

Vector Algebra and Calculus

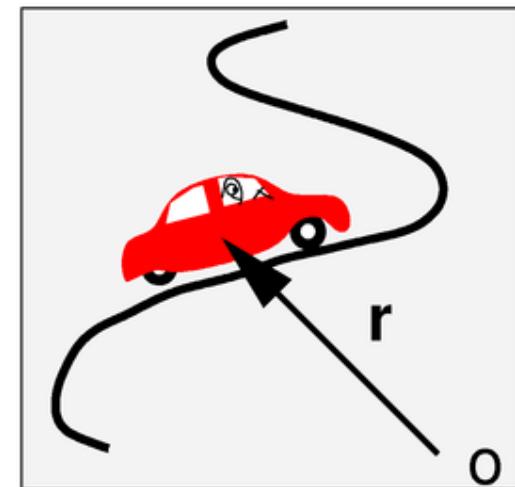
1. Revision of vector algebra, scalar product, vector product
2. Triple products, multiple products, applications to geometry
3. **Differentiation of vector functions, applications to mechanics**
4. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-ordinates
5. Vector operators — grad, div and curl
6. Vector Identities, curvilinear co-ordinate systems
7. Gauss' and Stokes' Theorems and extensions
8. Engineering Applications

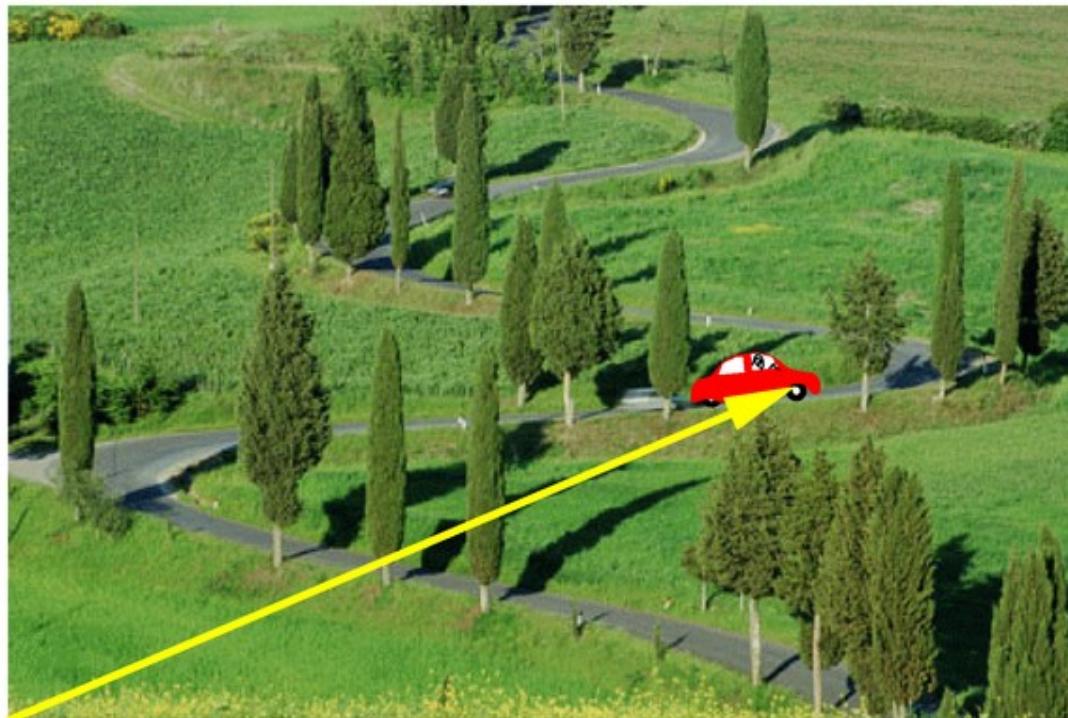
3. Differentiating Vector Functions of a Single Variable

- Your experience of differentiation and integration has extended as far as *scalar* functions of single and multiple variables

$$\frac{d}{dx} f(x) \quad \text{and} \quad \frac{\partial}{\partial x} f(x, y, t)$$

- No surprise that we often wish to differentiate *vector functions*.
- For example, suppose you were driving along a wiggly road with position $\mathbf{r}(t)$ at time t .
- Differentiating $\mathbf{r}(t)$ should give velocity $\mathbf{v}(t)$.
- Differentiating $\mathbf{v}(t)$ should yield acceleration $\mathbf{a}(t)$.
- Differentiating $\mathbf{a}(t)$ should yield the jerk $\mathbf{j}(t)$.





- By analogy with the definition for a scalar function, the derivative of a vector function $\mathbf{a}(p)$ of a single parameter p is

$$\frac{d\mathbf{a}}{dp}(p) = \lim_{\delta p \rightarrow 0} \frac{\mathbf{a}(p + \delta p) - \mathbf{a}(p)}{\delta p} .$$

- If we write \mathbf{a} in terms of components relative to a FIXED coordinate system ($\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ constant)

$$\mathbf{a}(p) = a_1(p)\hat{\mathbf{i}} + a_2(p)\hat{\mathbf{j}} + a_3(p)\hat{\mathbf{k}}$$

then

$$\frac{d\mathbf{a}}{dp}(p) = \frac{da_1}{dp}\hat{\mathbf{i}} + \frac{da_2}{dp}\hat{\mathbf{j}} + \frac{da_3}{dp}\hat{\mathbf{k}} .$$

To differentiate a vector function defined wrt a fixed coordinate system,
differentiate each component separately

- This means that
 - All the familiar rules of differentiation apply
 - they don't get munged by operations like scalar product and vector products.
- For example:

$$\frac{d}{dp}(\mathbf{a} \times \mathbf{b}) = \frac{d\mathbf{a}}{dp} \times \mathbf{b} + \mathbf{a} \times \frac{d\mathbf{b}}{dp}$$

$$\frac{d}{dp}(\mathbf{a} \cdot \mathbf{b}) = \frac{d\mathbf{a}}{dp} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d\mathbf{b}}{dp} .$$

- NB! (obvious really): $d\mathbf{a}/dp$ has
 - a different direction from \mathbf{a}
 - a different magnitude from \mathbf{a} .

- Suppose $\mathbf{r}(t)$ is the position vector of an object moving w.r.t. the origin.

$$\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} + z(t)\hat{\mathbf{k}}$$

- Then the instantaneous velocity is

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\hat{\mathbf{i}} + \frac{dy}{dt}\hat{\mathbf{j}} + \frac{dz}{dt}\hat{\mathbf{k}}$$

- and the acceleration is

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} .$$

- Likewise, the chain rule still applies.
- If $u = u(p)$:

$$\frac{d\mathbf{a}(p)}{dp} = \frac{d\mathbf{a}}{du} \frac{du}{dp}$$

- This follows directly from the fact that the vector derivative is just the vector of derivatives of the components.

- The position of vehicle is given by $\mathbf{r}(u)$ where u is amount of fuel used by time t , so that $u = u(t)$.
- Its velocity must be

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{du} \frac{du}{dt}$$

- Its acceleration is

$$\frac{d^2\mathbf{r}}{dt^2} = \frac{d^2\mathbf{r}}{du^2} \left[\frac{du}{dt} \right]^2 + \frac{d\mathbf{r}}{du} \frac{d^2u}{dt^2}$$

Question

3D vector \mathbf{a} has constant magnitude, but is varying over time.

What can you say about the direction of $d\mathbf{a}/dt$?

Answer

Using intuition: if only the direction is changing, then the vector must be tracing out points on the surface of a sphere. So $d\mathbf{a}/dt$ is orthogonal to \mathbf{a} ???

