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Vector Calculus & Scalar Fields 0.2

e [hink about some scalar quantities
— mass M, length L, time t, temperature T, etc

e If r =[x, y, z] is a position in space, T(r) is a scalar field

e 7 might be time-varying — the field is T (r, t)
e Keep y, z, t constant. What is 0 T when you

move dx? // 2
I 11

e But suppose you moved of in a direction n.
Would you multiply

S

oT .
= — ?
oT anén :

e Does OT /On exist — is it a vector or a scalar?

[




Vector Calculus & Vector Fields 0.3

e A vector quantity v(r) that has a value at every r in a region is a vector
field.

e Examples are:
— The electric field E(r) around stationary charges
— The unsteady fluid velocity field v(r, t) in a stream.

e L ocal stream velocity v(r, t) can be viewed
using:

— laser Doppler anemometry, or by dropping
twigs in, or diving in ...
e You'll be interested in \A

— weirs (acceleration), & éét\

— vortices (curls)




Contents 0.4

1. Rewvision of vector algebra, scalar product, vector product.
Triple products, multiple products, applications to geometry.

Differentiation of vector functions, applications to mechanics.

W B

Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates .

Vector operators — grad, div and curl.
Vector ldentities, curvilinear co-ordinate systems.

Gauss' and Stokes' Theorems and extensions.

o N o O

Engineering Applications.




Learning Outcomes 05

e comfort with expressing systems using vector quantities

e manipulating vectors as “atomic” entities without recourse to underlying co-
ordinates

e sound grasp of the concept of a vector field
e ability to link this idea to descriptions various physical phenomena

e intuition of the physical meaning of the various vector calculus operators (div,
grad, curl)

e ability to interpret the formulae describing physical systems in terms of these
operators




Reading 0.6

e J Heading, "Mathematical Methods in Science and Engineering”, 2nd ed.,
Ch.13, (Arnold).

e G Stephenson, "Mathematical Methods for Science Students”, 2nd ed.,
Ch.19, (Longman).

e E Kreyszig, " Advanced Engineering Mathematics”, 6th ed., Ch.6, (Wiley).

e K F Riley, M. P. Hobson and S. J. Bence, " Mathematical Methods for the
Physics and Engineering” Chs. 6, 8 and 9 (CUP).

e A J M Spencer, et. al. "Engineering Mathematics’, Vol.1, Ch.6, (Van
Nostrand Reinhold).

e H M Schey, "Div, Grad, Curl and all that”, Norton




Course WWW Pages

0.7

e Pdf copies of

— these oheads

— lecture notes (also large print),
— tutorial sheets (also large print)
— FAQs etc

will be accessible from
www.robots.ox.ac.uk/~ian/Teaching/Vectors

e |f something is really not clear, and you are really stuck,
— emalil 1an.reid@eng.ox.ac.uk

and the reply (if generally useful) will get stuck on the web FAQs.




Vector Algebra and Calculus

= B

® N o o

Revision of vector algebra, scalar product, vector product
Triple products, multiple products, applications to geometry
Differentiation of vector functions, applications to mechanics

Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

Vector operators — grad, div and curl
Vector ldentities, curvilinear co-ordinate systems
Gauss’ and Stokes’ Theorems and extensions

Engineering Applications




1. Vector Algebra

In which we explore ...
e Free, sliding and position vectors
e Coord frames and Vector components
e Equality, magnitude, Addition, Subtraction
e Scalar products, Vector Projection, Inner products

e \Vector Products




Vectors 1.2

e In Linear Algebra vectors were lists of n numbers.
e Often in the physical world, the numbers specify

— magnitude (1 number) & direction (1 number in 2D, 2 in 3D)
e There are three slightly different types of vectors:

— Free vectors: Only mag & dirn are important. We can translate at will.

— Sliding vectors: Line of action is important (eg. forces for moments)
Vector can slide with 1 degree of freedom.

— Bound or position vectors: "Tails" all originate at origin O.

|

Free vectors Sliding vectors Position vectors




Coordinate frames

1.3

e An advantage of vector algebra:
—frees analysis from arbitrarily imposed coordinate frames.

e Eg, two free vectors are equal If mags and dirns are
equal. Can be done with a drawing that is
independent of any coordinate system.

e [ry to spot things in the notes that are independent of coordinate system.

e However, coordinate systems are useful,
so introduce the idea of vector components.




Vector components in a coordinate frame 1.4
= e |[n a Cartesian coordinate frame

a = [31. do, 33] = [Xz — X. Yo — V1.2 — Zl]

e Define1,], k as unit vectors in the x, y,z dirns

] i=[1,0,0] §=1[0,1,0] k=][0,0,1]

“““““ 2 then
a a= a4+ aj+ ask .

® Remember, general vectors not stuck in 3 dimensions!




