2. More Algebra & Geometry using Vectors

In which we discuss ...

e \ector products:

Scalar Triple Product, Vector Triple Product, Vector Quadruple Product
e Geometry of Lines and Planes
e Solving vector equations

e Angular velocity and moments




Triple and multiple products 2.2

e Using mixtures of scalar products and vector products, it Is possible to derive

— "triple products’ between three vectors

— n-products between n vectors.

e Nothing new about these
— but some have nice geometric interpretations ...

e \We will look at the

— Scalar triple product
— Vector triple product

— Vector quadruple product




Scalar triple product a - (b X c) 23

e Scalar triple product given by the true determinant

dy d2 as
a'(bXC)Z b] bg b3
Gl Ca

e Your knowledge of determinants tells you that if you

— swap one pair of rows of a determinant, sign changes;

— swap two pairs of rows, Its sign stays the same.
e Hence

(a-(bxc)=c-(axb)=b-(cxa) (Cyclic permutation.)
(ia-(bxc)=—b-(axc)andso on. (Anti-cyclic permutation)
(i) The fact that a- (b x ¢) = (a x b) - ¢ allows the scalar triple product to
be written as [a, b, c].
This notation is not very helpful, and we will try to avoid it below.




Geometrical interpretation of scalar triple product 2.4

e The scalar triple product gives the volume of the parallelopiped whose sides
are represented by the vectors a, b, and c.

[

e Vector product (a x b) has
/ magnitude equal to the area of the

base

direction perpendicular to the base.

e The component of c in this direction is equal to the height of the parallelopiped

Hence
|(a x b) - ¢| = volume of parallelopied




Linearly dependent vectors

e |f the scalar triple product of three vectors
a-(bxc)=0
then the vectors are linearly dependent.

a=Ab+ uc

ln/ -
S

e You can see this immediately either using the determinant

— The determinant would have one row that was a linear combination of the

others

e or geometrically for a 3-dimensional vector.

— the parallelopiped would have zero volume If squashed flat.




Vector triple product a X (b X c)

2.6

a x (b x c) is perpendicular to (b x c)
but (b x c) is perpendicular to b and c.
So a x (b x ¢) must be coplanar with b
and c.

=a x (bxc)=Ab+ puc

bxc

a
f In arbitrary direction

ax(bx c)

(@ax(bxc)) = axbxc)s—as(bxc)
= ax(bi1c — bycy) + as(bics — bscy)
= (a0 + a3c3) b1 — (a2b2 + a3b3)
= (a1c1 + a0 + a3cz3) by — (a1b1 + asbs + asbs) ¢

= (a-c)b; — (a-b)g

Similarly for components 2 and 3: so

[ax(bxc)] =(a-c)b—(a-b)c




Projection using vector triple product 2.7

e Books say that the vector projection of any old
vector v into a plane with normal i is
vinpLANE = A X (v X ).

e I

e [he component of v in the fh directionis v - h
so | would write the vector projection as /

VINPLAN

VINPLANE = V — (V ' ﬁ)ﬁ

e Can we reconcile the two expressions? Subst. A < a, v < b, i + ¢, into
our earlier formula

ax(bxc) = (a-c)b—(a-b)c
Ax(vxn) = (h-A)v—(A-v)A
- v —(v-A)n

e Fantastico! But v—(v-f)f is much easier to understand, cheaper to compute!




Vector Quadruple Product (a x b) x (c x d)

2.8

e \We have just learned that

pPx(@xr)] = (p-r)a—(p-ay
= (axb)x(cxd) = 77

e Regarding a X b as a single vector
= vgp must be a linear combination of ¢ and d

e Regarding ¢ X d as a single vector
= vgp must be a linear combination of a and b.

e Substituting in carefully (you check ...)

(axb)x(cxd) = [(axb)-dlc—[(axDb)-c]d
= [(cxd)-a]b—[(c xd)-b]a




Vector Quadruple Product /ctd

2.9

e Using just the R-H sides of what we just wrote ...

[(@axb)-cld=[(bxc)-dla+[(cxa)-db+[(axb)-d|c

e S0
[(bxc)-dlat+[(cxa)-d]b+[(axb)- d]c
d =
[(a xb) -]
= aa+L£b+4yc .
e Don't remember by © a
d
e Key point is that the
projection of a 3D vector d &

onto a basis set of 3

non-coplanar vectors is
UNIQUE. =




& Example 2.10

Question

Use the quadruple vector product to express the vector d = [3, 2, 1] in terms of
the vectorsa=[1,2,3|,b=1(2,3,1] and c = [3, 1, 2].