To prove this write

$$\frac{d}{dt}(\mathbf{a} \cdot \mathbf{a}) = \mathbf{a} \cdot \frac{d\mathbf{a}}{dt} + \frac{d\mathbf{a}}{dt} \cdot \mathbf{a} = 2\mathbf{a} \cdot \frac{d\mathbf{a}}{dt} .$$

But $(\mathbf{a} \cdot \mathbf{a}) = a^2 = \text{const.}$

So

$$\frac{d}{dt}(\mathbf{a} \cdot \mathbf{a}) = 0 \quad \Rightarrow 2\mathbf{a} \cdot \frac{d\mathbf{a}}{dt} = 0 \quad (\text{QED})$$

- As with scalars, integration of a vector function of a single scalar variable is the reverse of differentiation.
- In other words

$$\int_{p_1}^{p_2} \left[\frac{d\mathbf{a}(p)}{dp} \right] dp = \mathbf{a}(p_2) - \mathbf{a}(p_1)$$

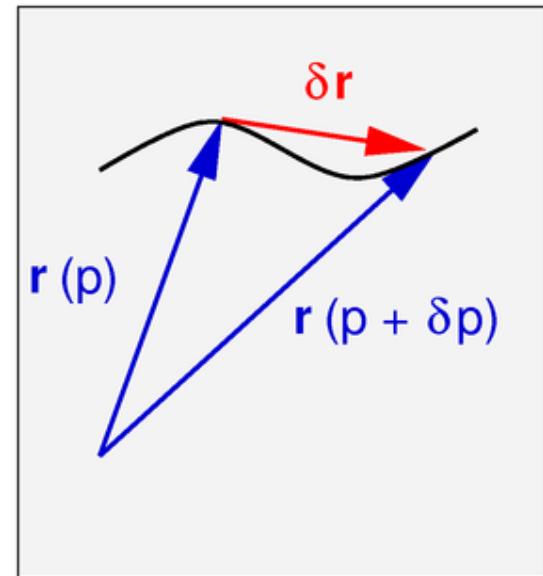
Eg, from dynamics-ville

$$\int_{t_1}^{t_2} \mathbf{a} dt = \mathbf{v}(t_2) - \mathbf{v}(t_1)$$

- However, other types of integral are possible, especially when the vector is a function of more than one variable.
- This requires the introduction of the concepts of scalar and vector fields.
See lecture 4!

- Position vector $\mathbf{r}(p)$ traces a space curve.
- Vector $\delta\mathbf{r}$ is a secant to the curve
 $\delta\mathbf{r}/\delta p$ lies in the same direction as $\delta\mathbf{r}(p)$
- Take limit as $\delta p \rightarrow 0$

$d\mathbf{r}/dp$ is a tangent to the space curve



- Nothing special about the parameter p – may be various ways of parametrizing a particular curve.
- Consider helix aligned with z -axis. Could parametrize by for example:
 - z , the “height” up the helix, or
 - s , the “length” along the curve

- If the parameter s is **arc-length** or **metric distance**, then we have:

$$|d\mathbf{r}| = ds$$

so

$$\left| \frac{d\mathbf{r}}{ds} \right| = 1$$

and

$d\mathbf{r}/ds$ is a unit tangent to \mathbf{r} at s

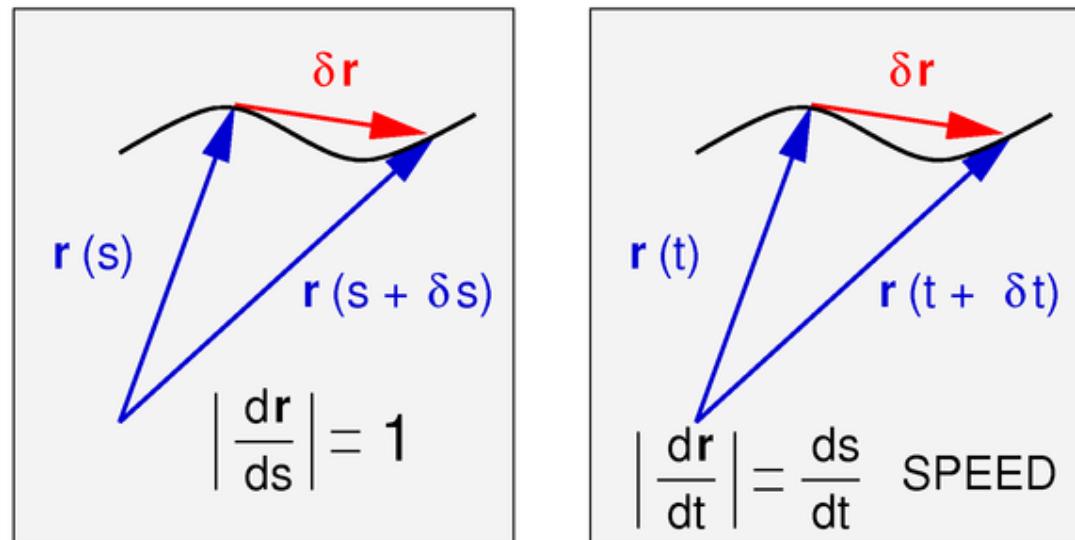
- For s arc-length and p some other parametrization, we have

$$\frac{d\mathbf{r}}{dp} = \frac{d\mathbf{r}}{ds} \frac{ds}{dp}$$

and

$$\left| \frac{d\mathbf{r}}{dp} \right| = \left| \frac{d\mathbf{r}}{ds} \right| \frac{ds}{dp} = \frac{ds}{dp}$$

- To repeat, the derivative $d\mathbf{r}/dp$ is a vector
- Its direction is **always a tangent to curve $\mathbf{r}(p)$**
- Its magnitude is ds/dp , where s is arc length
- If the parameter is arc length s , then $d\mathbf{r}/ds$ is a **unit tangential vector**.
- If the parameter is time t , then magnitude $|d\mathbf{r}/dt|$ is the speed.

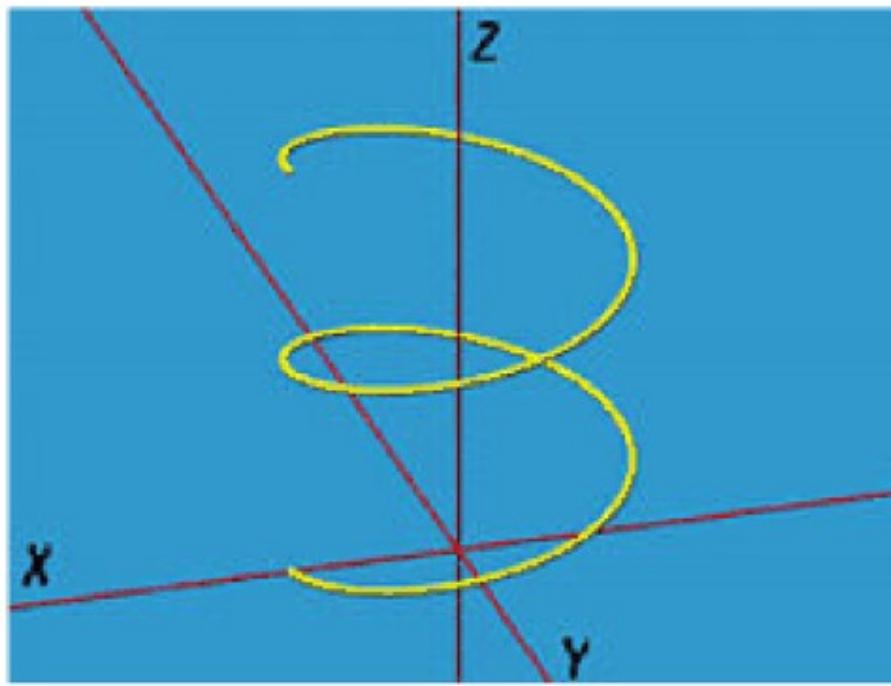


Question: Draw the curve

$$\mathbf{r} = a \cos\left(\frac{s}{\sqrt{a^2 + h^2}}\right)\hat{\mathbf{i}} + a \sin\left(\frac{s}{\sqrt{a^2 + h^2}}\right)\hat{\mathbf{j}} + \frac{hs}{\sqrt{a^2 + h^2}}\hat{\mathbf{k}}$$

where s is arc length and h, a are constants.

Answer



$$\mathbf{r} = a \cos\left(\frac{s}{\sqrt{a^2 + h^2}}\right) \hat{\mathbf{i}} + a \sin\left(\frac{s}{\sqrt{a^2 + h^2}}\right) \hat{\mathbf{j}} + \frac{hs}{\sqrt{a^2 + h^2}} \hat{\mathbf{k}}$$

Show that the tangent $d\mathbf{r}/ds$ to the curve has a constant elevation angle w.r.t the xy -plane, and determine its magnitude.