Notation

1.5

e \We will use bold font to represent vectors
a, w,

e |n written work, underline the vector

a,w

e \Ve shall use the hat a to denote a unit vector.
e a' denotes the transpose of a vector
e iff means “if and only if”

e mag and dirn are my shorthands for magnitude and direction




Vector equality 1.6

e Two free vectors are said to be equal iff their lengths and directions are the
same.

e Using coordinates, two n-dimensional vectors are equal

a=>b Iff alzbl, 5‘2:.!{72, an:bn

e [his does for position vectors.

e But for sliding vectors we must add the line of action must be the same.




Vector magnitude and unit vectors 1.7

e Provided we use an orthogonal coordinate system, the magnitude of a 3-
vector 1s

a=|a| =1/af+ a5+ a3

a=|al= Za‘?
\/ 5

e To find the unit vector in the direction of a, simply divide the vector by its
magnitude

and of an n-vector

., a
a=—.
al




Vector Addition and Subtraction 1.8

e \Vectors are added/subtracted by adding/subtracting corresponding compo-
nents (like matrices)

a—|—b=[31+b1, ar + bo, 83+b3]

e Addition follows the parallelogram construction.

e Subtraction is a + (—b)




Properties of addition/subtraction 1.9

e The following results follow immediately from the above definition of vector
addition (incl. subtraction).

1.a+ b =b + a (it commutes)
2.(a+b)+c=a+(b+c)=a+b+c
(it associates)
3.2.a+0=0+a=a
where the zero vector is 0 = [0, 0, 0].

4.a+ (-a) =0




Multiplication of a vector by a scalar 1.10

e NOT the scalar product!

e Just as for matrices, multiplication of a vector a by a scalar ¢ is defined as
multiplication of each component by ¢, so that

ca = |[cay, cay, Cas).

It follows that:

lca| = /(ca1)2 + (cax)2 + (ca3)? = |c||al.

e [he direction of the vector will reverse If ¢ Is negative, but otherwise Is
unaffected.

e A vector where the sign is uncertain is called a director.




* Example 1.11

e The electrostatic force on charged particle Q due to another charged particle
a1 IS

i
F - K%? where constant K =

r2 47re €
where r I1s the vector from g to Q.

Question: Write down an expression for the force on @ at R due to N
charges g atr;, 1 =1

Answer: o q;
The vector from g to @ 1Is R —r;. Q /'
The unit vector in that directionis (R —r;)/|R—ri|, so| @

F(r) = ; K|R(iq;£’3(n —r)) R

e Notice that we are thinking algebraically about vectors — not fussing about
their components. Not a coordinate system in sight.




Scalar product or dot product 112

e The scalar product of two vectors results in a
scalar quantity:
a-b=a b+ aby, + azbs .

e Note that
ara=g tosla=laf =7
e [ hese properties of the sprod follow immediately:
—a-b=>b-a
(it commutes)
—a-(b+c)=a-b+a-c
(it distributes w.r.t vector addition)

—(Aa)-b=X(a-b)=a: (Ab)
(scalar multiple of a scalar product of two vectors)




Geometrical interpretation of scalar product 113

e Consider the square magnitude of the vector (a — b).

la—bl°=(a—b)-(a—b) = a-a+b-b—2(a-b)
= a’+b*—2(a+b)

e The cosine rule says length AB? is

la—b|* = a° + b* — 2abcos# B
e Hence b
a-b
a-b=abcos?,
: 0
iIndependent of the coord system.
e Conversely O a A

cos@ =a-b/ab




Projection of one vector onto the other

1.14

b cos @ I1s the component of b in the direction of a.
a | acosf@ i1s the component of a in the direction of b.

Projection of b onto
direction of a

e Projection is v. useful when the second vector Is a unit vector.
a - 11s the size of the component of a in the direction of 1.

e [0 get the vector component of b in the dirn of a

(b-3)a = ;(b ca)a

e So

(a - 11 is the vector component of a in the direction of 1.




Orthonormal vectors and coordinates 115

e |n the particular case a - b = 0, the angle between the two vectors Is a right
angle.

e The vectors are said to be orthogonal — neither has a component in the
direction of the other.

e |In 3D, an orthogonal coordinate system is characterised by

j=k- -k

LN
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A scalar product is an “inner product” 116

e We have been writing vectors as row vectors a = [a;, ap, as]

e [t's convenient: It takes less space than writing column vectors

e In matrix algebra, vectors are column vectors. So, Ma = v means

M1 Mz Mis dy Vi
do = Vo
d3 V3

My My Mo
and row vectors are written as a’ (a transpose).

Msy Msy Msas

e Most times can be relaxed, but need to fuss to point out that the scalar
product is also the inner product used in linear algebra.

e The inner product is defined asa'b

a'b=[a;, ap, as] | bo | = a1b1 + axby +azbs = a-b




e Scalar Product Example 1 1.17

Question
A force F is applied to an object as it moves by a small amount dr.
What work is done on the object by the force?

Answer

The work done is equal to the component of force in the direction of the dis-
placement multiplied by the displacement itself.

