Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

. Vector operators — grad, div and curl
. Vector ldentities, curvilinear co-ordinate systems
. Gauss' and Stokes' Theorems and extensions

. Engineering Applications




6. Vector Operators: Grad, Div and Curl

e We Introduce three field operators which reveal interesting collective field
properties, viz.
— the gradient of a scalar field,
— the divergence of a vector field, and

— the curl of a vector field.

e There are two points to get over about each:

— The mechanics of taking the grad, div or curl, for which you will need to
brush up your calculus of several variables.

— The underlying physical meaning — that i1s, why they are worth bothering
about.




The gradient of a scalar field 6.2

e Recall the discussion of temperature distribution, where we wondered how a
scalar would vary as we moved off in an arbitrary direction ...

e If U(r) is a scalar field, its gradient is defined in Cartesians coords by

ouU oU all
dU = —1 + —j —k .
gradU Bxl + Syj + 37

e [t is usual to define the vector operator V

0 0 ~ 0

which is called “del” or “nabla”. We can write gradU = VU
NB: gradU or VU is a vector field!

e Without thinking too hard, notice that gradU tends to point in the direction
of greatest change of the scalar field U




The gradient of a scalar field




& Examples of gradient evaluation

1. U=x°
VU = [’i%ﬁ%ﬂ’ig] %
Only 8/0x exists so

= 2x1+ 2yj + 27k
= 2

3. U=c:r, where c Is constant.

. 0 . 0 ~ 0
VU = [la—x —f—ja 53 k@} (cix + oy + 632)

ai+oj+ck=c .




& Another Example ...
4. U= f(r), where r = \/(x2 + y2 + 22)
U is a function of r alone so df /dr exists. As U = f(x, y, z) also,
of dfor  of dfor  of dfor
Ox  drox Oy drdy 0z drdz
of, of_ of~.  df [Or, Gr or ~
dr

:>VU—§| aj 8k 8x|+6 azk

But r = \/x24 y2 4+ 22,50 8r/8x = x/r and similarly for y, z.

Loy — df (X’i‘+y]\+zlz) _ i(;)

dr r dr

Note that 7(r) is spherically symmetrical and the resultant vector field is radial
out of a sphere.




The significance of grad

e \We know that the total differential and grad are defined as

dU:@dx ou +%dZ&VU—@| h

B T Yt 52 ax Tyl T

e S0, we can rewrite the change in U as
dU = VU - (dxi+ dyj + dzk) = VU - dr

e Conclude that

VU - dr is the small change in U when we move by dr




Significance /ctd

e We also know (Lecture 3) that dr
has magnitude ds.

e So divide by ds

e But dr/ds is a unit vector in the direction of dfr.

e Conclude that

gradU has the property that the rate of change of U wrt distance in any
direction d is the projection of gradU onto that direction d




Directional derivatives

e [hat Is
dU

ds
e The quantity dU/ds is called a directional derivative.

(in direction of d) = VU - d

e In general, a directional derivative

— had a different value for each direction,
— has no meaning until you specify the direction.

e We could also say that

At any point P, gradU

* points in the direction of greatest rate of change of U wrt distance
at P, and

* has magnitude equal to the rate of change of U wrt distance in that
direction.




Grad perpendicular to U constant surface 6.9

e Think of a surface of constant U — the locus (x, y, z) for U(x, y, z) = const

e [f we move a tiny amount within the surface, that is in any tangential di-
rection, there is no change in U, so dU/ds = 0. So for any dr/ds in the

surface y
r

U.— = 0.
v ds

Conclusion Is that:
gradU 1Is NORMAL
to a surface of
constant U

Surface of constant U Surface of constant U
These are called Level Surfaces




The divergence of a vector field

e et a be a vector field:

a(x, y, z) = aii + aj + ask

e [he divergence of a at any point is defined in Cartesian co-ordinates by

681 632 683
+—+
Oox Oy 0z

diva =

e [he divergence of a vector field 1s a scalar field.

e We can write div as a scalar product with the V vector differential operator:

1.0 . 0 ~ O B
diva= |&+15+k§ -a=V-a




& Worked examples of divergence evaluation
a diva
X1 1

r(= xi + yj + zk) 3

r/r 0
rc (r - c)/r where c is constant

Eg 3: div (r/r®) =0
The x component of r/r3 is x.(x? + y? + z?)

We need to find 8/0x of it ...

~3/2

0 ~3 -3 -3 _5
= 1L.(*+y*+2°)7 + x7(x2 +y?+ 237 2x

o 2 2 2\ %
C,:)Xx.(x + y° + z%)

= r3(1-3x*r7?)
Adding this to similar terms for y and z gives

r2B3-3x+y*+2z)r?)=r>(3-3)=0




The significance of div

e Consider vector field f(r) (eg
water flow).
This vector has magnitude equal to
the mass of water crossing a unit —d;d;j“
area perpendicular to the direction -a-——
of f per unit time.

e [ake volume element dV and
compute balance of the flow of f
iIn and out of dV.

e | ook at the shaded face on the left
The contribution to OUTWARD flux from surface is

f(y)-dS = [+ f,()i+ (k] - (=dx dz§) = —f,(y)dxdz.




Look at the shaded face on the right ...

e A similar contribution, but of opposite sign,
will arise from the opposite face ...

e BUT! we must remember that we have
moved along y by an amount dy.

e So that this OUTWARD amount is

f(y+dy)-dS = f,(y+ dy)dxdz

of,
= (f;,Jr aydy) dxdz

e Hence the total outward amount from these two faces is

—Ydydxdz =

Oy Oy Gy

of, of,
—f,dxdz + (ﬂ, + —ydy> dxdz =




The significance of div, ctd
e Repeat: Total efflux from these faces Is

of, ~ 0f,
By dydxdz = By dVv

e Summing the other faces gives a total
outward flux

(aa+a@+ag) dV = (V-f) dV

a—x@y 0z

e Conclusion:

The divergence of a vector field represents the flux generation per unit
volume at each point of the field.