Answer

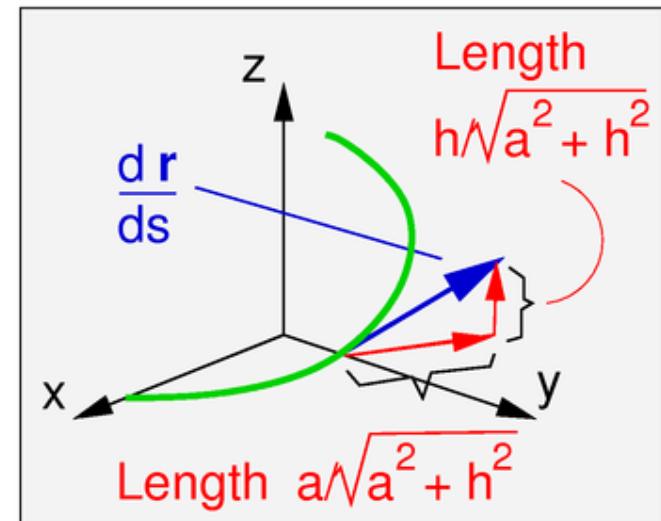
$$\frac{d\mathbf{r}}{ds} = -\frac{a}{\sqrt{a^2 + h^2}} \sin(s) \hat{\mathbf{i}} + \frac{a}{\sqrt{a^2 + h^2}} \cos(s) \hat{\mathbf{j}} + \frac{h}{\sqrt{a^2 + h^2}} \hat{\mathbf{k}}$$

Projection on the xy plane has magnitude $a/\sqrt{a^2 + h^2}$

Projection in the z direction $h/\sqrt{a^2 + h^2}$

So the elevation angle is $\tan^{-1}(h/a)$, a constant.

We are expecting $|d\mathbf{r}/ds| = 1$, and indeed it is!



- Arc length s parameter is special because $ds = |d\mathbf{r}|$,
- Or, in integral form, *whatever the parameter p ,*

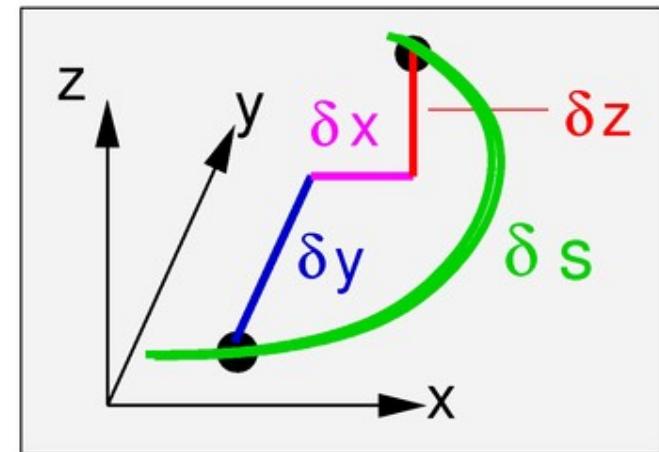
$$\text{Accumulated arc length} = \int_{p_0}^{p_1} \left| \frac{d\mathbf{r}}{dp} \right| dp .$$

- Using Pythagoras' theorem on a short piece of curve. In the limit as ds tends to zero

$$ds^2 = dx^2 + dy^2 + dz^2 .$$

So if a curve is parameterized in terms of p

$$\frac{ds}{dp} = \sqrt{\left[\frac{dx}{dp} \right]^2 + \left[\frac{dy}{dp} \right]^2 + \left[\frac{dz}{dp} \right]^2} .$$



- Suppose we had parameterized our helix as

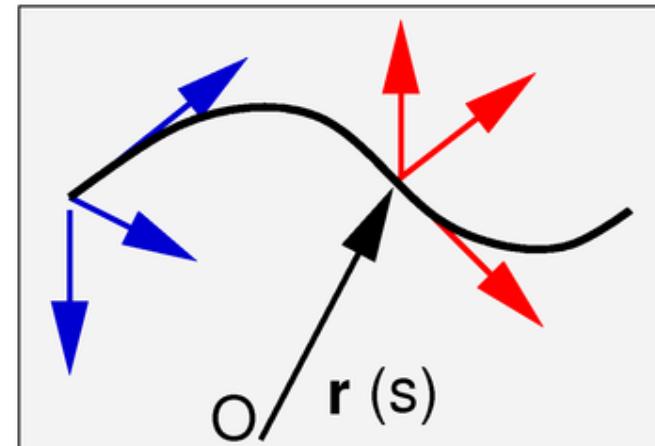
$$\mathbf{r} = a \cos p \hat{\mathbf{i}} + a \sin p \hat{\mathbf{j}} + hp \hat{\mathbf{k}}$$

- p is not arc length because

$$\begin{aligned} \left| \frac{d\mathbf{r}}{dp} \right| &= \sqrt{\left[\frac{dx}{dp} \right]^2 + \left[\frac{dy}{dp} \right]^2 + \left[\frac{dz}{dp} \right]^2} = \sqrt{a^2 \sin^2 p + a^2 \cos^2 p + h^2} \\ &= \sqrt{a^2 + h^2} \\ &\neq 1 \end{aligned}$$

- So if we want to parameterize in terms of arclength, replace p with $s/\sqrt{a^2 + h^2}$.

- Let's look more closely at parametrizing a 3D space curve in terms of arclength s .
- Introduce
 - orthogonal coord frames for each value s
 - each with its origin at $\mathbf{r}(s)$.
- To specify a coordinate frame we need
 - three mutually perpendicular directions
 - should be *intrinsic* to the curve
 - NOT fixed in an external reference frame.



- Rollercoaster will help you see what's going on ...
- But it has a specially shaped rail or two rails that define the twists and turns.
- We are thinking about a 3D curve – just a 3D wire. Does the curve itself define its own twist and turns?

Yes: method due to French mathematicians F-J. Frénet and J. A. Serret

1. Unit tangent $\hat{\mathbf{t}}$ Obvious choice is

$$\hat{\mathbf{t}} = d\mathbf{r}(s)/ds$$

2. Principal Normal $\hat{\mathbf{n}}$

Proved earlier that if $|\mathbf{a}(t)| = \text{const}$ then

$\mathbf{a} \cdot d\mathbf{a}/dt = 0$. So

$$\hat{\mathbf{t}} = \hat{\mathbf{t}}(s), \quad |\hat{\mathbf{t}}| = \text{const} \Rightarrow \hat{\mathbf{t}} \cdot d\hat{\mathbf{t}}/ds = 0$$

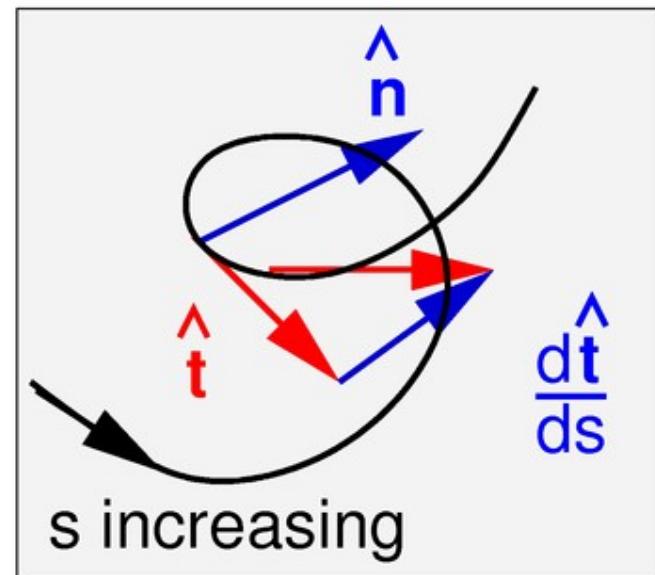
Hence the principal normal $\hat{\mathbf{n}}$ is defined from

$$\kappa \hat{\mathbf{n}} = d\hat{\mathbf{t}}/ds$$

where $\kappa \geq 0$ is the curve's **curvature**.

