Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

. Vector operators — grad, div and curl
. Vector ldentities, curvilinear co-ordinate systems
. Gauss’ and Stokes' Theorems and extensions

. Engineering Applications




6. Vector Operator ldentities & Curvi Coords

e |In this lecture we look at identities built from vector operators.

e [ hese operators behave both as vectors and as differential operators, so that
the usual rules of taking the derivative of, say, a product must be observed.

e We are laying the groundwork for the use of these identities in later parts of
the Engineering course.

e \We then turn to derive expressions for grad, div and
curl in curvilinear coordinates. ﬂ

e After deriving general expressions, we will specialize
to the Polar family. A




Identity 1: curl grad U =0

e U(x,y, z) is a scalar field.
Then
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e V x V can be thought of as a null operator.




Identity 2: divcurla =20

e For a(x, y, z) a vector field:
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Identity 3: divergence of Uv
e Suppose that e For example

— U(r) is a scalar field — U(r) could be fluid density; and

—v(r) is a vector field — v(r) its instantaneous velocity

and we are interested in the The product would be the mass
divergence of the product Uv. flux per unit area.
e The product Uv is a vector field, so we can compute I1ts divergence ...

V- (Uv)=U(V v)+(VU) v=Udivw+ (gradU) - v

e |n steps:

v - (Uv) (;X(UVX)—}— — (U} Z(uvz))

6VX+ %+U6VZ+V6U+V6}U+V%
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Udivv + v - gradU
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Identity 3: curl of Ua 6.5

e In a similar way, we can take the curl of the product of a scalar and vector
field field Uv.

e [he result should be a vector field.

e And you're probably happy now to write down

V x (Uv) =U(V xv)+ (VU) xv .




Identity 4: divofax b 6.6

e But things get trickier to guess when vector or scalar products are involved!

e Eg, not at all obvious that:
div(a x b) =curla-b —a- curlb

e [0 show this, use the determinant:
0/0x 0/0y 0/0z

G 0 4
a[a},bz _ c':"zby] g & @[asz o axbz] 3 §[axby - a}’bx]




Vector operator identities in HLT 6.7

e \We could carry on inventing vector identities for some time, but it 1s a bit, er,
dull.

e Why bother at all, as they are in HLT?

1. Since grad, div and curl describe key aspects of vectors fields, they often
arise often in practice.

The identities can save you a lot of time and hacking of partial derivatives,
as we will see when we consider Maxwell's equation as an example later.

2. Secondly, they help to identify other practically important vector opera-
tors.

e We now look at such an example.




Identity 5: curl(a x b)

i j k
curl(a x b) = 0/0x 0/0y 0/0z
ayb; — a;b, azby — axb, axb, — a,by
= curl(@ax b), = i(ag,{lfzv — ayby) — i(.a*z!.:',,c — ayb;)
oy VY oz

This can be written as the sum of four terms:
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o axab" add to term1, sub from term4

‘:‘jj. sub from term2, add to term3

Vx(axb)=(V-bJa—(V-ab+[b-V]a—[a:-V]b

la- V] can be regarded as new, and very useful, scalar differential operator.




Definition of the operator [a - V]

e [his Is a scalar operator ...

T8 5 5
[GV]: axa—f—aya‘i—az&

e Notice that the components of a don't get touched by the differentiation.
e Applied to a scalar field, results in a scalar field

e Applied to a vector field results in a vector field




Identity 6: curl(curla) for you to derive

e Amuse yourself by deriving the following important identity ...
curl(curla) = grad(diva) — V?a

where

V?a = V2a,i+ V3a,j+ V2a,k

e \We are about to use it ....




& Eg using ldentity 6: electromagnetic waves 6.11

e Background: Maxwell established a set of four vector equations which are
fundamental to working out how eletromagnetic waves propagate. The entire
telecommunications industry is built on these!

dvD = p
dvB = 0
0

IE = ——B
cur o

0
H J+—D
cur -+ 5t

e |n addition, we can assume the following

B = uruoH
J oE

D € €oE




Example ctd 6.12

Question: Show that in a material with no free charge, o = 0, and with zero
conductivity, o = 0, the electric field E must be a solution of the wave equation
V2E = u, o€ c0(0°E/0t?) .

