Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

. Vector operators — grad, div and curl
. Vector |dentities, curvilinear co-ordinate systems
. Gauss’ and Stokes’ Theorems and extensions

. Engineering Applications




3. Differentiating Vector Functions of a Single Variable

e Your experience of differentiation and integration has extended as far as scalar
functions of single and multiple variables

d 0
af(x) and a—xf(x,y, t)

e No surprise that we often wish to differentiate vector functions.

e For example, suppose you were driving along
a wiggly road with position r(t) at time t.

e Differentiating r(t) should give velocity v(t).

e Differentiating v(t) should yield acceleration
a(t).

e Differentiating a(t) should yield the jerk j(t).




Differentiation of a vector




Differentiation of a vector 3.3

e By analogy with the definition for a scalar function, the derivative of a vector
function a(p) of a single parameter p is

da, . . a(p+dp)—a(p)
dp(p) N 52@0 op |

e [f we write a In terms of components relative to a FIXED coordinate system
(1,3, k constant)

a(p) = a1(p)i+ ax(p)i + as(p)k

then
da __day_ day  das;

—(p) = —J+ —k .
dp(p) dp'_l_dpj-l_ dp

To differentiate a vector function defined wrt a fixed coordinate system,
differentiate each component separately




All the familiar stuff works ...

e [ his means that

— All the familiar rules of differentiation apply
— they don’t get munged by operations like scalar product and vector prod-
ucts.

e For example:
d da db

—(axb)=—xb+ax —

dp dp dp

d da db

e NB! (obvious really): da/dp has

— a different direction from a

— a different magnitude from a.




Position, velocity and acceleration

e Suppose r(t) is the position vector of an object moving w.r.t. the orgin.
r(t) = x(t)i+ y(t)j + z(t)k

e [hen the instantaneous velocity is

dr dx_ dy. dza
‘U’(f)—dt—d I+d_J+Ek

e and the acceleration is

dv  d*r
=3~




Chain rule: more good news

e Likewise, the chain rule still applies.

o If u=u(p):
i da(p) da du

dp  du dp

e [his follows directly from the fact that the vector derivative Is just the vector
of derivatives of the components.




& Example of chain rule 3.7

e The position of vehicle is given by r(u) where v is amount of fuel used by
time t, so that v = u(t).

e |ts velocity must be
dr  drdu

dt  dudt

e |ts acceleration is

d’r  d% [dur dr d?u

de2 —di2 |at| Tauade




& Example: direction of the derivative

Question

3D vector a has constant magnitude, but is varying over time.

What can you say about the direction of da/dt?

Answer

Using intuition: if only the direction is changing, then the vector must be tracing
out points on the surface of a sphere. So da/dt is orthogonal to a?77

To prove this write

da da da

a==2a-— .
dt

+

But (a-a) = a° =
So




Integration of a vector function 3.9

e As with scalars, integration of a vector function of a single scalar variable is
the reverse of differentiation.

[ [da(m] dp = a(p2) — a(p1)

P1

e |n other words

Eg, from dynamics-ville

/tz a dt =v(i,) —v(t)

5]

e However, other types of integral are possible, especially when the vector is a
function of more than one variable.

e [his requires the introduction of the concepts of scalar and vector fields.

See lecture 4!




Geometrical interpretation of derivatives

e Position vector r(p) traces a space curve.

e Vector dr is a secant to the curve
or/dp lies in the same direction as dr(p)

e Take limit as dp — O

dr/dp is a tangent to the space curve

e Nothing special about the parameter p — may be various ways of parametrizing
a particular curve.

e Consider helix aligned with z-axis. Could parametrize by for example:

z, the "height” up the helix, or

s, the “length” along the curve




Geometrical interpretation of derivatives /ctd

e If the parameter s is arc-length or metric distance, then we have:

|dr| = ds

dr

— | =1
ds

and

dr/ds is a unit tangent tor at s

e For s arc-length and p some other parametrization, we have
dr drds
dp dsdp

dp ds|dp dp

dr ‘dr ds ds




Geometrical interpretation of derivatives /ctd

e To repeat, the derivative dr/dp is a vector

e Its direction is always a tangent to curve r(p)

e [ts magnitude is ds/dp, where s is arc length

e If the parameter is arc length s, then dr/ds is a unit tangential vector.

