density of the conducting medium
— ¢ IS const specific heat




Heat conduction ctd ...

e To repeat

oT . oT
ﬁq-dS——chadV = div q——pca,

— p Is const. density of the conducting medium
— ¢ IS const specific heat

e To solve for temperature field we need another equation ...

q= —kKgrad T
or

—divq = kdivgrad T = kV?°T = pco—

The heat conduction equation:

vor = PeOT
k Ot

In steady flow, the h.c.e is Laplace’s equation:

V>T =0




4. Mechanics/Electrostatics - Conservative fields 8.9

e A conservative field of force is one for which the work done ff F - dr, moving
from A to B is independent of path taken.
or, equivalently, ¢-F-dr=0,

e Stokes tells us that this is the same as
fs curl F-dS =0,
where S is any surface bounded by C.

e But If true for any C containing A and B, it must be that
curl F=0 That is Conservative fields are irrotational

e One way (actually the only way) of satisfying this condition is for
F=VU
All conservative vector fields have an associated scalar field called
the Potential function U(r)




5. The Inverse Square Law of force

e Here's something to prove later ...
All radial vector fields are irrotational.

e Radial forces are found In electrostatics and gravitation — so they are certainly
irrotational and conservative.

e But in nature these radial forces are also inverse square laws.

e One reason why this may be so is that inverse square fields turns out to be
the only radial fields which are solenoidal, i1.e. have zero divergence.

e How do we show this?




Proof that inverse square radial fields are solenoidal

e let F = f(r)r = f(r)(xi+yj+ ZE),

= div F =3f(r)+ rf'(r).

e For div F = 0 we have

df df
= rdr+3 0 r .
e Integrate

Inf = —3/nr + const

fr3 = another const = k

Kr k
F:F' |F|:§.



Divergence zero everywhere except origin ... 8.12

e /ero divergence of the inverse square force field applies everywhere except at
r = 0. Here, divergence is infinite!

e [0 show this, calculate the outward normal flux out of a sphere of radius R
centered on the origin when F = F# = (k/r?)¢. This is

/ F.dS = 47R°F = 4wR*(k/R?) = 47k = constant # 0
S5

e Gauss tells us that this flux must be equal to

R
/ div FdV = / div F4mridr
Vv 0

e But for all finite R, divF = 0, so divF must be infinite at the origin.

e The flux integral Is thus
* zero — for any volume which does not contain the origin
* 4k for any volume which does contain it.




6. Gravitational field due to distributed mass: Poisson’s Eq 8.13

e Snag: If one tried this for gravity you would run into the problem that there
IS no such thing as point mass!

e So we deal with distributed mass ...

— Mass in each volume element dV is pdV.
— Mass inside cont vol contributes 4mk = —4mwGpdV to the flux integral
— Mass outside c.v. makes no contribution.

e SO

/F-dS:—4ﬂG/pdV.

/& V
Transforming the left hand integral by Gauss’ Theorem gives

/div FdV=—47rG/pdV
V %

which, since it I1s true for any V/, implies that
dv F = —4mpG.




Gravitational field, ctd ...

e [0 repeat
dv F = —4mpG.

e But the gravitational field is also conservative & irrotational.
=Must have an associated potential function U, and

F=—grad U

The minus sign Is just convention.

= the gravitational potential U satisfies
Poisson’s Equation

V2U = 47pG .




7. Gravitational field inside body 8.15

e Using the integral form of Poisson’s equation, it is possible to calculate the
gravitational field inside a spherical body whose density is a function of radius
only.

e \We have

R
AmR’F = 471G / Amr?pdr,
0

where F = |F|

e Hence

G [F MG
IF| = @/0 Arlpdr = -

where M is the total mass inside radius R.




8. Pressure forces in non-uniform flows

e Immerse body in flow: it experiences a nett force

sz—/p ds,
S

e The integral is taken over the body’s entire surface. If pressure p non-uniform,
this integral Is finite.

e Note that the dF on each surface element is in the direction of the normal
to the element.

e Now use our extension to Gauss' theorem

Fﬂ——/p dS——/gradpdV
Js V

where V' is body's volume.




Pressure forces in non-uniform flows

Z

e Now at some depth —z (yes,
minus, because z points upwards)
the Hydrostatic pressure Is

p=K-—pgz
so that

grad p = —pgk

e and the net pressure force 1s simply
F, =gk / odV
JV

which, Eureka, is equal to
the weight of fluid displaced.




Summary 8.18

e This lecture has presented a pot-pourri of applications of vector calculus in
analyses of interest to Engineers

e \We've seen that vector calculus provides a powerful method of describing
physical systems in 3 dimensions.