* Divergence because it is an efflux not an influx.
* We also saw that the total efflux from the infinitesimal volume was equal
to the flux integrated over the surface of the volume.




The Laplacian: div(gradU) of a scalar field 6.15

e gradU of any scalar field U is a vector field. We can take the div of any vector
field. =we can certainly compute div(gradU)

o0 - (G oig 8] (5550420
(202 052)- (8 s3]

(BQU 82U 82U>

Ox?2 v Oy? +@

e The operator V? (del-squared) is called the Laplacian
0? 0? 02
2rr —
VY= (6){2 T Oy? i 622> Y
and often appears in engineering in Laplace’s equation and Poisson’s equa-
tion

VU =0 and VU = p




& Examples of V2U evaluation
U V32U
rz(: X2 _I_y2 _l_ 22) 6
xy?z3 Dxz® - Bxy<z
1/r 0

Let’s prove the last example
1
1/r = (x*+y?+ z%)"2 and so

o 1 0
@()‘(2 -+ y2 + 22)_§ a = X.(Xz -+ y2 —+ 22)_3/2

—(XP+y*+ 22 3xx (P + yP + 22) 0




The curl of a vector field

e So far we have seen the operator V ...
(i) Applied to a scalar field VU; and (i) Dotted with a vector field V - a.

e You are now overwhelmed by irrestible urge to ...
(iii) cross it with a vector field:  V x a

e This gives the curl of a vector field

V x a = curl(a)

e \We can follow the pseudo-determinant recipe for vector products, so that

1
da, O0Oa,\. (0Oax O0Oa;\. [(0Oa, Oax) ¢
— — SE— — — k
Vi (By E;?Z) I+(82 8y>j+(8x Oy




& Examples of curl evaluation

V xa
2k
2x°y1 — 2xy4

2nd example:

i ) k
0/0x 0/0y 0/0z
0 0 x?y?

X222y — 2xy?

2X°yi — 2xy%)




The signficance of curl

e First example gives a clue ... the field a = —y1+ Xxj Is sketched below.

e This field has a curl of 2k, which is in the r-h screw direction out of the page.

e You can also see that a field like this must give a finite value to the line integral
around the complete loop ¢-a - dr.

Ay

—+




The signficance of curl

e In fact curl Is closely related to the line integral around a loop.

e The circulation of a vector field a round any closed curve C is defined to be

%a-dr
C

The curl of the vector field a represents the

* the vorticity, or

* the circulation per unit area in the direction of the area’s normal




The signficance of curl, ctd




The signficance of curl, ctd

v a(x,y +dy, z) a(x+dx,y+dy,z

/(X + dx,y, z)

X + dx X




The signficance of curl, ctd

YA

dr = [—dx, 0, 0]
y+dy- \

dr = [0, dy, 0]

!

o
dr = [dx,0,0] x + dx

e Consider the circulation round the perimeter of a rectangle dx by dy ...




The signficance of curl, ctd 6.24

¥ a(x,y +dy, z)

v+ dy e [—dx, 0,0]
A

[0, —dy, O] [0, dy, 0]

>

a(x,y,z) [dx,0,0] X+ dx

(x + dx,y, z)

X

%‘a -dr = a(x,y,z).|dx 0 0] +a(x+dx,y,z). [0 dy 0]
| +a(x,y +dy,z).|[—dx 0 0] +a(x,y,z). [0 —dy 0]



The signficance of curl, ctd 6.25

jga-dr = a(x,y,z).|dx 0 0] +a(x+dx,y,z). [0 dy O]
c

+a(x,y + dy, z). [—dx 0 O} + a(x,y, z). [0 —dy O]
= ax(x,y,z)dx+ a,(x+dx,y, z)
—ay(x,y +dy,z)dx — ay(x,y, z)dy

0
= aydx + aydy + ﬂdxdy
3 OX
dx
—aydx — 3y dydx — a,dy
~ |8a, Oa
= lax Gy] dxdy

= (V x a) - dxdyk
= (V x a)-dS



The signficance of curl, ctd

e Rceapping: consider circulation round the perimeter of a rectangle

e [ he fields in the x-direction at
bottom and top are

y
A (a, (y+dy)—»
y+dy

Oy

e [he fields in the y-direction at left
and right are

Oa, )
a(y) and a(y+dy) = a(y)+—=—dy T
=

0
ay(x) and a,(x+dx) = a,(x)+ ;y dx
e Summing around from the bottom Iin anticlockwise order
dC = +ay) dx] +[a,(x + dx) dy] — [ax(y + dy) dx]| — [a,(x) dy]

~ (0a, Oa B ~
= (ax_8y> dx dy = (V x a) - dxdyk =(V x a) - dS




Some definitions involving div, curl and grad

e A vector field with zero divergence is said to be

solenoidal.

e A vector field with zero curl is said to be

irrotational.

e A scalar field with zero gradient is said to be

constant.




Summary

.
e Today we’ve introduced ...

— The gradient of a scalar field
— The divergence of a vector field
— The Laplacian

— The curl of a vector field

e \We've described the grunt of working these out in Cartesian coordinates ...

If your partial differentiation is flaky, sort it.
e We've given some insight into what “physical” aspects of fields they relate
too.

Worth spending time thinking about these. Vector calculus 1s the natural
language of engineering in 3 vector spaces..