Answer

(bxc)-dla+|(cxa)-db+[(axb)-d|c
[(@axb):c]

So, grinding away at the determinants, we find
e(axb)-c=—-18and (bxc) -d=6
e(cxa)-d=—-12and (axb) -d=-12.

So

d =

1
d = _—18(6a — 12b — 12c)

1
= 5(_3 + 2b + 2¢)




Geometry using vectors: Lines 2.11

e Equation of line passing through
point a; and lying in the direction
of vector b is

Point r traces
out line.

r=a-+0b

e NB! Only when you make a unit vector in the dirn of b does the parameter
take on the length units defined by a:

r=a+ \b
e For a line defined by two points a; and a,
r=a; +B(ax — ai)

e or the unit version ...
r =a; + A(ax —ay)/|ax — a|




The shortest distance from a point to a line 512

e Vector p from ¢ to ANY line point
XIS

p=r—c=a+\b—c=(a—c)+)b

which has length squared

p’=(a—c)®’+X°+2\(a—c)-b.
e Easier to minimize p? rather than p itself.

d .
P =0 when A=—-(a—c)-b.

e So the minimum length vectoris p=(a—c)—((a—c)-b)b.
No surprise! It's the component of (a — c) perpendicular to b.

e \We could therefore write using the “book™ formula ...
p = bx[(a—c)xb]




Shortest distance between two straight lines 2.13

e Shortest distance from point to line is along the perp line

e = shortest distance between two straight lines is along mutual perpendicular.

e [ he lines are:

r=a+ b r=c+ ud

e [he unit vector along the mutual
perp Is

o
(=

X

P =

o
o I

(Yes! Don't forget that b x d is NOT
a unit vector.)

X

e The minimum length is therefore the component of (a — ¢) in this direction

Pmin =

(a—c)- ?xﬁl
b x d|




& Example

Question

for civil engineers

Two long straight pipes are specified
using Cartesian co-ordinates as follows:
Pipe A: diameter 0.8; axis through
points (2, 5, 3) and (7, 10, 8).

Pipe B: diameter 1.0; axis through
points (0, 6, 3) and (—12,0,9).

Ih ri

Do the pipes need re-aligning to avoid
intersection?




& Example continued 2.15

Answer
Pipes A and B have axes:

ra = [2,5 3]+ N[5,5,5] =[2,5 3]+ A[1,1,1]/V3
rg = [0,6,3]+ u[-12,—6,6] = [0, 6, 3] + u[—2, —1,1]/v6

(Non-unit) perpendicular to both their axes is

Fa

i 7 k
- -1 [0,6 [7,10,@.
— 0 q /.
The length of the mutual perpendicular is mod ° [-12,0,9]
[2, _3: 1] [2, _31 1] ] -
_b ‘ — 2,—110' :18?

Sum of the radii of the pipesis 0.4 + 0.5 = 0.9.
Hence the pipes do not intersect.




Three ways of describing a plane. Number 1 2.16

1. Point 4+ 2 non-parallel vectors
If b and ¢ non-parallel, and a is a point on the plane, then

r=a+ Ab+ uc

where A, 1 are scalar parameters.

i\ \ ]

‘:': NB that these are
b t

parallel to the plane, no
necessarily in the plane




Three ways of describing a plane. Number 2

2,17

2. Three points
Points a, b and c in the plane.

r=a+ A(b—a)+ u(c—a)

Vectors (b — a) and (c — a) are said to span the plane.

O

r




Three ways of describing a plane. Number 3 2.18

3. Unit normal Unit normal to the
plane Is i, and a point In the plane is a

r-ai=a-n=D

)

Notice that |D| is the perpendicular distance to the plane from the origin.
Why not just D7




The shortest distance from a point to a plane 2.19

e Theplaneisr-Ai=a-A=D

e The shortest distance d.,;, from any point to the plane is along the perpen-
dicular.

e 50, the shortest distance from the origin to the plane is
a- (b xc)

dmin:‘Dlzla'ﬁ‘z ‘bXCl

e Now, the shortest distance from
point d to the plane ... ?