3. The Binormal $\hat{\mathbf{b}}$

The third member of a local r-h set is the binormal, $\hat{\mathbf{b}} = \hat{\mathbf{t}} \times \hat{\mathbf{n}}$.



Tangent $\hat{\mathbf{t}}$, Normal $\hat{\mathbf{n}}$: $d\hat{\mathbf{t}}/ds = \kappa\hat{\mathbf{n}}$, Binormal $\hat{\mathbf{b}} = \hat{\mathbf{t}} \times \hat{\mathbf{n}}$

- Since $\hat{\mathbf{b}} \cdot \hat{\mathbf{t}} = 0$, if we differentiate wrt s ...

$$\frac{d\hat{\mathbf{b}}}{ds} \cdot \hat{\mathbf{t}} + \hat{\mathbf{b}} \cdot \frac{d\hat{\mathbf{t}}}{ds} = \frac{d\hat{\mathbf{b}}}{ds} \cdot \hat{\mathbf{t}} + \hat{\mathbf{b}} \cdot \kappa\hat{\mathbf{n}} = 0$$

from which

$$\frac{d\hat{\mathbf{b}}}{ds} \cdot \hat{\mathbf{t}} = 0.$$

- This means that $d\hat{\mathbf{b}}/ds$ is along the direction of $\hat{\mathbf{n}}$:

$$\frac{d\hat{\mathbf{b}}}{ds} = -\tau(s)\hat{\mathbf{n}}(s)$$

where τ is the space curve's **torsion**.

Tangent $\hat{\mathbf{t}}$, Normal $\hat{\mathbf{n}}$, Binormal $\hat{\mathbf{b}} = \hat{\mathbf{t}} \times \hat{\mathbf{n}}$

$$d\hat{\mathbf{t}}/ds = \kappa \hat{\mathbf{n}}, \quad d\hat{\mathbf{b}}/ds = -\tau(s) \hat{\mathbf{n}}(s)$$

- Differentiating $\hat{\mathbf{n}} \cdot \hat{\mathbf{t}} = 0$:

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{t}} + \hat{\mathbf{n}} \cdot (d\hat{\mathbf{t}}/ds) = 0$$

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{t}} + \hat{\mathbf{n}} \cdot \kappa \hat{\mathbf{n}} = 0$$

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{t}} = -\kappa$$

- Now do the same to $\hat{\mathbf{n}} \cdot \hat{\mathbf{b}} = 0$:

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{b}} + \hat{\mathbf{n}} \cdot (d\hat{\mathbf{b}}/ds) = 0$$

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{b}} + \hat{\mathbf{n}} \cdot (-\tau) \hat{\mathbf{n}} = 0$$

$$(d\hat{\mathbf{n}}/ds) \cdot \hat{\mathbf{b}} = +\tau$$

- HENCE

$$\frac{d\hat{\mathbf{n}}}{ds} = -\kappa(s) \hat{\mathbf{t}}(s) + \tau(s) \hat{\mathbf{b}}(s).$$

These three expressions are called the Frénet-Serret relationships:

- $d\hat{\mathbf{t}}/ds = \kappa \hat{\mathbf{n}}$
- $d\hat{\mathbf{n}}/ds = -\kappa(s)\hat{\mathbf{t}}(s) + \tau(s)\hat{\mathbf{b}}(s)$
- $d\hat{\mathbf{b}}/ds = -\tau(s)\hat{\mathbf{n}}(s)$

- They describe by how much the intrinsic coordinate system changes orientation as we move along a space curve.

Question Derive $\kappa(s)$ and $\tau(s)$ for the curve

$$\mathbf{r}(s) = a \cos(s/\beta) \mathbf{\hat{i}} + a \sin(s/\beta) \mathbf{\hat{j}} + h(s/\beta) \mathbf{\hat{k}}$$

where $\beta = \sqrt{a^2 + h^2}$

Answer:

- Denote $\sin, \cos(s/\beta)$ as \mathcal{S} and \mathcal{C} .

We found the unit tangent earlier as

$$\mathbf{\hat{t}} = (d\mathbf{r}/ds) = [-(a/\beta) \mathcal{S}, \ (a/\beta) \mathcal{C}, \ (h/\beta)] .$$

- Hence

$$\kappa \mathbf{\hat{n}} = (d\mathbf{\hat{t}}/ds) = [-(a/\beta^2) \mathcal{C}, \ -(a/\beta^2) \mathcal{S}, \ 0]$$

- The curvature must be positive, so

$$\kappa = (a/\beta^2) \quad \mathbf{\hat{n}} = [-\mathcal{C}, \ -\mathcal{S}, \ 0] .$$

- So the curvature is constant, and $\mathbf{\hat{n}}$ parallel to the xy -plane.

- Recall

$$\hat{\mathbf{t}} = [-(a/\beta)S, (a/\beta)C, (h/\beta)] \quad \hat{\mathbf{n}} = [-C, -S, 0] .$$

- So the binormal is

$$\hat{\mathbf{b}} = \hat{\mathbf{t}} \times \hat{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ (-a/\beta)S & (a/\beta)C & (h/\beta) \\ -C & -S & 0 \end{vmatrix} = \left[\left(\frac{h}{\beta} \right) S, -\left(\frac{h}{\beta} \right) C, \left(\frac{a}{\beta} \right) \right]$$

- Hence

$$(d\hat{\mathbf{b}}/ds) = [(h/\beta^2)C, (h/\beta^2)S, 0] = (-h/\beta^2)\hat{\mathbf{n}}$$

- So the torsion

$$\tau = (h/\beta^2)$$

again a constant.

Derivative (eg velocity) components in plane polars

3.25

In plane polar coordinates, the radius vector of any point P is given by

$$\mathbf{r} = r(\cos \theta \hat{\mathbf{i}} + \sin \theta \hat{\mathbf{j}}) = r \hat{\mathbf{e}}_r$$

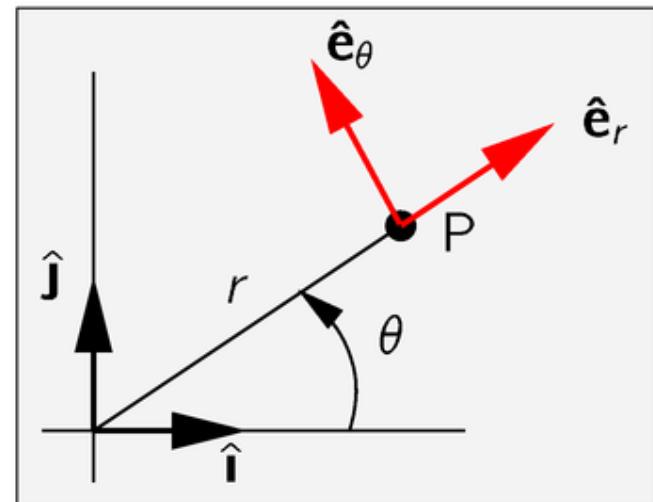
where we have introduced the unit radial vector

$$\hat{\mathbf{e}}_r = \cos \theta \hat{\mathbf{i}} + \sin \theta \hat{\mathbf{j}} .$$

The other “natural” unit vector in plane polars is orthogonal to $\hat{\mathbf{e}}_r$ and is

$$\hat{\mathbf{e}}_\theta = -\sin \theta \hat{\mathbf{i}} + \cos \theta \hat{\mathbf{j}}$$

so that $\hat{\mathbf{e}}_r \cdot \hat{\mathbf{e}}_r = \hat{\mathbf{e}}_\theta \cdot \hat{\mathbf{e}}_\theta = 1$ and $\hat{\mathbf{e}}_r \cdot \hat{\mathbf{e}}_\theta = 0$.