e If the parameter is time t, then magnitude |dr/dt| is the speed.

or




& Example

Question: Draw the curve

S S R s
VTR Ve L
where s is arc length and h, a are constants.
Answer

r = acos( )T+ asin(




& Example ctd

S S .
1,:“32_{_ 2 ,HBQ_I_hQ)J-I_
Show that the tangent dr/ds to the curve has a constant elevation angle w.r.t
the xy-plane, and determine its magnitude.

Answer

r = acos( )T+ asin(

dr
ds ,/—

Projection on the xy plane has magnitude
a/Vva*+ h?

Projection in the z direction h/v/a? + h?

So the elevation angle is tan~'(h/a), a constant.
We are expecting |dr/ds| = 1, and indeed it is!

Length af\/a2+ h?




Why can’t we say any old parameter is arc length?

e Arc length s parameter is special because ds = |dfr|,

e Or, Iin integral form, whatever the parameter p,

P1
Accumulated arc length = /
7 po

e Using Pythagoras' theorem on a short piece
of curve. In the limit as ds tends to zero

ds==dx"+dy -+ dz .

So if a curve is parameterized in terms of p

ds dx1? [dyl® [dz]?
— =4/ |=| +|=| + =] -
dp dp dp dp




Arc length is special /ctd

e Suppose we had parameterized our helix as

r=acospi + asinp] + hpk

e pis not arc length because

d dx1? [dy]® [dz]’ .
d_:) —\/[d—ﬂ +[d_£] +[d_ﬂ \/325|n29-|—32c0529+h2

= Va’+h?
# 1

e So if we want to parameterize in terms of arclength, replace p with s/+/a% + h2.




Curves in 3D

e Let's look more closely at parametrizing a 3D space curve in terms of
arclength s.

e Introduce

— orthogonal coord frames for each value s

— each with its origin at r(s).

e [0 specify a coordinate frame we need

— three mutually perpendicular directions
— should be intrinsic to the curve

— NOT fixed in an external reference
frame.




Curves in 3D

e Rollercoaster will
help you see what's
going on ...

e But it has a
specially shaped rall
or two rails that
define the twists
and turns.

e \We are thinking about a 3D curve — just a 3D wire.
Does the curve itself define its own twist and turns?




The Frénet-Serret Local Coordinates

Yes: method due to French mathematicians F-J. Frénet and J. A. Serret

1. Unit tangent t Obvious choice is

t=dr(s)/ds A
2. Principal Normal A n
Proved earlier that if |a(t)| = const then
a-da/dt=0. So

A
t

t=t(s), |t =const=1t:dt/ds=0

Hence the principal normal f is defined from _ _
kh = dt/ds S INnCreasing

where Kk > 0 I1s the curve’'s curvature.

3. The Binormal b
The third member of a local r-h set is the binormal, b =t x A .




Deriving the Frénet-Serret relationships

Tangent £, Normal i : dt/ds = ki, Binormal b= x f

e Since b-t = 0, if we differentiate wrt s ...

— Et—FbHHZO

from which

db

.t=0.
ds

e This means that dﬁ/ds Is along the direction of f:

db A
75 —T(s)A(s)

where T 1s the space curve’s torsion.




Deriving the Frénet-Serret relationships

Tangent £, Normal fi, Binormal b =t x
di/ds = ki, db/ds = —1(s)i(s)
e Differentiating fi - t = 0:
(dfv/ds) -t + - (dt/ds)
(di/ds) -t + A - ki
(div/ds) - t

el

e Now do the same ton-b =0:
(dA/ds)-b+h- (db/ds)
(dh/ds) -b+fa-(—7)h
(dii/ds) - b

e HENCE A
dh _
ds

—k(s)E(s) + 7(s)b(s).




