Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvi-
linear co-ordinates

. Vector operators — grad, div and curl
. Vector ldentities, curvilinear co-ordinate systems
. Gauss' and Stokes' Theorems and extensions

. Engineering Applications




4. Line, Surface and Volume Integrals |

e \We started off
— being concerned with individual vectors a, b, ¢, and so on.
e \We went on

— to consider how single vectors vary over time or over some other parameter
such as arc length

e In rest of the course, we will be concerned with

— scalars and vectors which are defined over
regions Iin space

e |n this lecture we introduce

— line, surface and volume integrals

— definition in curvilinear coordinates




Reminder about Scalar and vector fields

If a scalar function u(r) is defined at
each r in some region

e 1 is a scalar field in that region.

Examples: temperature, pressure, alti-
tude, CO, concentration
Similarly, if a vector function v(r) is de-
fined at each point, then

e v is a vector field in that region.

Examples: wind velocity, magnetic field,
traffic flows, optical flow, electric fields

In field theory our aim is to derive statements about bulk properties of scalar
and vector fields (rather than to deal with individual scalars or vectors)




Line integrals through fields

e Line integrals are concerned with measuring

— the integrated interaction with a field as you move through it on some
defined path.

P
I

e Eg, given a map showing
the pollution density field in
Oxford

how much pollution would
%%g%?%ﬁ? you breath in when cycling

from college to the

Department on different

Mim‘gna in WA routes?
ye Turl Streete L




Vector line integrals

Path L chopped into vector segments
5I’,‘.

Each segment 1s multiplied by the field
value at that point in space,

Products are summed.

Three types

1: Integrand U(r) is a scalar field.
Integral 1s a vector.

I:/LU(r)dr

2: Integrand a(r) is a vector field dot- 3: Integrand a(r) is a vector field
ted with dr. Integral is a scalar: crossed with dr. Integral Is vector.

!=/La(r)-dr I=/La(r)><dr




& Examples

e Jotal work done by force F as it moves point from A to B along path C.
Infinitessimal work done i1s dW = F.dr, hence total work Is

We = / F.dr
JC

e Ampere’s law relating magnetic field B to linked current can be written as

f B.dr = .u'D"’
C

e Force on an element of wire carrying current /, placed in a magnetic field of
strength B, 1s dF = /dr x B.

So total force on loop of wire C :

le?gdpr
Je

Note: expressions above are beautifully compact in vector notation, and are all
Independent of coordinate system




& Examples 4.6

Question: A force F = x?yi + xy?j acts on a body at it moves between (0, 0)
and (1,1).
A

Find work done when path Is
1. along the line y = x.
2. along the curve y = x".

3. along the x axis to the point (1, 0)
and then along the line x =1

Answer:
In planar Cartesians dr =1dx +]jdy
Then the work done is

fF sl = / (x?yi+ xy%) - (idx +3dy) = /(XQJ/O’X + xy*dy) .
L L :




Example Path 1

©)

G
0,0 0,1

PATH 1: For the path y = x we find that dy = dx. So it is easiest to convert
all y references to x.

(1,1) =]
/ (x2ydx + xy?dy) / (x*xdx + xx*dx)
0,0) x=0

=1
/ 2x3dx
J x=0

=1
= [x*/2[_, = 1/2.
NB! Although x, y involved these are NOT double integrals. Why not?




Example Path 2
A
1,1

PATH 2: For path y = x" find dy = nx"1dx
Again convert y references to x.

(1,1) x=1
/ (x?ydx + xy?dy) = f (x™dx mx™ " xx""dx)
( X

0,0) =0

=1
/ (x"t?dx + nx>"dx)
x=f)

1 n

- n+3+3n+1




Example Path 3

A

1.1
PATH 3: not smooth, so break into two.

Along the first section, y =0 and dy = 0,
along second section x =1 and dx = O:

B x=1
] (x%ydx + xy?dy) / (x%0dx) -I—/
A x=0 L&

0+ [y3/3\ié
1/3 .

