
Le
ture 4Line, Surfa
e and Volume Integrals.Curvilinear 
oordinates.We started o� the 
ourse being 
on
erned with individual ve
tors a, b, 
, and soon.We went on to 
onsider how single ve
tors vary over time or over some otherparameter su
h as ar
 length.In mu
h of the rest of the 
ourse, we will be 
on
erned with s
alars and ve
torswhi
h are de�ned over regions in spa
e | s
alar and ve
tor �eldsIn this le
ture we introdu
e line, surfa
e and volume integrals, and 
onsider howthese are de�ned in non-Cartesian, 
urvilinear 
oordinates4.1 S
alar and ve
tor �eldsWhen a s
alar fun
tion u(r) is determined or de�ned at ea
h position r in someregion, we say that u is a s
alar �eld in that region.Similarly, if a ve
tor fun
tion v(r) is de�ned at ea
h point, then v is a ve
tor �eldin that region. As you will see, in �eld theory our aim is to derive statements aboutthe bulk properties of s
alar and ve
tor �elds, rather than to deal with individuals
alars or ve
tors.Familiar examples of ea
h are shown in �gure 4.1.In Le
ture 1 we worked out the for
e F(r) on a 
harge Q arising from a numbersof 
harges qi . The ele
tri
 �eld is F=Q, soE(r) = N
∑i=1 K qijr � ri j3(r � ri) : (K = 14��r�0)You 
ould work out the velo
ity �eld in plane polars at any point on a wheel43
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(a) (b)Figure 4.1: Examples of (a) a s
alar �eld (pressure); (b) ave
tor �eld (wind velo
ity)spinning about its axisv(r) = !!! � ror the 
uid 
ow �eld around a wing.If the �elds are independent of time, they are said to be steady. Of 
ourse, mostve
tor �elds of pra
ti
al interest in engineering s
ien
e are not steady, and someare unpredi
table.Let us �rst 
onsider how to perform a variety of types of integration in ve
tor ands
alar �elds.4.2 Line integrals through �eldsLine integrals are 
on
erned with measuring the integrated intera
tion with a �eldas you move through it on some de�ned path. Eg, given a map showing thepollution density �eld in Oxford, you may wish to work out how mu
h pollutionyou breath in when 
y
ling from 
ollege to the Department via di�erent routes.First re
all the de�nition of an integral for a s
alar fun
tion f (x) of a single s
alarvariable x . One assumes a set of n samples fi = f (xi) spa
ed by Æxi . One formsthe limit of the sum of the produ
ts f (xi)Æxi as the number of samples tends toin�nity
∫ f (x)dx = limn!1Æxi ! 0 n

∑i=1 fiÆxi :For a smooth fun
tion, it is irrelevant how the fun
tion is subdivided.4.2.1 Ve
tor line integralsIn a ve
tor line integral, the path L along whi
h the integral is to be evaluatedis split into a large number of ve
tor segments Æri . Ea
h line segment is then
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r δr

F(r)

Figure 4.2: Line integral. In the diagram F(r) is a ve
tor �eld, but it 
ould be repla
e with s
alar�eld U(r).multiplied by the quantity asso
iated with that point in spa
e, the produ
ts arethen summed and the limit taken as the lengths of the segments tend to zero.There are three types of integral we have to think about, depending on the natureof the produ
t:1. Integrand U(r) is a s
alar �eld, hen
e the integral is a ve
tor.I = ∫L U(r)dr (= limÆri!0∑i UiÆÆÆri :)2. Integrand a(r) is a ve
tor �eld dotted with dr hen
e the integral is a s
alar:I = ∫L a(r) � dr (= limÆri!0∑i ai � ÆÆÆri :)3. Integrand a(r) is a ve
tor �eld 
rossed with dr hen
e ve
tor result.I = ∫L a(r)� dr (= limÆri!0∑i ai � ÆÆÆri :)Note immediately that unlike an integral in a single s
alar variable, there are manypaths L from start point rA to end point rB, and the integral will in general dependon the path taken.Physi
al examples of line integrals� The total work done by a for
e F as it moves a point from A to B alonga given path C is given by a line integral of type 2 above. If the for
e a
ts



46LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.at point r and the instantaneous displa
ement along 
urve C is dr then thein�nitessimal work done is dW = F:dr, and so the total work done traversingthe path isWC = ∫C F:dr� Amp�ere's law relating magneti
 �eld B to linked 
urrent 
an be written as
∮C B:dr = �0Iwhere I is the 
urrent en
losed by (
losed) path C.� The for
e on an element of wire 
arrying 
urrent I, pla
ed in a magneti
 �eldof strength B, is dF = Idr�B. So if a loop this wire C is pla
ed in the �eldthen the total for
e will be and integral of type 3 above:F = I ∮C dr� BNote that the expressions above are beautifully 
ompa
t in ve
tor notation, and areall independent of 
oordinate system. Of 
ourse when evaluating them we needto 
hoose a 
oordinate system: often this is the standard Cartesian 
oordinatesystem (as in the worked examples below), but need not be, as we shall see inse
tion 4.6.| ExamplesQ1 An example in the xy -plane. A for
e F = x2y {̂{{ + xy 2̂||| a
ts on a body at itmoves between (0; 0) and (1; 1).Determine the work done when the path is1. along the line y = x .2. along the 
urve y = xn.3. along the x axis to the point (1; 0) and then along the line x = 1A1 This is an example of the \type 2" line integral. In planar Cartesians, dr ={̂{{dx + |̂||dy . Then the work done is
∫L F � dr = ∫L(x2ydx + xy 2dy) :1. For the path y = x we �nd that dy = dx . So it is easiest to 
onvert ally referen
es to x .