Answer:
divD = div(e,gE) = €,6gdvE = p =0; =divE =0

divB div(p,uoH) = p,uedivH = 0 =divH =0
curlE —0B/0t = —pu,up(OH/0Ot)
curlH = J+0D/0t =0 + €,¢4(OE/Ot)

But curlcurlE = V(V - E) — V2E, so |Then
o, OE
|[— H = —V°E _ _
curl [ uruo(a /0t)] et [e Er ar]

—Hrkog [curIH] = —V°E O°E
iﬁrﬂnﬁrﬁow -




Grad, div, curl and V? in curvilinear coords

e |t Is possible to obtain general expressions for grad, div and curl in any or-
thogonal curvilinear co-ordinate system ...

e Need the scale factors h ...

e \We recall that the unit vector in the direction of increasing u, with v and w

being kept constant, is

R 1 Or
u=

h,Bu
where r I1s the general position vector, and

or
ou

and similar expressions apply for the other co-ordinate directions. Then

hy =

dr = h,dua + h,dvv + h, dww .




Grad in curvilinear coordinates

e Using the properties of the gradient of a scalar field obtained previously,

VU:-dr=dU and dU = %du+ %dV—F %dw
ou ov ow

It follows that

ou ou ou
VU - (hjadu+ hNdv + hywdw) = —du+ —dv + —dw

ou ov ow

e [he only way this can be satisfied for independent du, dv, dw Is when

Grad U in curvilinear coords:

VU— ia_u" _|_ia_u"_|_ia_u"
~hou Thoav T how




Divergence In curvilinear coordinates 6.15

e If the curvilinear coordinates are orthogonal then dvolume is a cuboid (to 1st
order in small things) and
dvV = h, h, h, dudv dw .

A
w

—_ : . h (v)dw
e However, it Is not quite a cuboid: ! T
the area of two opposite faces will l

fl=== ER———
differ as the scale parameters are h (V) du
: h(v+dv) du
functions of u, v, w. " A

J hw[v+dv]| dw

| ——
\ h v dv il
U ] The scale params are
functions of u,v,w

e So the nett efflux from the two faces in the v dirn Is
aav ahu ahw
= la,+ dv| |h, + dv| |hy + —dv| dudw — a,h,h, dudw
ov ov ov
d(avhyhw)

5y dudvdw




Divergence in curvilinear coordinates /ctd

e Repeat: the nett efflux from the two faces in the v dirn Is

v hﬂ hW
. O 4 h 42 | dudw — aubo b dudw
ov ov V

0
_ 0(avhuhw)
ov
e Now div is net efflux per unit volume, so sum up other faces:

ala, fiy i) i alay hy hiy) 2 ola, fy hy)
ou ov ow

o] s

dudvdw

diva dV = (

) dudvdw

e Then divide by dV = h,h,h, dudvdw ...
Conclude: div in curvi coords is:

1 (8(ay by hy) | Oav hyhy) | 2w hu i)
huhvhw ou ov ow

diva =




Curl in curvilinear coordinates

e For an orthogonal curvi coord
system dS = h,h,dudw.

e But the opposite sides
are not of same length! Lengths are
hy,(v)du, and h,(v + dv)du.

e Summing this pair contributes to circulation (in W dirn)
O(hya,)

3y dvdu

a,(v)hy(v)du — a,(v+ dv)h,(v+ dv)du = —

e Add in the other pair to find circulation per unit area

a¢c 1 ([ 08(hsa,) . o(hyay,)
h,h,dudv  h,h, Ov ou




Curl in curvilinear coordinates, ctd

e To repeat, the part related to w is:

dC 1 [ 9(hyau) " d(hya,)
o h,h,dudv  h,h, - Ov ou
e Adding in the other two components gives:

1 (8(hwaw) ﬁ(h“’a"’))ﬁ+

h,h,, v Bw

1 (a(huau) 6(hwaw))ﬁ+

hwhu ow B ou

curla(u, v,w) =

1 (6(hvav) B a(huau)) &

hyh, ou ov

e You should show that can be written more compactly as:

Curl in curvi coords is:

h,a h,v h,w

curla(u, v, w) ;—u % a%

h.ay hvay hydi




The Laplacian in curvilinear coordinates

e Substitute the components of gradU into the expression for diva ...

e Much grinding gives the following expression for the Laplacian in general or-
thogonal co-ordinates:

Laplacian in curvi coords is:

ViU =

1 g ¢ hhol _|_8 h.,h,oU ' o (h,h,oU
ghi iy QW X fy O ov\ h, Ov ow \ h, Ow '




Grad, etc, the 3D polar coordinate 6.20

e There I1s no need slavishly to memorize the above derivations or their results.

e More important is to realize why the expressions look suddenly more compli-
cated Iin curvilinear coordinates

e We are now going to specialize our expressions for the polar family

e As they are 3D entities, we need consider only cylindrical and spherical polars.