- Some texts will use the notation

$$\hat{r}, \hat{\theta}$$

to denote unit vectors in the radial and tangential directions

- I prefer the more general notation

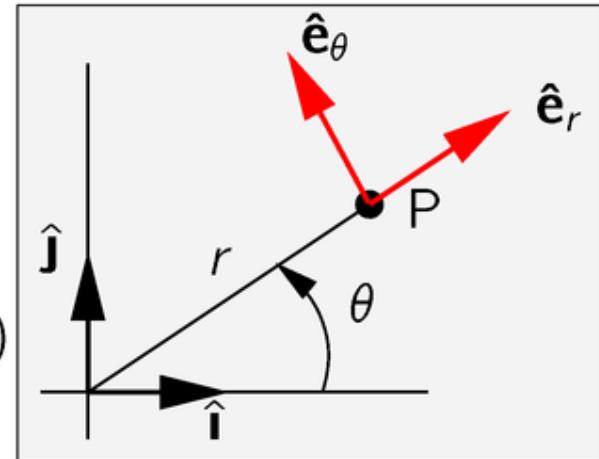
$$\hat{\mathbf{e}}_r, \hat{\mathbf{e}}_\theta$$

(as used in, eg, Riley).

- You should be familiar and comfortable with either

- Now suppose P is moving so that \mathbf{r} is a function of time t .
- Its velocity is

$$\begin{aligned}
 \dot{\mathbf{r}} &= \frac{d}{dt}(r\hat{\mathbf{e}}_r) = \frac{dr}{dt}\hat{\mathbf{e}}_r + r\frac{d\hat{\mathbf{e}}_r}{dt} \\
 &= \frac{dr}{dt}\hat{\mathbf{e}}_r + r\frac{d\theta}{dt}(-\sin\theta\hat{\mathbf{i}} + \cos\theta\hat{\mathbf{j}}) \\
 &= \frac{dr}{dt}\hat{\mathbf{e}}_r + r\frac{d\theta}{dt}\hat{\mathbf{e}}_\theta \\
 &= \text{radial} + \text{tangential}
 \end{aligned}$$



- Note that

$$\frac{d\hat{\mathbf{e}}_r}{dt} = \frac{d\theta}{dt}\hat{\mathbf{e}}_\theta \quad \frac{d\hat{\mathbf{e}}_\theta}{dt} = \frac{d}{dt}(-\sin\theta\hat{\mathbf{i}} + \cos\theta\hat{\mathbf{j}}) = -\frac{d\theta}{dt}\hat{\mathbf{e}}_r$$

- Recap ...

$$\dot{\mathbf{r}} = \frac{dr}{dt} \hat{\mathbf{e}}_r + r \frac{d\theta}{dt} \hat{\mathbf{e}}_\theta ; \quad \frac{d\hat{\mathbf{e}}_r}{dt} = \frac{d\theta}{dt} \hat{\mathbf{e}}_\theta ; \quad \frac{d\hat{\mathbf{e}}_\theta}{dt} = -\frac{d\theta}{dt} \hat{\mathbf{e}}_r$$

- Differentiating $\dot{\mathbf{r}}$ gives the accel. of P

$$\begin{aligned}\ddot{\mathbf{r}} &= \frac{d^2r}{dt^2} \hat{\mathbf{e}}_r + \frac{dr}{dt} \frac{d\theta}{dt} \hat{\mathbf{e}}_\theta + \frac{dr}{dt} \frac{d\theta}{dt} \hat{\mathbf{e}}_\theta + r \frac{d^2\theta}{dt^2} \hat{\mathbf{e}}_\theta - r \frac{d\theta}{dt} \frac{d\theta}{dt} \hat{\mathbf{e}}_r \\ &= \left[\frac{d^2r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right] \hat{\mathbf{e}}_r + \left[2 \frac{dr}{dt} \frac{d\theta}{dt} + r \frac{d^2\theta}{dt^2} \right] \hat{\mathbf{e}}_\theta\end{aligned}$$

- We just saw

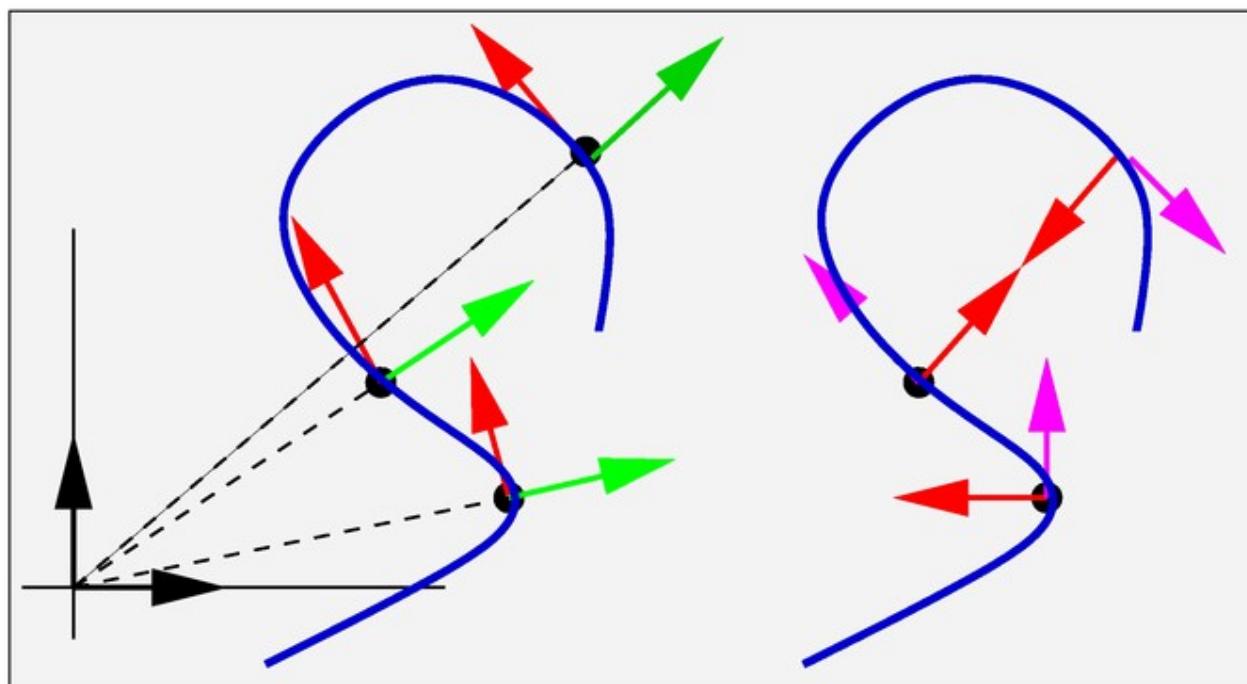
$$\ddot{\mathbf{r}} = \left[\frac{d^2r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right] \hat{\mathbf{e}}_r + \left[2 \frac{dr}{dt} \frac{d\theta}{dt} + r \frac{d^2\theta}{dt^2} \right] \hat{\mathbf{e}}_\theta$$

- Three obvious cases:

$$\theta \text{ const : } \ddot{\mathbf{r}} = \frac{d^2r}{dt^2} \hat{\mathbf{e}}_r$$

$$r \text{ const : } \ddot{\mathbf{r}} = -r \left(\frac{d\theta}{dt} \right)^2 \hat{\mathbf{e}}_r + r \frac{d^2\theta}{dt^2} \hat{\mathbf{e}}_\theta$$

$$r \text{ and } d\theta/dt \text{ const : } \ddot{\mathbf{r}} = -r \left(\frac{d\theta}{dt} \right)^2 \hat{\mathbf{e}}_r$$



- Body rotates with constant ω about axis passing through the body origin.

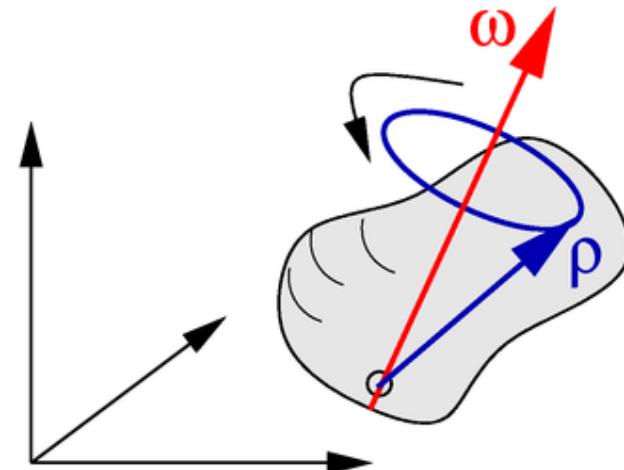
Assume the body origin is fixed.