∫ (1;1)(0;0) (x2ydx+xy 2dy) = ∫ x=1x=0 (x2xdx+xx2dx) = ∫ x=1x=0 2x3dx = [x4=2∣∣x=1x=0 = 1=2 :
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0,0 0,1

1,1

1

2 3

Figure 4.3: Line integral taken along three di�eren
e paths2. For the path y = xn we �nd that dy = nxn�1dx , so again it is easiest to
onvert all y referen
es to x .
∫ (1;1)(0;0) (x2ydx + xy 2dy) = ∫ x=1x=0 (xn+2dx + nxn�1:x:x2ndx)= ∫ x=1x=0 (xn+2dx + nx3ndx)= 1n + 3 + n3n + 13. This path is not smooth, so break it into two. Along the �rst se
tion,y = 0 and dy = 0, and on the se
ond x = 1 and dx = 0, so

∫ BA (x2ydx+xy 2dy) = ∫ x=1x=0 (x20dx)+∫ y=1y=0 1:y 2dy = 0+[y 3=3∣∣y=1y=0 = 1=3 :So in general the integral depends on the path taken. Noti
e that answer (1)is the same as answer (2) when n = 1, and that answer (3) is the limitingvalue of answer (2) as n!1.
Q2 Repeat part (2) using the For
e F = xy 2̂{{{ + x2y |̂||.



48LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.A2 For the path y = xn we �nd that dy = nxn�1dx , so
∫ (1;1)(0;0) (y 2xdx + yx2dy) = ∫ x=1x=0 (x2n+1dx + nxn�1:x2:xndx)= ∫ x=1x=0 (x2n+1dx + nx2n+1dx)= 12n + 2 + n2n + 2= 12 independent of n

4.3 Line integrals in Conservative �eldsIn the se
ond example, the line integral has the same value for the whole rangeof paths. In fa
t it is wholly independant of path. This is easy to see if we writeg(x; y) = x2y 2=2. Then using the de�nition of the perfe
t di�erentialdg = �g�x dx + �g�y dywe �nd that
∫ BA (y 2xdx + yx2dy) = ∫ BA dg= gB � gAwhi
h depends solely on the value of g at the start and end points, and not at allon the path used to get from A to B. Su
h a ve
tor �eld is 
alled 
onservative.One sort of line integral performs the integration around a 
omplete loop and isdenoted with a ring. If E is a 
onservative �eld, determine the value of
∮ E � dr :In ele
trostati
s, if E is the ele
tri
 �eld the the potential fun
tion is� = � ∫ E � dr :Do you think E is 
onservative?



4.4. SURFACE INTEGRALS 494.3.1 A note on line integrals de�ned in terms of ar
 lengthLine integrals are often de�ned in terms of s
alar ar
 length. They don't appearto involve ve
tors (but a
tually they are another form of type 2 de�ned earlier).The integrals usually appears as followsI = ∫L F (x; y ; z)dsand most often the path L is along a 
urve de�ned parametri
ally as x = x(p),y = y(p), z = z(p) where p is some parameter. Convert the fun
tion to F (p),writingI = ∫ pendpstart F (p)dsdp dpwheredsdp = [(dxdp)2 +(dydp)2 + (dzdp)2]1=2 :Note that the parameter p 
ould be ar
-length s itself, in whi
h 
ase ds=dp = 1of 
ourse! Another possibility is that the parameter p is x | that is we are toldy = y(x) and z = z(x). ThenI = ∫ xendxstart F (x)[1 + (dydx)2 + (dzdx)2]1=2 dx :4.4 Surfa
e integralsThese 
an be de�ned by analogy with line integrals.The surfa
e S over whi
h the integral is to be evaluated is now divided into in-�nitesimal ve
tor elements of area dS, the dire
tion of the ve
tor dS representingthe dire
tion of the surfa
e normal and its magnitude representing the area of theelement.Again there are three possibilities:� ∫S UdS | s
alar �eld U; ve
tor integral.� ∫S a � dS | ve
tor �eld a; s
alar integral.� ∫S a� dS | ve
tor �eld a; ve
tor integral.(in addition, of 
ourse, to the purely s
alar form, ∫S UdS).



50LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.Physi
al example of surfa
e integral� Physi
al examples of surfa
e integrals with ve
tors often involve the idea of
ux of a ve
tor �eld through a surfa
e, ∫S a:dS For example the mass of 
uid
rossing a surfa
e S in time dt is dM = �v:dSdt where �(r) is the 
uiddensity and v(r) is the 
uid velo
ity. The total mass 
ux 
an be expressed asa surfa
e integral:�M = ∫S �(r)v(r):sSAgain, though this expression is 
oordinate free, we evaluate an example belowusing Cartesians. Note, however, that in some problems, symmetry may lead usto a di�erent more natural 
oordinate system.| ExampleEvaluate ∫ F � dS over the x = 1 side ofthe 
ube shown in the �gure when F =y {̂{{ + z |̂|| + xk̂kk.dS is perpendi
ular to the surfa
e. Its �dire
tion a
tually depends on the natureof the problem. More often than not,the surfa
e will en
lose a volume, and thesurfa
e dire
tion is taken as everywhereemanating from the interior.Hen
e for the x = 1 fa
e of the 
ubedS = dydz {̂{{and
∫ F � dS = ∫ ∫ ydydz= 12 y 2∣∣10 z j10 = 12 :

dS = dydz i
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4.5 Volume integralsThe de�nition of the volume integral is again taken as the limit of a sum of produ
tsas the size of the volume element tends to zero. One obvious di�eren
e though isthat the element of volume is a s
alar (how 
ould you de�ne a dire
tion with anin�nitesimal volume element?). The possibilities are:



4.6. CHANGING VARIABLES: CURVILINEAR COORDINATES 51� ∫V U(r)dV | s
alar �eld; s
alar integral.� ∫V adV | ve
tor �eld; ve
tor integral.You have 
overed these (more or less) in your �rst year 
ourse, so not mu
h moreto say here. The next se
tion 
onsiders these again in the 
ontext of a 
hange of
oordinates.4.6 Changing variables: 
urvilinear 
oordinatesUp to now we have been 
on
erned with Cartesian 
oordinates x; y ; z with 
oor-dinate axes {̂{{; |̂||; k̂kk. When performing a line integral in Cartesian 
oordinates, youwriter = x {̂{{ + y |̂|| + zk̂kk and dr = dx {̂{{ + dy |̂|| + dzk̂kkand 
an be sure that length s
ales are properly handled be
ause { as we saw inLe
ture 3 {jdrj = ds =√dx2 + dy 2 + dz2 :The reason for using the basis {̂{{; |̂||; k̂kk rather than any other orthonormal basis set isthat {̂{{ represents a dire
tion in whi
h x is in
reasing while the other two 
oordinatesremain 
onstant (and likewise for |̂|| and k̂kk with y and z respe
tively), simplifyingthe representation and resulting mathemati
s.Often the symmetry of the problem strongly hints at using another 
oordinatesystem:� likely to be plane, 
ylindri
al, or spheri
al polars,� but 
an be something more exoti
The general name for any di�erent \u; v ; w" 
oordinate system is a 
urvilinear
oordinate system. We will see that the idea hinted at above { of de�ning abasis set by 
onsidering dire
tions in whi
h only one 
oordinate is (instantaneously)in
reasing { provides the approriate generalisation.We begin by dis
ussing 
ommon spe
ial 
ases: 
ylindri
al polars and spheri
alpolars, and 
on
lude with a more general formulation.4.6.1 Cylindri
al polar 
oordinatesAs shown in �gure 4.4 a point in spa
e P having 
artesian 
oordinates x; y ; z 
anbe expressed in terms of 
ylindri
al polar 
oordinates, r; �; z as follows:r = x {̂{{ + y |̂|| + zk̂kk= r 
os �̂{{{ + r sin �̂||| + zk̂kk
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(a) (b)Figure 4.4: Cylindri
al polars: (a) 
oordinate de�nition; (b) \iso" lines in r , � and z .Note that, by de�nition, �r�r represents a dire
tion in whi
h (instantaneously) r is
hanging while the other two 
oordinates stay 
onstant. That is, it is tangent tolines of 
onstant � and z . Likewise for �r�� and �r�z , Thus the ve
tors:
er = �r�r = 
os �̂{{{ + sin �̂|||e� = �r�� = �r sin �̂{{{ + r 
os �̂|||ez = �r�z = k̂kk

Aside on notation: some textsuse the notation r̂rr ; �̂��; : : : to rep-resent the unit ve
tors that formthe lo
al basis set. Though I pre-fer the notation used here, wherethe basis ve
tors are written asêee with appropriate subs
ripts (asused in Riley et al), you should beaware of, and 
omfortable with,either possibility.form a basis set in whi
h we may des
ribe in�nitessimal ve
tor displa
ements inthe position of P , dr. It is more usual, however, �rst to normalise the ve
tors toobtain their 
orresponding unit ve
tors, êr , ê�, êz . Following the usual rules of
al
ulus we may write:dr = �r�r dr + �r��d�+ �r�z dz= drer + d�e� + dzez= dr êr + rd�ê� + dz êzNow here is the important thing to note. In 
artesian 
oordinates, a small 
hange