Grad, etc, in cylindrical polars 6.21

e We recall that r = r cos 6i + rsin6j + zk, and that h, = |0r/0ul, and so

v/ (cos2 6 + sin20) = 1,

\/(r2 sin?@ + r2cos26) = r,
1

e Hence, using these and U(r, 6, z) and a = a,f + a40 + asP
oUu. 10U, O0OU-x

gradU = ar + F%B + 5k

| 1 /O(ra,) Oag Oa,
diva —( Ep +69)+62

r
10a, Oap) . Oa, 0Oa,\ s 1 /[0(rag) O0a, )\
la = (| - — — — — k
s (r 56 82) T (62 8r)9+ r ( or 09
e The derivation of the expression for V2U in cylindrical polar co-ordinates is
set as a tutorial exercise.




Grad, etc, in spherical polars

e We recall that r = rsin 6 cos @i + rsin 0 sin ¢j + r cos 6k so that
= \/(sin2 0(cos? ¢ + sin’ ¢) + cos26) = 1
= \/(r2 cos2 (cos? ¢ + sin® @) + r2sin’6) = r
= \/(r2 sin® B(sin® ¢ + cos2 ¢) = rsin b

Oy I0ug, [ oo g

or r 06 rsin@ 0¢

18(rs:) 1 O(agsinb) 1 Oay
2 Br i rsinf 06 i rsin@ o¢

P[0 8 6 [0 8
rsinﬁ( g St = ﬁqb( ))+rsin9(6¢>(ar) 6r(3¢r5|n9)




& Examples

Question:

Find curla in (i) Cartesians and (i) Spherical polars when a = x(xi + yj + zk).
Answer (i):

e |In Cartesians, using the pseudo determinant gives

i §J  k
curla= | 8/8x 8/8y 8/8z | = —Zj + yk
2

X Xy Xz




& Example /ctd

Answer (ii):
o We were told a = x(xi+ yj + zk).
e |n spherical polars x =rsinfcos¢p and (xi+ yj—+ ZE) =
e Hence a=rsinfcosdr =r?sinfcos¢ t
or in component form: a, = r’sinfcos®; ag = 0; ap=0.

e Expression for curl (earlier, and HLT):

.

r

B o, G, 6 (0 3 : é (0
curla = e (%L% sin @) — 6—¢(39)) + e (6_¢1(a") — g(a,ﬁr sin 5)) + - (Gr

e Hence

o = - (S0 +8(- G anocm)

rsin@ \ 0¢

o ~

6 5 . . o,
rsinQ(_r sin @'sin (f))—l—? (—r? cos @ cos ¢))

0(—rsing) + ¢(—r cos b cos @)

00




Example Check: These two results should be the same!

e To check we need t, 8, ¢ in terms of 1,5,k ...

e Use r = xi + yj + zk and
1 0r ~ 1 Or ~ 1 Or
r= 0 = ; ¢ =

hyor’ hg 86’ hs O

e Hence, doing the first of these, as h, =1

0 . , .
F— o (rsin6 cos i + rsin@sin ¢ + r cos b)) = (sbcdi + sbsdj + cbj))

e Which gives the top row of the matrix. Grind to find the rest ...

[ sinfcos@ sinfsing cosf | [ 1
cos@cos@ cosfsing —sin6
—sing cos ¢ 0

e Don't be shocked to see a rotation matrix [R]! We are rotating one right-
handed orthogonal coord system into another.




Check /ctd

e Now we convert the spherical polar expression in Cartesians ...

curla 6(—rsin@) + ¢(—r cos 6 cos ¢) = —r[0, sin ¢, cos 6 cos @]

[ sinf@cos¢g sinfsing cosf |
—r|0,sin¢g, cos@cos | | cosfcosp cosfsingd —sinb
| —sing CoS ¢ 0
—rsin ¢(cos B cos ¢i + cos O'sin ¢ — sin k) +
(—rcos B cos ¢)(— sin @i + cos ¢j)
= —rcosfj + rsinfsin gk
= —Zj+yk

e This is exactly what we got before!




Summary

Take home messages ...

e The key thing when combining operators 1s to remember that each partial
derivative operates on everything to its right.

e The identities (eg in HLT) are not mysterious. They merely provide useful
short cuts.

e There i1s no need slavishly to learn the expressions for grad, div and curl In
curvi coords.

They are in HLT, but

— you need to know how they originate.
— you need to be able to hack them out when asked.

e Ditto with the specializations to polars.

e Just as physical vectors are independent of their coordinate systems, so are
differential operators.