Line integral depends on path taken




& Example 2

Question 2: Repeat path (2), but now using the
Force F = xy4 + x2yj.
Answer 2:
F-(idx +jdy) = xy? dx + x%y dy.
For the path y = x" we find that dy = nx""'dx, so

(1,1) =i
f (xy?dx + x°ydy) / (="l 4.  dx)
( X

0,0) =0

=1
/ (X2n+1d}( 53 nX2n+1 dX)
=r

1 n

1
2n+2+2n+2 5

This is independent of n, so
This line is independent of path!
Can we understand why?




Line integrals in Conservative fields

e Write
g(x.y) = x°y?*/2
e [hen the perfect differential Is
dg 0g

dg adx . ady

= y’xdx + x°ydy

e So our line integral

B B
/F-dr:/ (yzxderyxzdy):/ dg =09 — ga
: JA JA

e |t depends solely on the value of g at the start and end points, and not at all

on the path
e A vector field which gives rise to line integrals which are independent of paths

Is called
a conservative field




Some questions about conservative fields 4.12

One sort of line integral performs the integration around a complete loop. It is
denoted §

. If E 1s a conservative field, what Is the value of 5‘5 E-dr?
. If E; and E» is conservative, is E; + E> conservative?

. Later we will show that the electric field around a point charge ¢

)

P
E= Kqﬁ K = 1/4me, €

Is conservative. Are all electric fields conservative?

. If E 1s the electric field, the potential function Is

qb:—'/E-dr_

So are all electric fields conservative?




Line integrals involving scalar arc-length

| = /L’F(x,y,z)ds ,

where path L along a curve is defined as x = x(p), y = y(p), z = z(p)

e These integrals don't appear to involve vectors, but they could be reformulated
to!

e First, convert the function to F(p), writing

*Pend
! /
“ Pstart

where (Lecture 3)

()

e Then do the (now straightforward) integral w.r.t. p.

1/2




Line integrals involving scalar arc-length: Special cases

[ = / Fix, y.2z)ds
JL

: If the parameter is arc-length s and the path L is x = x(s), y = y(s),
Z=zl5),

Convert the function to F(s), writing

*Send
ji = / F(s) ds

Sstart

 IEpls X—50 ¥ = yix) and 2= z(x) (o¢ similac for p.=y OF p =.Z)

1/2

Xend dy 2 dZ 2




Surface integrals

Surface S is divided into infinitesimal vector
elements of area dS:

e the dirn of the vector dS is the surface
normal

e its magnitude represents the area of the
element.

Again there are three possibilities:

1: [ UdS — scalar field U;

' : x dS — ‘ :
vector integral. 3: [sa x dS — vector field a;

vector integral.

2: [ca-dS — vector field a;
scalar integral.




Physical example of surface integral

e Physical examples of surface integrals often in-
volve the idea of flux of a vector field through a

surface
/a-dS
S

e Mass of fluid crossing a surface element dS at r
In time dt is

dM = pv-dSdt

Total rate of gain of mass can be expressed as a
surface integral:

dM
rr = i p(r)v(r) - dS

e Note again that expression is coordinate free.



& Example 4.17

Question: Evaluate [ F - dS over the x = 1 side of the cube shown in the figure
when F = y1+ Z] + xk.
Answer: dS is perp to the surface. Often, the surface will enclose a volume,

and the surface direction is everywhere out of the volume
For the x = 1 face of the cube

dS = dydA 7
A

/F-dS /f(y?+zj+xﬁ)-dydzi‘1
S b
/ f ydydz

2‘02|0




Volume integrals

e The definition of the volume integral is again taken as the limit of a sum of
products as the size of the volume element tends to zero.

e One obvious difference though is that the element of volume is a scalar.

e [he possibilities are:

1: [, U(r)dV — scalar field; scalar integral (1P1 stuff!)