4.6. CHANGING VARIABLES: CURVILINEAR COORDINATES 53in (eg) x while keeping y and z 
onstant would result in a displa
ement ofds = jdrj = pdr:dr =√dx2 + 0 + 0 = dxBut in 
ylindri
al polars, a small 
hange in � of d� while keeping r and z 
onstantresults in a displa
ement ofds = jdrj =√r 2(d�)2 = rd�Thus the size of the (in�nitessimal) displa
ement is dependent on the value of r .Fa
tors su
h as this r are known as s
ale fa
tors or metri
 
oeÆ
ients, and wemust be 
areful to take them into a

ount when, eg, performing line, surfa
e orvolume integrals, as you will below. For 
ylindri
al polars the metri
 
oeÆ
ientsare 
learly 1; r and 1.Example: line integral in 
ylindri
al 
oordinatesQ Evaluate ∮C a � d l , where a = x 3̂||| � y 3̂{{{ + x2y k̂kk and C is the 
ir
le of radius rin the z = 0 plane, 
entred on the origin.A Consider �gure 4.5. In this 
ase our 
ylindri
al 
oordinates e�e
tively redu
eto plane polars sin
e the path of integration is a 
ir
le in the z = 0 plane, butlet's persist with the full set of 
oordinates anyway; the k̂kk 
omponent of awill play no role (it is normal to the path of integration and therefore 
an
elsas seen below).On the 
ir
le of interesta = r 3(� sin3 �̂{{{ + 
os3 �̂||| + 
os2 � sin�k̂kk)and (sin
e dz = dr = 0 on the path)dr = r d� ê�= rd�(� sin �̂{{{ + 
os �̂|||)so that
∮C a � dr = ∫ 2�0 r 4(sin4 �+ 
os4 �)d� = 3�2 r 4sin
e
∫ 2�0 sin4 �d� = ∫ 2�0 
os4 �d� = 3�4
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Figure 4.5: Line integral example in 
ylindri
al 
oordinatesVolume integrals in 
ylindri
al polarsIn Cartesian 
oordinates a volume element is given by (see �gure 4.6a):dV = dxdydzRe
all that the volume of a parallelopiped is given by the s
alar triple produ
t ofthe ve
tors whi
h de�ne it (see se
tion 2.1.2). Thus the formula above 
an bederived (even though it is \obvious") as:dV = dx {̂{{:(dy |̂|| � dzk̂kk) = dxdydzsin
e the basis set is orthonormal.In 
ylindri
al polars a volume element is given by (see �gure 4.6b):dV = dr êr :(rd�ê� � dz êz) = rd�drdzNote also that this volume, be
ause it is a s
alar triple produ
t, 
an be written asa determinant:dV = ∣∣∣∣
∣

∣

êrdrê�rd�êzdz ∣

∣

∣

∣

∣

∣

= ∣∣∣∣
∣

∣

erdre�d�ezdz ∣∣∣∣∣∣ = ∣∣∣∣∣∣∣ �x�r �y�r �z�r�x�� �y�� �z���x�z �y�z �z�z ∣∣∣∣∣∣∣ drd�dzwhere the equality on the right-hand side follows from the de�nitions of êr = �r�r =�x�r {̂{{ + �y�r |̂|| + �z�r k̂kk , et
. This is the explanation for the \magi
al" appearan
e of thedeterminant in 
hange-of-variables integration that you en
ountered in your �rstyear maths!
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(a) (b)Figure 4.6: Volume elements dV in (a) Cartesian 
oordinates; (b) Cylindri
al polar 
oordinatesSurfa
e integrals in 
ylindri
al polarsRe
all from se
tion 4.4 that for a surfa
e element with normal along {̂{{ we have:dS = dydz {̂{{More expli
tly this 
omes from �nding normal to the plane that is tangent to thesurfa
e of 
onstant x and from �nding the area of an in�nitessimal area elementon the plane. In this 
ase the plane is spanned by the ve
tors |̂|| and k̂kk and the areaof the element given by (see se
tion 1.3):dS = ∣∣∣dy |̂|| � dzk̂kk∣∣∣ThusdS = dy |̂|| � dzk̂kk = {̂{{dS = dydz {̂{{In 
ylindri
al polars, surfa
e area elements (see �gure 4.7) are given by:dS = dr êr � rd�ê� = rdrd�êz (for surfa
es of 
onstant z)dS = rd�ê� � dz êz = rd�dz êr (for surfa
es of 
onstant r)Similarly we 
an �nd dS for surfa
es of 
onstant �, though sin
e these aren't as
ommon this is left as a (relatively easy) exer
ise.
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Figure 4.7: Surfa
e elements in 
ylindri
al polar 
oordinates4.6.2 Spheri
al polarsMu
h of the development for spheri
al polars is similar to that for 
ylindri
al polars.As shown in �gure 4.6.2 a point in spa
e P having 
artesian 
oordinates x; y ; z
an be expressed in terms of spheri
al polar 
oordinates, r; �; � as follows:r = x {̂{{ + y |̂|| + zk̂kk= r sin � 
os �̂{{{ + r sin � sin �̂||| + r 
os �k̂kkThe basis set in spheri
al polars is obtained in an analogous fashion: we �nd unitPSfrag repla
ements
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tors whi
h are in the dire
tion of in
rease of ea
h 
oordinate:er = �r�r = sin � 
os �̂{{{ + sin � sin �̂||| + 
os �k̂kk = êre� = �r�� = r 
os � 
os �̂{{{ + r 
os � sin �̂||| � r sin �k̂kk = r ê�e� = �r�� = �r sin � sin �̂{{{ + r sin � 
os �̂||| = r sin �ê�As with 
ylindri
al polars, it is easily veri�ed that the ve
tors êr ; ê�; ê� form anorthonormal basis.A small displa
ement dr is given by:dr = �r�r dr + �r��d� + �r��d�= drer + d�e� + d�e�= dr êr + rd�ê� + r sin �d�ê�Thus the metri
 