This is just a scalar product:

oW =F:dor .

Later we will see how to integrate such elements over particular paths as /ine
integrals.




& Scalar Product Example 2 1.18

Question
A cube has four diagonals, connecting opposite vertices. What is the angle be-
tween an adjacent pair?

Answer
[_151:1] [1:131] . . ;
The directions of the diagonals are [+1, £1, +1].
/* The ones shown in the figure are [1,1, 1] and
kA [—1,1,1]. The angle is thus
//
8 — g 1,1,1]-[-1,1,1]

‘ V12 4+ 12 +12¢/—-12 4124 12
= cos 1(1/3)




o Scalar Product Example 3 1.19

Question: Pinball with velocity s bounces (elastically) from a baffle whose end-
points are p and q. What is the velocity vector after the bounce?
Answer

Refer to coord frame with principal directions along and
©""-——.o | perpendicular to the baffle:

& qa—pP
6= loeul=1g=p)
UV =u =[-u, u

Before impact: velocity is Spefore = (5.0)0 + (5.V)V
After impact: component of velocity in dirn of baffle &1 is same
component normal to the baffle along v Is reversed

= SEfter = (Sﬁ)ﬁ e (Sﬁ)ﬁ




o Scalar Product Example 3 1.20

e Worth reflecting on this example ...

e Using vectors as complete entities (ie, not thinking about components) has
made a tricky problem trivial to solve.

e Several languages (including Matlab) allow one to declare vector objects

p=[3;4]

g=[1;-1]

s | a=[1;2]

' diff = g-p

uhat = diff/norm(diff)

vhat = [-uhat(2) ;uhat(1)]

safter = dot(s,uhat)*uhat - dot(s,vhat)*vhat

e You think in vectors, while built in routines handle the detail of components

e ... Reflection over.




Direction cosines use projection 1.21

e [he quantities

are the cosines of the angles which the vector a makes with the coordinate
vectors 1], k

e [hey are the direction cosines of the vector a.

e Since a-1= a; etc, it follows immediately that
a = a(\i+ uj + vk) ‘\
o

1
A2+p2+u2:?[a§+a§+a§]:l




Vector or cross product 1.22

e [he vector product of two vectors a and b Is

axb= (azbg = agbg)i—l— (a;;bl — albg)j—l— (albz s agbl)E.

e You cannot remember the above! Instead use the pseudo determinant

i ] k
axb=|a a a3
by by b3

where the top row consists of vectors not scalars.

e A determinant with two equal rows has value zero, so
axa=20
e |t Is also easily verified that
(axb)ra=(axb)-b=0

so that a x b is orthogonal to both a and b.




Vector product

1.23

e The magnitude of the vector product can be obtained by showing that
la x b]*+ (a-b)* = a°b?
from which it follows (independent of the coord system)

la x b| = absin@ ,

e Proof?

e The vector product does not commute
't anti-commutes: a x b= —b X a.

e [he vector product does not associate:
ax(bxc)#(axb)xc.




Vector Products 1.24
e The vector product is orthogonal to e 5 _}:ib A
both the vectors. axb
in right-hand screw sense

e Need to specify the sense w.r.t
these vectors.

e Sense of the right handed screw ..

e Also

e Andinfull: ixj=k  jxk=i

Note the cycle ordering here.

i

b

=

Plane of vectors a and b




Geometrical interpretation of vector product 1.25

e The magnitude of the vector product (a x b) is equal to the area of the paral-
lelogram whose sides are parallel to, and have lengths equal to the magnitudes
of, the vectors a and b.

e |ts direction is perpendicular to the parallelogram.

axb b

bsin®




& Example 1.26

Question [1,2,3]
g is vector from A [1,2,3] to B [3,4,5]. A ,_g._....
1 is the unit vector in dirn from O to A. G i 13,4,5]
Find 1, a UNIT vector along g x 1 I
Verify that m is is perpendicular to 1.
Find A, the third member of a r-h coord set 1, i, A.
Answer
1)g=[3—-1,4—2,5—-3]=[2,2,2].
2)i=1[1,23]/V14 4y Totr={(1.142.<2413)/() =0
]k ) 1 i j k
3)gxl=|22 2|=[2 —4,72] S)Ai=Ixm=—7-—1 2 3
1 23 1 =2 1
=m=[1,-21]/vV6




Random question 1.27

Q: If f and § are two unit vectors,
what I1s the magnitude of the vector product

fxg

—
>
Q
«Q >

> Y

A: Magnitude is sin 8.




Summary 1.28

We've revised and discussed ...

e Free, sliding and position vectors

e Coord frames and Vector components

e Equality, magnitude, Addition, Subtraction

e Scalar products, Vector Projection, Inner products

e \ector Products
In Lecture 2 ...

e Vector multiple products:
e Geometry of Lines and Planes
e Solving vector equations

e Angular velocity and moments

Then the calculus starts