Summary of the Frénet-Serret relationships

These three expressions are called the Frénet-Serret relationships:
e dt/ds = kh
o dit/ds = —k(s)E(s) + T(s)b(s)
e db/ds = —7(s)i(s)

e They describe by how much the intrinsic coordinate system changes orienta-
tion as we move along a space curve.




& Example

Question Derive k(s) and 7(s) for the curve

r(s) = acos(s/B)i+ asin(s/B)j+ h(s/B)k
where B = v a2 + h?

Answer:

e Denote sin, cos(s/B) as S and C.
We found the unit tangent earlier as

t=(dr/ds)=[-(a/B)S. (a/B)C. (h/B)] .

e Hence

kh = (dt/ds) = [- (a/B*) C, — (a/B?) S, O]
e [he curvature must be positive, so

k= (a/8*) A=[-C, =S, 0].

e S0 the curvature 1s constant, and f parallel to the xy-plane.




& Example /continued

e Recall
t=[-(a/B)S. (a/B)C. (h/B)]

e So the binormal is

b=txfA= (—ajﬁ)S (a/%)c (hfﬁ) = Kﬁ) S - (E) “ (EH

B B B

—C -5 0
e Hence
(dﬁ/ds) = [(h/ﬁz) T (h/ﬁz) S, 0} = (—h/ﬁz) N

e So the torsion
T = (h/B?)

again a constant.




Derivative (eg velocity) components in plane polars

In plane polar coordinates, the radius vector of
any point P Is given by

r = r(cos6i+sinfj) = ré,

where we have introduced the unit radial vector
& =costi+sindj .

The other “natural” unit vector in plane polars
Is orthogonal to &, and is

€y = —sinOi + cos 6]

sothat é,-é, =€;-é; =1 and &, - &y = 0.




Aside: notation

e Some texts will use the notation

r,6

to denote unit vectors in the radial and tangential directions

e | prefer the more general notation

(as used in, eg, Riley).

e You should be familiar and comfortable with either




Derivative (eg velocity) components in plane polars

e Now suppose P Is moving so that r is a function
of time t.

e [ts velocity Is

o d

= radial + tangential
e Note that

de, do, d&g  d, . de,
= é E—a(—smﬁﬂr cos @) = dter




Acceleration components in plane polars

e Recap ...

_ dr . N
r=—é
dt "

e Differentiating r gives the accel. of P
d’r drdf, drdf, d?0 do deo

r — Per - amﬁg -+ Eaﬁg -} I’WeS — Faaer

d_Q.-" r @ e + QQﬁ-I—rd—Qe ¢
dt2 dt r dtdt ' dt2| ?




Acceleration components in plane polars

e We just saw

2———+ r— €y

drde  d?6] .
dtdt = dt2

e [ hree obvious cases:

@ const : F

rconst: r

r and d@/dt const : ¥




Fixed, varying, and instrinsic coordinates




Rotating systems

e Body rotates with constant w about
axis passing through the body origin.

Assume the body origin Is fixed.
We observe from a fixed coord sys-
tem Oxyz.

e |f pis a vector of constant mag and constant direction in the rotating system,
then in the fixed system it must be a function of t.

dr . ,
r(t)=R(t)p = d—;:Rp:RRTr

* dr/dt will have fixed magnitude;

* dr/dt will always be perpendicular to the axis of rotation;
* dr/dt will vary in direction within those constraints;
*r(t) will move in a plane in the fixed system.