oeÆ
ients are 1; r; r sin �.Volume integrals in spheri
al polarsIn spheri
al polars a volume element is given by (see �gure 4.8):dV = dr êr :(rd�ê� � r sin �d�ê�) = r 2 sin �drd�d�Note again that this volume 
ould be written as a determinant, but this is left asan exer
ise.Surfa
e integrals in spheri
al polarsThe most (the only?) useful surfa
e elements in spheri
al polars are those tangentto surfa
es of 
onstant r (see �gure 4.9). The surfa
e dire
tion (unnormalised) isgiven by ê� � ê� = êr and the area of an in�nitessimal surfa
e element is given byjrd�ê� � r sin �d�ê�j = r 2 sin �d�d�.Thus a surfa
e element dS in spheri
al polars is given bydS = rd�ê� � r sin �d�ê� = r 2 sin �êr
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Figure 4.8: Volume element dV in spheri
al polar 
oordinates
| Example: surfa
e integral in spheri
al polarsQ Evaluate ∫S a � dS, where a = z3k̂kkand S is the sphere of radius A 
en-tred on the origin.A On the surfa
e of the sphere:a = A3
os3�k̂kk dS = A2 sin � d� d�êrHen
e

∫S a � dS = ∫ 2��=0 ∫ ��=0A3
os3� A2 sin � [êr � k̂kk ℄ d�d�= A5 ∫ 2�0 d� ∫ �0 
os3� sin �[
os �℄ d�= 2�A515 [� 
os5 �]�0= 4�A55
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PSfrag repla
ements

x y
z

rd�ê�
r sin �d�ê�dSr = r2 sin �d�d�êr

Figure 4.9: Surfa
e element dS in spheri
al polar 
oordinates4.6.3 General 
urvilinear 
oordinatesCylindri
al and spheri
al polar 
oordinates are two (useful) examples of general
urvilinear 
oordinates. In general a point P with Cartesian 
oordinates x; y ; z 
anbe expressed in the terms of the 
urvilinear 
oordinates u; v ; w wherex = x(u; v ; w); y = y(u; v ; w); z = z(u; v ; w)Thusr = x(u; v ; w )̂{{{ + y(u; v ; w )̂||| + z(u; v ; w)k̂kkand �r�u = �x�u {̂{{ + �y�u |̂|| + �z�u k̂kkand similarly for partials with respe
t to v and w , sodr = �r�udu + �r�v dv + �r�w dwWe now de�ne the lo
al 
oordinate system as before by 
onsidering the dire
tionsin whi
h ea
h 
oordinate \unilaterally" (and instantaneously) in
reases:eu = �r�u = ∣∣∣
∣

�r�u ∣∣∣∣ êu = huêuev = �r�v = ∣∣∣
∣

�r�v ∣∣∣∣ êv = hv êvew = �r�w = ∣∣∣
∣

�r�w ∣∣∣∣ êw = hw êw



60LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.The metri
 
oeÆ
ients are therefore hu = j�r�u j; hv = j�r�v j and hw = j �r�w j.A volume element is in general given bydV = huduêu:(hvdv êv � hwdw êw)and simpli�es if the 
oordinate system is orthonormal (sin
e êu:(êv � êw) = 1) todV = huhvhwdudvdwA surfa
e element (normal to 
onstant w , say) is in generaldS = huduêu � hvdv êvand simpli�es if the 
oordinate system is orthogonal todS = huhvdudv êw4.6.4 SummaryTo summarise: General 
urvilinear 
oordinatesx = x(u; v ; w); y = y(u; v ; w); z = z(u; v ; w)r = x(u; v ; w )̂{{{ + y(u; v ; w )̂||| + z(u; v ; w)k̂kkhu = ∣

∣

∣

∣

�r�u ∣∣∣∣ ; hv = ∣∣∣
∣

�r�v ∣∣∣∣ ; hw = ∣∣∣
∣

�r�w ∣∣∣∣û = êu = 1hu �r�u ; v̂ = êv = 1hv �r�v ; ŵ = êw = 1hw �r�wdr = huduû+ hvdv v̂+ hwdw ŵdV = huhvhwdudvdw û:(v̂ � ŵ)dS = huhvdudv û� v̂ (for surfa
e element tangent to 
onstant w)Plane polar 
oordinatesx = r 
os �; y = r sin �r = r 
os �̂{{{ + r sin �|̂||hr = 1; h� = rêr = 
os �̂{{{ + sin �|̂||; ê� = � sin �̂{{{ + 
os �|̂||dr = dr êr + rd�ê�dS = rdrd�k̂kk