1. Must be along the perpendicular
2. d + Ai must be a point on plane
3.(d+XR)-Aa=D

A XN=D—-d-n

5. dmin=|A| =|D —d - A




Solution of vector equations 2.20

e Find the most general vector x satisfying a given vector relationship.
Eg
x=xxa+b

¢ General Method (assuming 3 dimensions)

1. Set up a system of three basis vectors using two non-parallel vectors
appearing Iin the original vector relationship. For example

a, b, (axb)

2. Write
x=Xa+ub+vaxb

where A, u, v are scalars to be found.

3. Substitute expression for x into the vector relationship to determine the
set of constraints on A,u, and v.




& Example: Solve x =x x a+b.

2.21

Step 1: Basis vectors a, b and v.p. a X b.
Step 2: x=Xa+ ub+va xb.
Step 3: Bung x back into the equation!
ra+ub+vrvaxb = (Aa+ub+vrvaxb)xa+b
= 0+u(bxa)+v(axb)xa+b
= —v(a-b)a+ (va®+1)b—pu(a x b)
Equating coefficients of a, b and a x b in the equation gives

A=—v(a-b) p;:f/az+1 V=—lI

so that
1 e 1 X — a'b
k=112 T it 2 1+ a2
So finally the solution is the single point:
1

[(@a-b)a+b—(axb)]

1+ a2




& Another example 2.22

Often not all the parameters are determined: w and v might depend on an arbitrary
choice of A (see 2A1A sheet).

And what happens if there are not two fixed vectors in the expression?
Question. Find x when x-a = K.

Answer.

Step 1 Use a, introduce an arbitrary vector b, and a x b

Step 2: x=Xa+ ub+va xb.

Step 3: Bung x back into the equation!

I
=

Aa’+ub-a

% B=

So, here A, v AND b are arbitary ...

K
X = )a-+ )\ab+ua><b




A random comment about solving vector identities

2.23

e Suppose you are faced with
ua—+ Ab=c
and you want wu.

e \What is the fast way of getting rid of b?

elUsebxb=0 ..

uaxb = cxb

=u(axb)-(axb) = (cxb)-(axb)
(c xb)-(axb)

“H = @xb) (axh)




A random comment about solving vector identities

2.24

e ua+\b=c
e An alternative is to construct two simultaneous equations

ua-b+Xbp> = c-b
pa’+ia-b = a-c

and eliminate A
(a-b)(b-c)—(a-c)b’

(a 3 b)2 - 32b2

.u_ —
Compare with previous

_(exb)-(axb)
K= laxb) (axh)




Rotation, angular velocity and acceleration 2.25

e A rotation can represented by a vec-
tor whose

— direction Is along the axis of ro- v
tation in the sense of a right- <
handed screw, V r

— magnitude Is proportional to the
size of the rotation.

e [he same idea can be extended to the derivatives

— angular velocity w

— angular acceleration w.

e The instantaneous velocity v(r) of any point P at r on a rigid body undergoing
pure rotation can be defined by a vector product

V=W XT.




Vector Moments 2.26
e Angular accelerations arise because

of moments.
e [ he vector equation for the moment
M of a force F about a point Q Is &)
M=rxF OO(I," r )
where r is a vector from Q to any |_.----- ——T:__*
point on the line of action L of force
F.

e The resulting angular acceleration w i1s in the same direction as the moment
vector M. (How are they related?)




Summary 2,27

Today we’ve discussed ...
e \ector products e Geometry of Lines and Planes

e Solving vector equations e Angular velocity and moments (briefly!!!)

Key point from this week:

e Use vectors and their algebra “constructively” to solve problems. (The elastic
collision was a good example.)

e Don't be afraid to produce solutions that involve vector operations
Eg: u = a-b/|c x a| Working out detail could be left to a computer program

e [f you are constantly breaking vectors into their components, you are not
using their power.

e Always run a consistency check that equations are vector or scalar on both
sides.




Vector Moments 2.26
e Angular accelerations arise because

of moments.
e [ he vector equation for the moment
M of a force F about a point Q Is &)
M=rxF OO(I," r )
where r is a vector from Q to any |_.----- ——T:__*
point on the line of action L of force
F.

e The resulting angular acceleration w i1s in the same direction as the moment
vector M. (How are they related?)
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