2: |, a r)dV — vector field; vector integral. In this case one can treat each
component separately.

/ adVv / ai(x,y, z)idV + / ar(x,y,z)jdV + / as(x,y, z)kdV
Jv Jv Jv Jv

i/al(x,y,z)d\/ +j‘] 32(X,y,Z)dV+E/ az(x,y,z)dV
v % %

So, 3x 1P1 stuff.




Changing variables: curvilinear coordinates

e Before dealing with further examples of line, surface and volume integrals ...

. 1t 1Is important to understand how to convert an integral from one set of
coordinates into another more suited to the geometry or symmetry of the

problem.
e You saw how to do this for scalar volume integrals in 1P1 (and we've seen
that volume integrals can always be handled as scalars) ...

... but we need to understand where Jacobians came from, and how we can
apply the mechanism more generally.

e You may find the general problem slightly heavy going ...
... the good news Is that we will deal with some special cases first that should
be at least vaguely famihar




Changing variables: curvilinear coordinates

e A line integral in Cartesian coordinates used
r=xi+yj+zk and  dr=dxi+dyj+ dzk

e You can be sure that length scales are properly handled because
dr| = ds = /dx2 4+ dy2 + dz2.

e But often symmetry screams at you to use another coordinate system:

— likely to be plane, cylindrical, or spherical polars,
— but can be something more exotic like “u, v, w”

e A "u,v,w", “r ¢, 0" system is a curvilinear coordinate system

e But here’s the bad news: Length scales are screwed up
r # uli+ vV + ww
dr # dud+ dvi+ dww
dr| =ds # Vdu?+ dv2+ dw? .




Cylindrical polar coordinates

Lines of
constant r

Lines of
constant z

. N

Lines of
constant o

|
1
||

r = xi+ yj+ zk = rcos i + rsin ¢j + zk

% represents direction in which (instantaneously) r changing while other two

coords stay const. It is tangent to surfaces of constant ¢ and z




Lines of
constant r

Lines of
constant z

Lines of
constant @

= rcos @i+ rsindj + zk

0 .
a—: = cos @i + sin @)

B form a basis set for infinitessimal vector dis-

i —rsingi + r cos ¢j placements in the position of P, dr.

or .
§—k




Cylindrical polars: scale factors

e More usual to normalise the basis vectors

€ .6y €,

or
—dr —dqb —dz
0¢

drer + dpey + dzez
dré, + rde, + dze,

e NOTE: In cylindrical polars, small change d¢ keeping r and z constant results

In displacement of
ds = |dr| = \/r?(d¢)? = rd¢
THUS: size of (infinitessimal) displacement depends on value of r

e r Is scale factor or metric coefficient

e |n cylindrical polars scale factors are 1, r and 1.




& Example: line integral in cylindrical polars 4.23

Question: Evaluate §-a- dl, where a = x% — y%i + x?yk and C is the circle of

radius p In the z = 0 plane, centred on the origin.
Answer:

a = p3(—sin® @i + cos® ¢j + cos? ¢ sin Pk)
and (since dz = dr = 0 on the path)

dl = pd @,
= pd@(— sin @i + cos ¢j)

:p d9€s <5 that

2m
j{ a-dl= / o*(sin* ¢ + cos® p)d¢p =
C 0




Volume integrals in cylindrical polars

ZA
Ay dxi  dV =dxdydz dV = rdrd¢dz

=

¥4,
Ly

4 rdgéy
dre,

In Cartesians, volume element given by
dV = dxi.(dyj x dzk) = dxdydz
In cylindrical polars, volume element given by
dV = dré,.(rdpés x dz&,) = rd¢drdz
Note: Volume is scalar triple product, hence can be written as a determinant:
e dr = A
dV = | &rdg | = | S % | drd¢dz
é,dz 9 9