We observe from a fixed coord system $Oxyz$.

- If ρ is a vector of constant mag and constant direction in the rotating system, then in the fixed system it must be a function of t .

$$\mathbf{r}(t) = \mathbf{R}(t)\rho \quad \Rightarrow \quad \frac{d\mathbf{r}}{dt} = \dot{\mathbf{R}}\rho = \dot{\mathbf{R}}\mathbf{R}^T \mathbf{r}$$

- * $d\mathbf{r}/dt$ will have fixed magnitude;
- * $d\mathbf{r}/dt$ will always be perpendicular to the axis of rotation;
- * $d\mathbf{r}/dt$ will vary in direction within those constraints;
- * $\mathbf{r}(t)$ will move in a plane in the fixed system.



Consider the term $\dot{\mathbf{R}}\mathbf{R}^T$

- Note that $\mathbf{R}\mathbf{R}^T = \mathbf{I}$, hence

$$\begin{aligned}\dot{\mathbf{R}}\mathbf{R}^T + \mathbf{R}\dot{\mathbf{R}}^T &= 0 \\ \dot{\mathbf{R}}\mathbf{R}^T &= -\mathbf{R}\dot{\mathbf{R}}^T\end{aligned}$$

- Thus $\dot{\mathbf{R}}\mathbf{R}^T$ is anti-symmetric:

$$\dot{\mathbf{R}}\mathbf{R}^T = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

- Application of a matrix of this form to an arbitrary vector has **precisely the same effect** as the cross product operator, $\boldsymbol{\omega} \times$, where $\boldsymbol{\omega} = [xyz]^T$.
- Thus

$$\dot{\mathbf{r}} = \boldsymbol{\omega} \times \mathbf{r}$$

- Now ρ is the position vector of a point P in the rotating body, but which is moving too, with respect to the rotating system

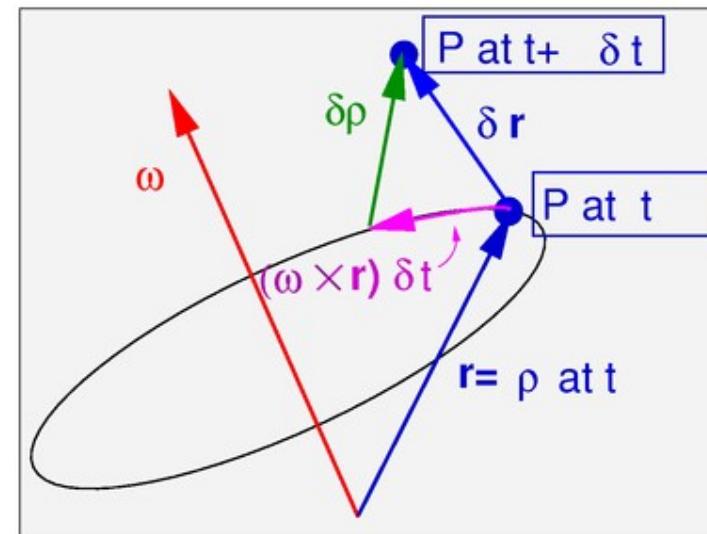
$$\mathbf{r}(t) = \mathbf{R}(t)\rho(t)$$

- Differentiating with respect to time:

$$\frac{d\mathbf{r}}{dt} = \dot{\mathbf{R}}\rho + \mathbf{R}\dot{\rho} = \dot{\mathbf{R}}\mathbf{R}^T\mathbf{r} + \mathbf{R}\dot{\rho}$$

- The **instantaneous velocity** of P in the fixed frame is

$$\frac{d\mathbf{r}}{dt} = \mathbf{R}\dot{\rho} + \boldsymbol{\omega} \times \mathbf{r}$$



- Second term is contribution from the rotating frame
- First term is linear velocity in the rotating frame, referred to the fixed frame

- Now consider **second** differential:

$$\ddot{\mathbf{r}} = \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times \dot{\mathbf{r}} + \dot{\mathbf{R}} \dot{\boldsymbol{\rho}} + \mathbf{R} \ddot{\boldsymbol{\rho}}$$

- If angular velocity constant, first term is zero
- Now substituting for $\dot{\mathbf{r}}$ we have

$$\begin{aligned}\ddot{\mathbf{r}} &= \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r} + \mathbf{R} \dot{\boldsymbol{\rho}}) + \dot{\mathbf{R}} \dot{\boldsymbol{\rho}} + \mathbf{R} \ddot{\boldsymbol{\rho}} \\ &= \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + \boldsymbol{\omega} \times \mathbf{R} \dot{\boldsymbol{\rho}} + \dot{\mathbf{R}} \mathbf{R}^T \mathbf{R} \dot{\boldsymbol{\rho}} + \mathbf{R} \ddot{\boldsymbol{\rho}} \\ &= \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + \boldsymbol{\omega} \times \mathbf{R} \dot{\boldsymbol{\rho}} + \boldsymbol{\omega} \times \mathbf{R} \dot{\boldsymbol{\rho}} + \mathbf{R} \ddot{\boldsymbol{\rho}} \\ &= \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + 2\boldsymbol{\omega} \times (\mathbf{R} \dot{\boldsymbol{\rho}}) + \mathbf{R} \ddot{\boldsymbol{\rho}}\end{aligned}$$

- The **instantaneous acceleration** is therefore

$$\ddot{\mathbf{r}} = \mathbf{R} \ddot{\boldsymbol{\rho}} + 2\boldsymbol{\omega} \times (\mathbf{R} \dot{\boldsymbol{\rho}}) + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

- The **instantaneous acceleration** is

$$\ddot{\mathbf{r}} = \mathbf{R}\ddot{\boldsymbol{\rho}} + 2\boldsymbol{\omega} \times (\mathbf{R}\dot{\boldsymbol{\rho}}) + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

- * Term 1 is P's acceleration in the rotating frame.
- * Term 3 is the centripetal accel: magnitude $\omega^2 r$ and direction $-\mathbf{r}$.
- * Term 2 is a SURPRISE!

It is a coupling of rotation and velocity of P in the rotating frame.

It is the **Coriolis acceleration**.

Q Find the instantaneous acceleration as observed in a fixed frame of a projectile fired along a line of longitude (with angular velocity of γ constant relative to the sphere) if the sphere is rotating with angular velocity ω .

A In the rotating frame

$$\dot{\rho} = \gamma \times \rho$$

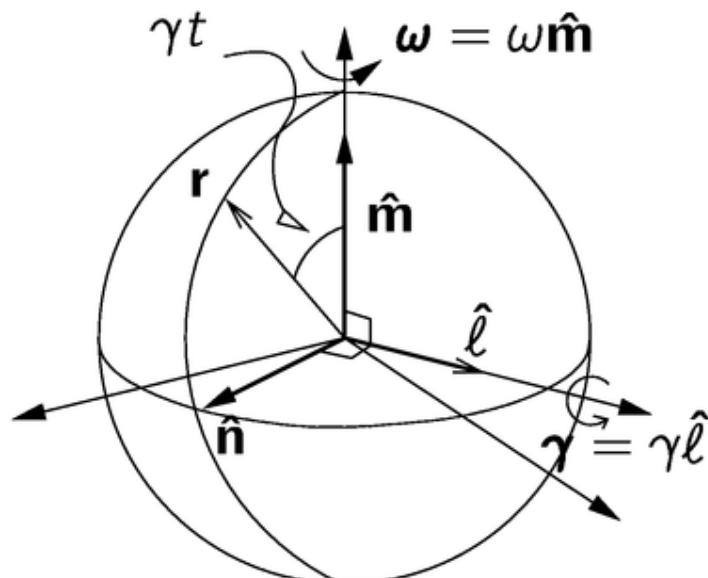
$$\ddot{\rho} = \gamma \times \dot{\rho}$$

$$= \gamma \times (\gamma \times \rho)$$

In fixed frame, instantaneous acceleration:

$$\ddot{\mathbf{r}} = \gamma \times (\gamma \times \mathbf{r}) + 2\omega \times (\gamma \times \mathbf{r}) + \omega \times (\omega \times \mathbf{r})$$