4.6. CHANGING VARIABLES: CURVILINEAR COORDINATES 61Cylindri
al polar 
oordinatesx = r 
os�; y = r sin�; z = zr = r 
os �̂{{{ + r sin �̂||| + zk̂kkhr = 1; h� = r; hz = 1êr = 
os �̂{{{ + sin �̂|||; ê� = � sin �̂{{{ + 
os �̂|||; êz = k̂kkdr = dr êr + rd�ê� + dz êzdS = rdrd�k̂kk (on the 
at ends)dS = rd�dz êr (on the 
urved sides)dV = rdrd�dzSpheri
al polar 
oordinatesx = r sin � 
os�; y = r sin � sin�; z = r 
os �r = r sin � 
os �̂{{{ + r sin � sin �̂||| + r 
os �k̂kkhr = 1; h� = r; h� = r sin �êr = sin � 
os �̂{{{ + sin � sin �̂||| + 
os �k̂kkê� = 
os � 
os �̂{{{ + 
os � sin �̂||| + sin �k̂kkê� = � sin �̂{{{ + 
os �̂|||dr = dr êr + rd�ê� + r sin �d�ê�dS = r 2 sin �drd�d�êr (on a spheri
al surfa
e)dV = r 2 sin �drd�d�
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Le
ture 5Ve
tor Operators: Grad, Div and CurlIn the �rst le
ture of the se
ond part of this 
ourse we move more to 
onsiderproperties of �elds. We introdu
e three �eld operators whi
h reveal interesting
olle
tive �eld properties, viz.� the gradient of a s
alar �eld,� the divergen
e of a ve
tor �eld, and� the 
url of a ve
tor �eld.There are two points to get over about ea
h:� The me
hani
s of taking the grad, div or 
url, for whi
h you will need to brushup your multivariate 
al
ulus.� The underlying physi
al meaning | that is, why they are worth botheringabout.In Le
ture 6 we will look at 
ombining these ve
tor operators.5.1 The gradient of a s
alar �eldRe
all the dis
ussion of temperature distribution throughout a room in the overview,where we wondered how a s
alar would vary as we moved o� in an arbitrary dire
-tion. Here we �nd out how.If U(x; y ; z) is a s
alar �eld, ie a s
alar fun
tion of position r = [x; y ; z ℄ in 3dimensions, then its gradient at any point is de�ned in Cartesian 
o-ordinates bygradU = �U�x {̂{{ + �U�y |̂|| + �U�z k̂kk :It is usual to de�ne the ve
tor operator whi
h is 
alled \del" or \nabla"rrr = {̂{{ ��x + |̂|| ��y + k̂kk ��z : 63



64 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURLThengradU � rrrU :Note immediately that rrrU is a ve
tor �eld!Without thinking too 
arefully about it, we 
an see that the gradient of a s
alar�eld tends to point in the dire
tion of greatest 
hange of the �eld. Later we willbe more pre
ise.| Worked examples of gradient evaluation1. U = x2)rrrU = ( ��x {̂{{ + ��y |̂|| + ��z k̂kk ) x2 = 2x {̂{{ :2. U = r 2 r 2 = x2 + y 2 + z2)rrrU = ( ��x {̂{{ + ��y |̂|| + ��z k̂kk ) (x2 + y 2 + z2)= 2x {̂{{ + 2y |̂|| + 2zk̂kk = 2 r :3. U = 
 � r, where 
 is 
onstant.)rrrU = ({̂{{ ��x + |̂|| ��y + k̂kk ��z) (
1x + 
2y + 
3z) = 
1̂{{{+
2̂|||+
3k̂kk = 
 :4. U = f (r), where r =√(x2 + y 2 + z2)U is a fun
tion of r alone so df =dr exists. As U = f (x; y ; z) also,�f�x = dfdr �r�x �f�y = dfdr �r�y �f�z = dfdr �r�z :)rrrU = �f�x {̂{{ + �f�y |̂|| + �f�z k̂kk = dfdr (�r�x {̂{{ + �r�y |̂|| + �r�z k̂kk)But r =√x2 + y 2 + z2, so �r=�x = x=r and similarly for y ; z .)rrrU = dfdr (x {̂{{ + y |̂|| + zk̂kkr ) = dfdr ( rr ) :



5.2. THE SIGNIFICANCE OF GRAD 65
PSfrag repla
ements gradU rU(r)r + drU(r+ dr)dr

Figure 5.1: The dire
tional derivative5.2 The signi�
an
e of gradIf our 
urrent position is r in some s
alar �eld U (Fig. 5.1), and we move anin�nitesimal distan
e dr, we know that the 
hange in U isdU = �U�x dx + �U�y dy + �U�z dz :But we know that dr = (̂{{{dx + |̂||dy + k̂kkdz) and rrrU = (̂{{{�U=�x + |̂||�U=�y +k̂kk�U=�z), so that the 
hange in U is also given by the s
alar produ
tdU = rrrU � dr :Now divide both sides by dsdUds = rrrU � drds :But remember that jdrj = ds, so dr=ds is a unit ve
tor in the dire
tion of dr.This result 
an be paraphrased as:� gradU has the property that the rate of 
hange of U wrt distan
e in aparti
ular dire
tion (d̂) is the proje
tion of gradU onto that dire
tion(or the 
omponent of gradU in that dire
tion).The quantity dU=ds is 
alled a dire
tional derivative, but note that in general ithas a di�erent value for ea
h dire
tion, and so has no meaning until you spe
ifythe dire
tion.We 
ould also say that