Rotating systems

Consider the term RR'
e Note that RR' = I. hence
RR' +RR'
RR' =

e Thus RR' is anti-symmetric:

0 —z y |
RR'=| 2z 0 —x
-y x O

e Application of a matrix of this form to an arbitrary vector has precisely the
same effect as the cross product operator, wx, where w = [xyz]'.

e [ hus
Fr=w Xr




Rotating co-ordinate systems 2 3.33

e Now p is the position vector of a point P In the rotating body, but which is
moving too, with respect to the rotating system

r(t) = R(t)p(t)

e Differentiating with respect to time:

Patt+ &t

dr . i . :
— =Rp+Rp=RR r+Rp
dt
¢ [he instantaneous velocity of P
In the fixed frame is

dr_R,+w><r
dt_ F

e Second term is contribution from the rotating frame

e First term is linear velocity in the rotating frame, referred to the fixed frame




Rotating co-ordinate systems 3.34

e Now consider second differential:
F=wXr+wxr+Rp+Rp

e |f angular velocity constant, first term is zero

e Now substituting for r we have

F = w X (wXr+Rp)+Rp+Rp
= wx (wxr)+wxRp+RR'Rp+Rp
= WX (wXr)+wXRp+wXRp+RpP
= w X (wXr)+2w x (Rp) +Rp

e [he instantaneous acceleration is therefore

f = Rp+ 2w X (Rp) + w X (wXr)



Rotating co-ordinate systems

¢ [he instantaneous acceleration is

F =Rp + 20X (Rp) + wX(wxr)

* Term 1 is P’s acceleration in the rotating frame.
* Term 3 is the centripetal accel: magnitude w?r and direction —r.

* Term 2 is a SURPRISE!

It 1s a coupling of rotation and velocity of P in the rotating frame.
It is the Coriolis acceleration.




& Examples 3.36

Q Find the instantaneous acceleration as observed in a fixed frame of a projectile

fired along a line of longitude (with angular velocity of 4 constant relative to the

sphere) if the sphere is rotating with angular velocity w.
A |n the rotating frame

= q9Xp
) = YXPp
= 7 x (7 xp)
In fixed frame, instantaneous acceleration:
T = yx(xXrnN4+2wx(yxr)+wx (wxr)

In rotating frm 4 Coriolis + Centripetal




& Example /ctd

Repeated: ¥ = yx (yxr) + 2w Xx (yXxr)

1) As v = ¥4, p = R cos(yt)m + Rsin(yt)i
=-acceleration In rotating frame is
¥ X (7 X p) ==
2) Centripetal accel due to rotation of sphere is
w X (w X r) = —w?Rsin(yt)h

3) The Coriolis acceleration is

0
20 X P = 2 |w
0

= 2wyR cos(yt)d




& Example /ctd
Recap:

e Accel in rotating frame —°r

e Centripetal due to sphere rotating
—w?Rsin(yt)h

e Coriolis acceleration:
2wy R cos(yt)l

—w?Rsin(yt)h
\ QLUIYR COS(’Yf)i
r




& Example /ctd

e Consider a rocket on rails which stretch north from the equator.

e As rocket travels north it experiences the Coriolis forcg exerted by the ralls:
2 ¥ W Rcos(vyt) 4
+ve  -ve +ve +ve

e Coriolis force is in the direction opposed to £ (i.e. opposing earth’s rotation).
Rocket’s velocity in direction of meridian

Tangential velocity of earth’s surface

Tangential component of velocity
(NB instantaneously common to earth's surface and rocket)




& Coriolis acceleration 3.40

e Because of the rotation of the earth, the Coriolis acceleration is of great
Importance in meteorology




& Coriolis acceleration




Summary

e \We started by differentiating vectors wrt to a fixed coordinate system.

e Then looked at the properties of the derivative of a position vector r with
respect to a general parameter p and the special parameters of arc-length s,
and time t

e considered derivatives with respect to other coordinate systems, in particular
those of the position vector in polar coordinates with respect to time.

e derived Frénet-Serret relationships — a method of describing a 3D space
curve by describing the change in a intrinsic coordinate system as it moves
along the curve.

e discussed rotating coordinate systems; we saw that there is coupled term in
the acceleration, called the Coriolis acceleration.