In rotating frm + Coriolis + Centripetal



Repeated: $\ddot{\mathbf{r}} = \boldsymbol{\gamma} \times (\boldsymbol{\gamma} \times \mathbf{r}) + 2\boldsymbol{\omega} \times (\boldsymbol{\gamma} \times \mathbf{r}) + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$

1) As $\boldsymbol{\gamma} = \gamma \hat{\ell}$, $\boldsymbol{\rho} = R \cos(\gamma t) \hat{\mathbf{m}} + R \sin(\gamma t) \hat{\mathbf{n}}$
 ⇒ acceleration in rotating frame is

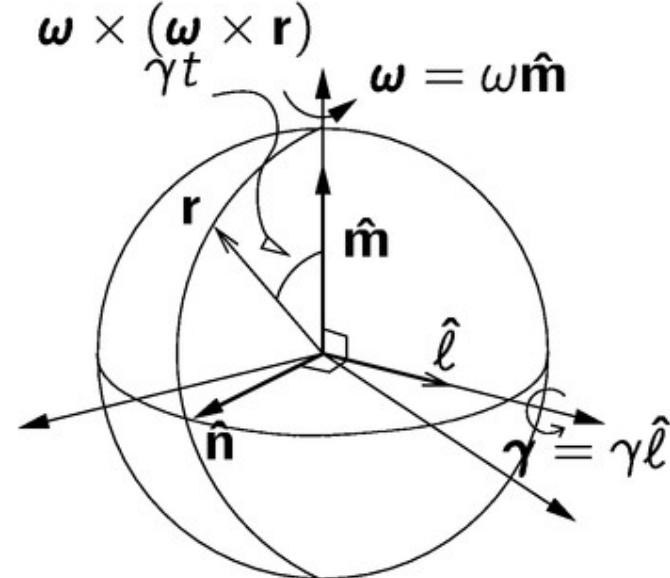
$$\boldsymbol{\gamma} \times (\boldsymbol{\gamma} \times \boldsymbol{\rho}) = -\gamma^2 \mathbf{r}$$

2) Centripetal accel due to rotation of sphere is

$$\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) = -\omega^2 R \sin(\gamma t) \hat{\mathbf{n}}$$

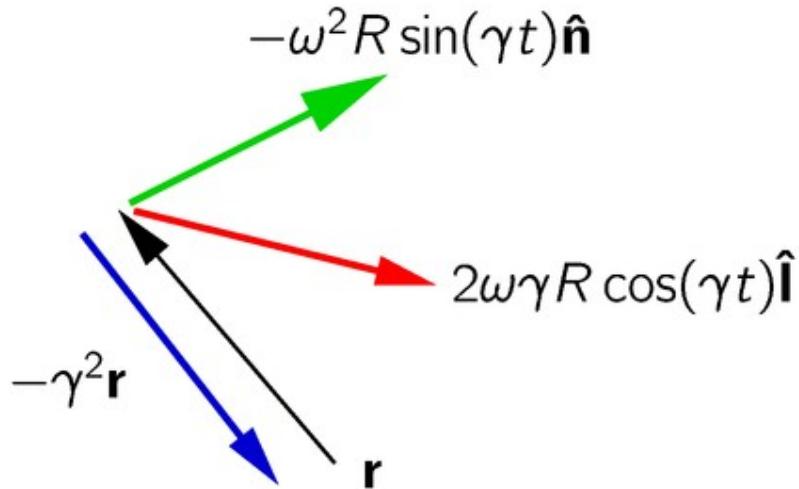
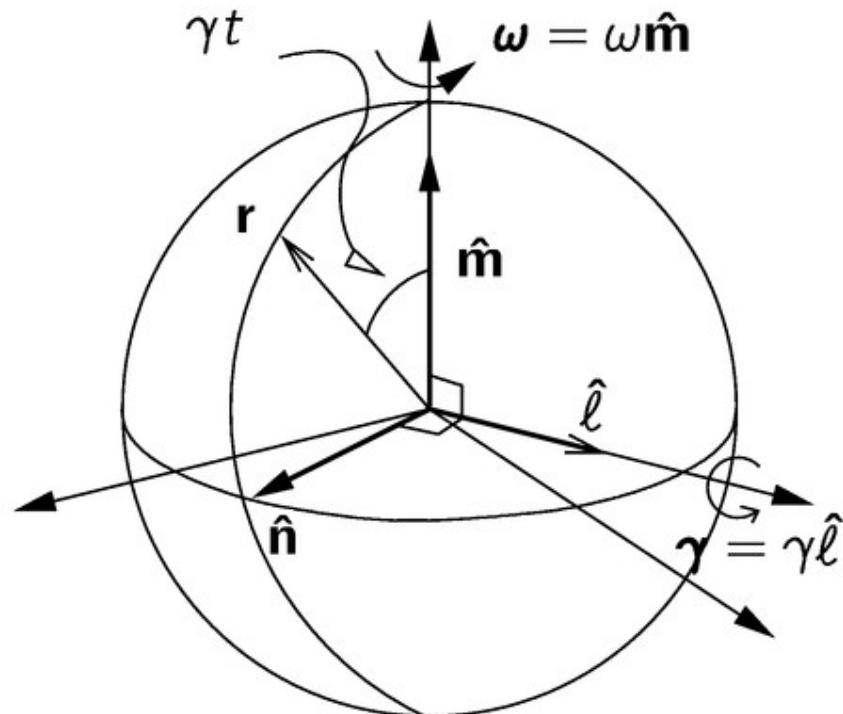
3) The Coriolis acceleration is

$$2\boldsymbol{\omega} \times \dot{\boldsymbol{\rho}} = 2 \begin{bmatrix} 0 \\ \omega \\ 0 \end{bmatrix} \times \left(\begin{bmatrix} \gamma \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ R \cos(\gamma t) \\ R \sin(\gamma t) \end{bmatrix} \right) = 2\omega\gamma R \cos(\gamma t) \hat{\ell}$$



Recap:

- Accel in rotating frame $-\gamma^2 \mathbf{r}$
- Centripetal due to sphere rotating
 $-\omega^2 R \sin(\gamma t) \hat{\mathbf{n}}$
- Coriolis acceleration:
 $2\omega\gamma R \cos(\gamma t) \hat{\mathbf{i}}$