66 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURL� At any point P, gradU points in the dire
tion of greatest 
hange ofU at P, and has magnitude equal to the rate of 
hange of U wrtdistan
e in that dire
tion.
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Another ni
e property emerges if we think of a surfa
e of 
onstant U { that is thelo
us (x; y ; z) forU(x; y ; z) = 
onstant :If we move a tiny amount within that iso-U surfa
e, there is no 
hange in U, sodU=ds = 0. So for any dr=ds in the surfa
errrU � drds = 0 :But dr=ds is a tangent to the surfa
e, so this result shows that� gradU is everywhere NORMAL to a surfa
e of 
onstant U.

Surface of constant U

gradU

Surface of constant U
These are called Level Surfaces



5.3. THE DIVERGENCE OF A VECTOR FIELD 675.3 The divergen
e of a ve
tor �eldThe divergen
e 
omputes a s
alar quantity from a ve
tor �eld by di�erentiation.If a(x; y ; z) is a ve
tor fun
tion of position in 3 dimensions, that is a = a1̂{{{+a2̂|||+a3k̂kk , then its divergen
e at any point is de�ned in Cartesian 
o-ordinates bydiva = �a1�x + �a2�y + �a3�zWe 
an write this in a simpli�ed notation using a s
alar produ
t with the rrr ve
tordi�erential operator:diva = ({̂{{ ��x + |̂|| ��y + k̂kk ��z) � a = rrr � aNoti
e that the divergen
e of a ve
tor �eld is a s
alar �eld.| Examples of divergen
e evaluationa diva1) x {̂{{ 12) r(= x {̂{{ + y |̂|| + zk̂kk) 33) r=r 3 04) r
, for 
 
onstant (r � 
)=rWe work through example 3).The x 
omponent of r=r 3 is x:(x2+ y 2+ z2)�3=2, and we need to �nd �=�x of it.��x x:(x2 + y 2 + z2)�3=2 = 1:(x2 + y 2 + z2)�3=2 + x�32 (x2 + y 2 + z2)�5=2:2x= r�3 (1� 3x2r�2) :The terms in y and z are similar, so thatdiv(r=r 3) = r�3 (3� 3(x2 + y 2 + z2)r�2) = r�3 (3� 3)= 05.4 The signi�
an
e of divConsider a typi
al ve
tor �eld, water 
ow, and denote it by a(r). This ve
tor hasmagnitude equal to the mass of water 
rossing a unit area perpendi
ular to thedire
tion of a per unit time.Now take an in�nitesimal volume element dV and �gure out the balan
e of the
ow of a in and out of dV .



68 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURLTo be spe
i�
, 
onsider the volume element dV = dxdydz in Cartesian 
o-ordinates, and think �rst about the fa
e of area dxdz perpendi
ular to the y axisand fa
ing outwards in the negative y dire
tion. (That is, the one with surfa
earea dS = �dxdz |̂||.)
dS = -dxdz j

y

x

z

dz

dx

dy

jdS = +dxdz

Figure 5.2: Elemental volume for 
al
ulating divergen
e.The 
omponent of the ve
tor a normal to this fa
e is a � |̂|| = ay , and is pointinginwards, and so the its 
ontribution to the OUTWARD 
ux from this surfa
e isa � dS = � ay(y)dzdx ;where ay(y) means that ay is a fun
tion of y . (By the way, 
ux here denotes massper unit time.)A similar 
ontribution, but of opposite sign, will arise from the opposite fa
e, butwe must remember that we have moved along y by an amount dy , so that thisOUTWARD amount isay(y + dy)dzdx = (ay + �ay�y dy) dxdzThe total outward amount from these two fa
es is�ay�y dydxdz = �ay�y dVSumming the other fa
es gives a total outward 
ux of
(�ax�x + �ay�y + �az�z ) dV = rrr � a dVSo we see that



5.5. THE LAPLACIAN: DIV(GRADU) OF A SCALAR FIELD 69The divergen
e of a ve
tor �eld represents the 
ux generation per unitvolume at ea
h point of the �eld. (Divergen
e be
ause it is an e�ux notan in
ux.)Interestingly we also saw that the total e�ux from the in�nitesimal volume wasequal to the 
ux integrated over the surfa
e of the volume.(NB: The above does not 
onstitute a rigorous proof of the assertion be
ause wehave not proved that the quantity 
al
ulated is independent of the 
o-ordinatesystem used, but it will suÆ
e for our purposes.)5.5 The Lapla
ian: div(gradU) of a s
alar �eldRe
all that gradU of any s
alar �eld U is a ve
tor �eld. Re
all also that we
an 
ompute the divergen
e of any ve
tor �eld. So we 
an 
ertainly 
omputediv(gradU), even if we don't know what it means yet.Here is where the rrr operator starts to be really handy.rrr � (rrrU) = ({̂{{ ��x + |̂|| ��y + k̂kk ��z) � (({̂{{ ��x + |̂|| ��y + k̂kk ��z)U)= (({̂{{ ��x + |̂|| ��y + k̂kk ��z) � ({̂{{ ��x + |̂|| ��y + k̂kk ��z))U= ( �2�x2 + �2�y 2 + �2�z2)U= (�2U�x2 + �2U�y 2 + �2U�z2)This last expression o