Surface integrals in cylindrical polars

In Cartesians, for surface element with
normal T we have

dS = dyj x dzk = dydzi =1dS

Cylindrical polars: surface area elements
\(iSr given by:
# dS, = dré, x rd¢e, = rdrdge,

-
-




Spherical polars

Lines of
constant ¢
(longitude)

Lines of
constant r

L I'\x_ Lines of
\___— constant
(latitude)

= Xi+ yj+ zk = rsin8cos @i + rsin 6 sin ¢j + r cos Ok

0 . : ; ~
e, = a—: = sin @ cos ¢t + sin @ sin ¢ + cos Bk
ey = % = rcosfcos @i+ rcosfsindj — rsin Ok

0 ; ; .
e¢,:$: —rsin@sin @i + rsin 8 cos ¢j




Spherical polars: scale factors

sin@ cos i + sinfsin@dj + cosbk = &,

= rcosf@cost + rcos@singdj — rsinbk = rég

—rsin@sin i + rsin 6 cos @) rsin 6€

e Small displacement dr given by:
or or

or
ar = gdf’—l— @de—f—a—édff)

= dre, + dbey + doey
= dré, + rdbéy + rsin 0d €y

e [hus, metric coefficients are 1, r, rsiné.




Volume integrals in spherical polars

% rsin 8dge /
<\ dV = r’sin0drdode

>rsiﬁ 0do

e \/olume element given by

dV = dré,.(rdoég x rsinfdgés) = r*sinfdrdfde

e Note again that this volume could be written as a determinant




Surface integrals in spherical polars

Three possibilities, but most useful are surfaces of constant r
The surface element dS, is given by
dS, = rd6éy x rsindpé,
= r?sin0dodqe,

rsin 0dpé,
dS, = r’sin0dodde,




& Example: Surface integral in spherical polars 4.30

Q Evaluate [.a- dS, where a = z%k and S is the sphere of radius A centred
on the origin.

A |n general:
Z = rcosf dS = r’sin 0dOd e,
On surface of the sphere, r = A, so that
a = A’cos’6k dS = A’sin6 do dge,

Hence

2T pT
/a - dS / / Adcos%0 A%sin6 [&, - k] dode
Js Jo=0Jo=0

21 T
A° f do / cos>0sinB[cos 6] db
0 0

47t A°

2'11’/5\5E [— cos> 9}; = :

o




General curvilinear coordinates

Suppose

x=x(u,v,w), y=y(uv,w), z=2z(uv w)

So

r = x(u, v, w)i + y(u, v, w)j + z(u, v, wk

and o 0Ox. Oy. O
¥ _©OX. OF., 6 ©Zg
ou 8u| il Suj il auk

[similarly for partials with respect to v and w]

or or or
dr = adu—i—adv—f—a—wdw



Curvilinear coords /ctd

Postion vector: r=x(u, v, Wi+ y(u v, w)j+z(u, v, wk

Infinitessimal dis- dr = gdu ﬂdv ﬂdw

placement: ou ov ow

or or

du _ |du
or or

Local basis: v _ |lav




Curvilinear coords /ctd

e Metric coefficients

h—l \h—\

e Volume element
dV = h,dué,.(h,dvé, x h,dwé,,)

and simplifies if the coordinate system is orthonormal (since &,.(é, x&,) = 1)
to

dV = h,h, h,dudvdw
e Surface element (normal to constant w, say)
dS = h,dué, x h,dvé,
and simplifies if the coordinate system is orthogonal to

dS = h,h,dudvé,




Summary

e \We introduced line, surface and volume integrals involving vector fields.

e \We defined curvilinear coordinates, and realized that metric coefficient were
necessary to relate change in an arbitrary coordinate to a length scale.

e \We showed in detail how line, surface and volume elements are derived, and
how the results specialized for orthogonal curvilinear system, in particular
plane, cylindrical and spherical polar coordinates.

e [he origin of the Jacobian was clarified.