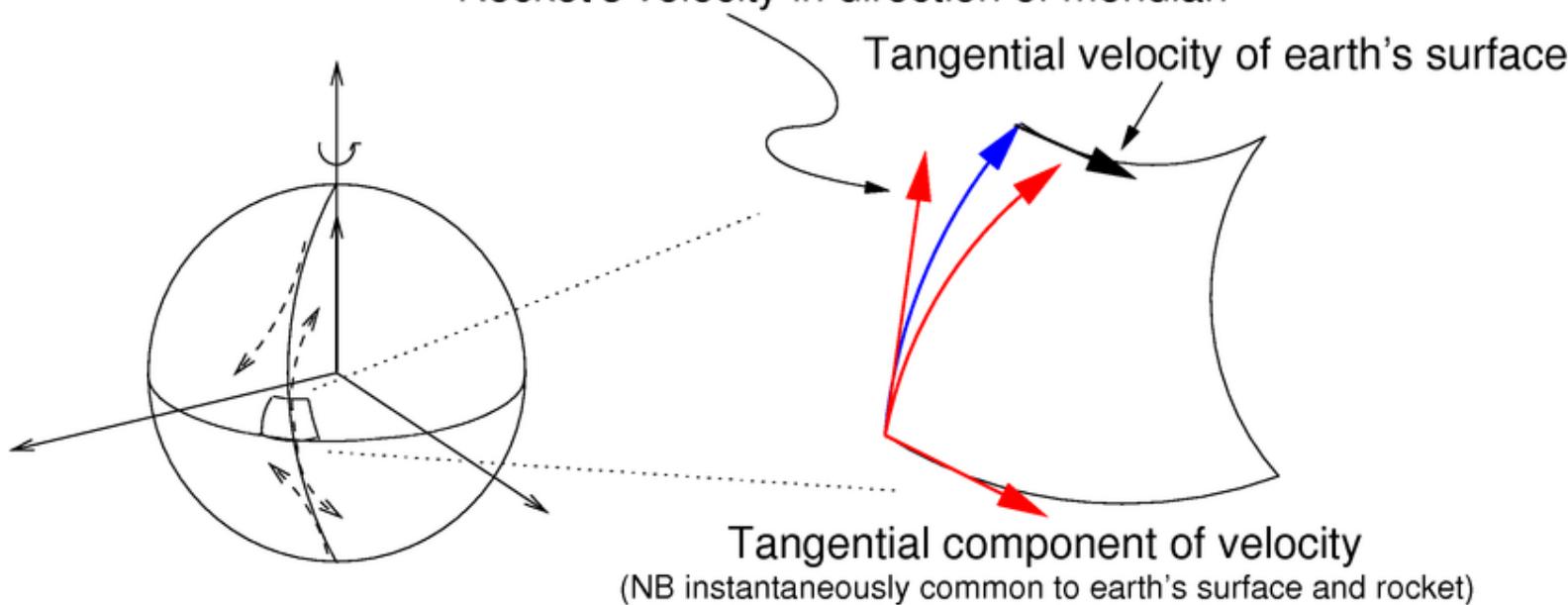


- Consider a rocket on rails which stretch north from the equator.
- As rocket travels **north** it experiences the Coriolis force exerted by the rails:

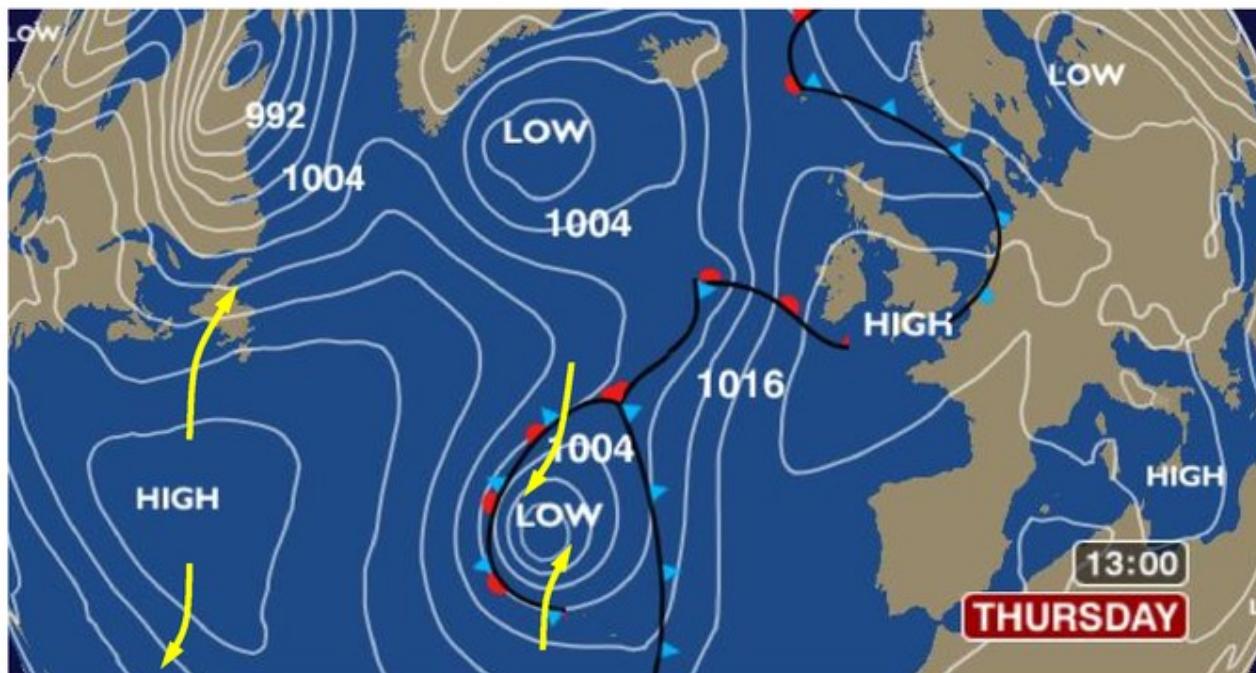
$$\begin{array}{ccccc}
 2 & \gamma & \omega & R \cos(\gamma t) & \hat{l} \\
 +ve & -ve & +ve & & +ve
 \end{array}$$

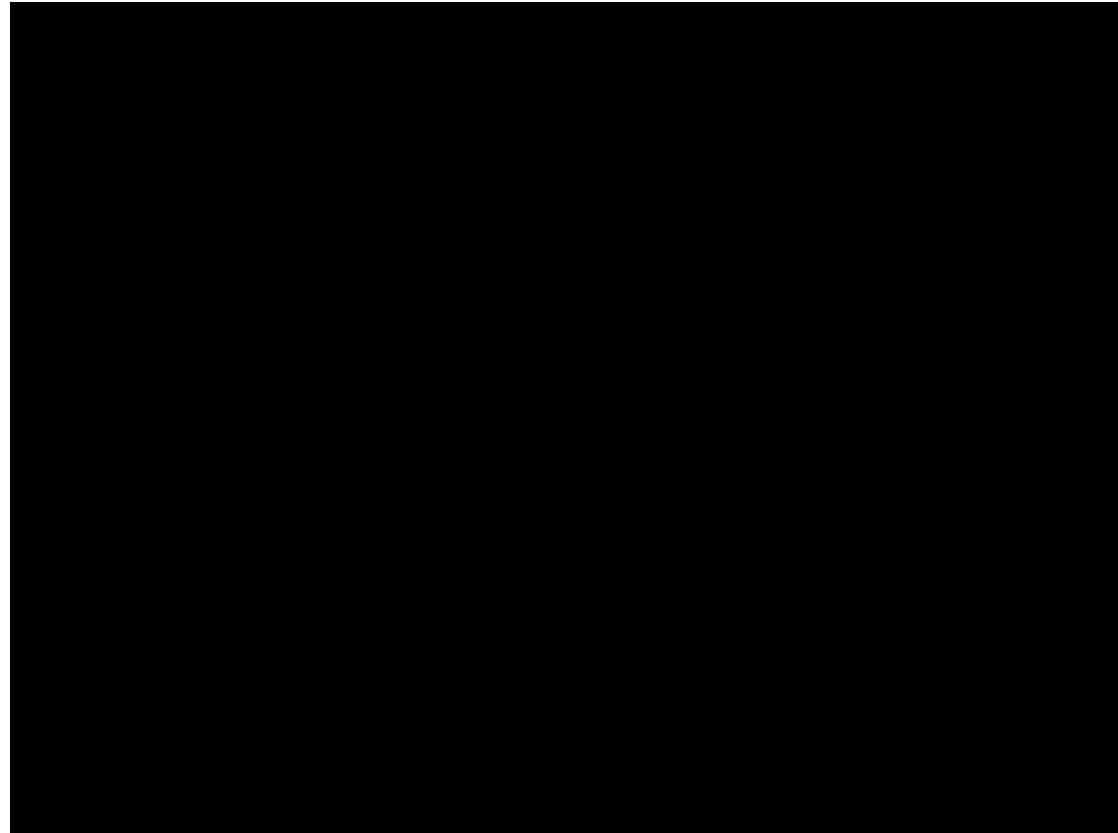
- Coriolis force is in the direction opposed to \hat{l} (i.e. opposing earth's rotation).

Rocket's velocity in direction of meridian



- Because of the rotation of the earth, the Coriolis acceleration is of great importance in meteorology





- We started by differentiating vectors wrt to a fixed coordinate system.
- Then looked at the properties of the derivative of a position vector \mathbf{r} with respect to a general parameter p and the special parameters of arc-length s , and time t
- considered derivatives with respect to other coordinate systems, in particular those of the position vector in polar coordinates with respect to time.
- derived Frénet-Serret relationships — a method of describing a 3D space curve by describing the change in a intrinsic coordinate system as it moves along the curve.
- discussed rotating coordinate systems; we saw that there is coupled term in the acceleration, called the Coriolis acceleration.