urs frequently in engineering s
ien
e (you will meet it nextin solving Lapla
e's Equation in partial di�erential equations). For this reason, theoperator r2 is 
alled the \Lapla
ian"r2U = ( �2�x2 + �2�y 2 + �2�z2)ULapla
e's equation itself isr2U = 0



70 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURL| Examples of r2U evaluationU r2U1) r 2(= x2 + y 2 + z2) 62) xy 2z3 2xz3 + 6xy 2z3) 1=r 0Let's prove example (3) (whi
h is parti
ularly signi�
ant { 
an you guess why?).1=r = (x2 + y 2 + z2)�1=2��x ��x (x2 + y 2 + z2)�1=2 = ��x � x:(x2 + y 2 + z2)�3=2= �(x2 + y 2 + z2)�3=2 + 3x:x:(x2 + y 2 + z2)�5=2= (1=r 3)(�1 + 3x2=r 2)Adding up similar terms for y and zr21r = 1r 3 (�3 + 3(x2 + y 2 + x2)r 2 ) = 05.6 The 
url of a ve
tor �eldSo far we have seen the operator rrr applied to a s
alar �eld rrrU; and dotted witha ve
tor �eld rrr � a.We are now overwhelmed by an irrestible temptation to� 
ross it with a ve
tor �eld rrr� aThis gives the 
url of a ve
tor �eldrrr� a � 
url(a)We 
an follow the pseudo-determinant re
ipe for ve
tor produ
ts, so thatrrr� a = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk��x ��y ��zax ay az ∣∣∣∣∣∣ (remember it this way)= (�az�y � �ay�z ) {̂{{ + (�ax�z � �az�y ) |̂|| +(�ay�x � �ax�y ) k̂kk



5.7. THE SIGNFICANCE OF CURL 71| Examples of 
url evaluation a rrr� a1) �y {̂{{ + x |̂|| 2k̂kk2) x2y 2k̂kk 2x2y {̂{{ � 2xy 2̂|||5.7 The sign�
an
e of 
urlPerhaps the �rst example gives a 
lue. The �eld a = �y {̂{{ + x |̂|| is sket
hed inFigure 5.3(a). (It is the �eld you would 
al
ulate as the velo
ity �eld of an obje
trotating with !!! = [0; 0; 1℄.) This �eld has a 
url of 2k̂kk , whi
h is in the r-h s
rewsense out of the page. You 
an also see that a �eld like this must give a �nitevalue to the line integral around the 
omplete loop ∮C a � dr:
y

x

ax (y)

a
(x

)
y

ax (y+dy)

a y
(x

+
dx

)

dx

dy

y

y
x x+dx

y+dy

(a) (b)Figure 5.3: (a) A rough sket
h of the ve
tor �eld �y {̂{{ + x |̂||. (b) An element in whi
h to 
al
ulate
url.In fa
t 
url is 
losely related to the line integral around a loop.The 
ir
ulation of a ve
tor a round any 
losed 
urve C is de�ned to be
∮C a � drand the 
url of the ve
tor �eld a represents the vorti
ity, or 
ir
ulationper unit area, of the �eld.



72 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURLOur proof uses the small re
tangular element dx by dy shown in Figure 5.3(b).Consider the 
ir
ulation round the perimeter of a re
tangular element.The �elds in the x dire
tion at the bottom and top areax(y) and ax(y + dy) = ax(y) + �ax�y dy ;where ax(y) denotes ax is a fun
tion of y , and the �elds in the y dire
tion at theleft and right areay(x) and ay(x + dx) = ay(x) + �ay�x dxStarting at the bottom and working round in the anti
lo
kwise sense, the four
ontributions to the 
ir
ulation dC are therefore as follows, where the minus signstake a

ount of the path being opposed to the �eld:dC = + [ax(y) dx ℄ + [ay(x + dx) dy ℄� [ax(y + dy) dx ℄� [ay(x) dy ℄= + [ax(y) dx ℄ + [(ay(x) + �ay�x dx) dy]� [(ax(y) + �ax�y dy) dx]� [ay(x) dy ℄= (�ay�x � �ax�y ) dx dy= (rrr� a) � dSwhere dS = dxdy k̂kk.NB: Again, this is not a 
ompletely rigorous proof as we have not shown that theresult is independent of the 
o-ordinate system used.
5.8 Some de�nitions involving div, 
url and grad� A ve
tor �eld with zero divergen
e is said to be solenoidal.� A ve
tor �eld with zero 
url is said to be irrotational.� A s
alar �eld with zero gradient is said to be, er, 
onstant.
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t 2008


