Lecture 4

Line, Surface and Volume Integrals.
Curvilinear coordinates.

We started off the course being concerned with individual vectors a, b, ¢, and so
on.

We went on to consider how single vectors vary over time or over some other
parameter such as arc length.

In much of the rest of the course, we will be concerned with scalars and vectors
which are defined over regions in space — scalar and vector fields

In this lecture we introduce line, surface and volume integrals, and consider how
these are defined in non-Cartesian, curvilinear coordinates

4.1 Scalar and vector fields

When a scalar function u(r) is determined or defined at each position r in some
region, we say that v is a scalar field in that region.

Similarly, if a vector function v(r) is defined at each point, then v is a vector field
in that region. As you will see, in field theory our aim is to derive statements about
the bulk properties of scalar and vector fields, rather than to deal with individual
scalars or vectors.

Familiar examples of each are shown in figure 4.1.

In Lecture 1 we worked out the force F(r) on a charge @ arising from a numbers
of charges g;. The electric field is F/Q, so

B0 =Y Ko (r-r) . (K= —

— r—r;3  ATe, €

You could work out the velocity field in plane polars at any point on a wheel
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(a) (b)

Figure 4.1: Examples of (a) a scalar field (pressure); (b) avector field (wind velocity)

spinning about its axis
v(r) =w xr
or the fluid flow field around a wing.

If the fields are independent of time, they are said to be steady. Of course, most
vector fields of practical interest in engineering science are not steady, and some
are unpredictable.

Let us first consider how to perform a variety of types of integration in vector and
scalar fields.

4.2 Line integrals through fields

Line integrals are concerned with measuring the integrated interaction with a field
as you move through it on some defined path. Eg, given a map showing the
pollution density field in Oxford, you may wish to work out how much pollution
you breath in when cycling from college to the Department via different routes.

First recall the definition of an integral for a scalar function f(x) of a single scalar
variable x. One assumes a set of n samples f; = f(x;) spaced by dx;. One forms
the limit of the sum of the products f(x;)dx; as the number of samples tends to
infinity

/f(x)dx: lim Zf,-éx,-

n—oo =1
5X,'—>0

For a smooth function, it is irrelevant how the function is subdivided.

4.2.1 Vector line integrals

In a vector line integral, the path L along which the integral is to be evaluated
is split into a large number of vector segments dr;,. Each line segment is then
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A
F(r)

or

o

Figure 4.2: Line integral. In the diagram F(r) is a vector field, but it could be replace with scalar
field U(r).

multiplied by the quantity associated with that point in space, the products are
then summed and the limit taken as the lengths of the segments tend to zero.

There are three types of integral we have to think about, depending on the nature
of the product:

1. Integrand U(r) is a scalar field, hence the integral is a vector.

I:/LU(r)dr (— 6Irilr_r>102U,-6r,-.>

2. Integrand a(r) is a vector field dotted with dr hence the integral is a scalar:

| = /La(r) - dr ( 6Ir|lr_r)102a, or;. )

3. Integrand a(r) is a vector field crossed with dr hence vector result.

| = /La(r) X dr (— 6Iril_r_r>102i:a,- X 6r,~.>

Note immediately that unlike an integral in a single scalar variable, there are many
paths L from start point r, to end point rg, and the integral will in general depend
on the path taken.

Physical examples of line integrals

e The total work done by a force F as it moves a point from A to B along
a given path C is given by a line integral of type 2 above. If the force acts
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at point r and the instantaneous displacement along curve C is dr then the
infinitessimal work done is dW = F.dr, and so the total work done traversing
the path is

WC = / F.dr
C

e Ampere’s law relating magnetic field B to linked current can be written as

% B.dr = ugl
C

where | is the current enclosed by (closed) path C.

e The force on an element of wire carrying current /, placed in a magnetic field
of strength B, is dF = Idr x B. So if a loop this wire C is placed in the field
then the total force will be and integral of type 3 above:

F:/%dpr
C

Note that the expressions above are beautifully compact in vector notation, and are
all independent of coordinate system. Of course when evaluating them we need
to choose a coordinate system: often this is the standard Cartesian coordinate
system (as in the worked examples below), but need not be, as we shall see in
section 4.6.

& Examples

Q1 An example in the xy-plane. A force F = x°yi + xy?j acts on a body at it
moves between (0,0) and (1,1).

Determine the work done when the path is

1. along the line y = x.
2. along the curve y = x".
3. along the x axis to the point (1,0) and then along the line x = 1

Al This is an example of the “type 2" line integral. In planar Cartesians, dr =
1dx +Jdy. Then the work done is

/F-dr = /(x2ydx+xy2dy) .
L L

1. For the path y = x we find that dy = dx. So it is easiest to convert all
y references to x.

(1,1) x=1 x=1 B
/ (x2ydx+xy’dy) = / (x’xdx+xx’dx) = / 2x3dx = [x4/2|:(1] =1/2.
( x

0,0) x=0
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©
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0,0 0,1

Figure 4.3: Line integral taken along three difference paths

2. For the path y = x" we find that dy = nx" 'dx, so again it is easiest to
convert all y references to x.

(1.1) x=1
/ (x’ydx + xy’dy) = / (x""2dx + nx" ' x.x*"dx)
(0.0) x=0

x=1
= / (x"?dx + nx*"dx)

=0
1 n

n+3+3n+1

3. This path is not smooth, so break it into two. Along the first section,
y =0 and dy = 0, and on the second x =1 and dx =0, so

B x=1 y=1 B
/A (x’ydx+xy’dy) = / (X2OdX)—|—/ 1.y’dy =0+ [y3/3‘j;;(1] =1/3.

x=0 y=0

So in general the integral depends on the path taken. Notice that answer (1)
is the same as answer (2) when n = 1, and that answer (3) is the limiting
value of answer (2) as n — co.

Q2 Repeat part (2) using the Force F = xy?i + x%y].
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A2 For the path y = x" we find that dy = nx""'dx, so

(1,1) x=1
/ (v?xdx + yx?dy) = / (x*"dx 4+ nx""! x? x"dx)
(0,0) x=0

x=1
— / (X2n+1dX+ nX2n—|—1dX)
x=0
1 n

2n—l—2+2n+2

1
=3 independent of n

4.3 Line integrals in Conservative fields

In the second example, the line integral has the same value for the whole range
of paths. In fact it is wholly independant of path. This is easy to see if we write
g(x,y) = x?>y?/2. Then using the definition of the perfect differential

99 99
dg = —Zdx + —2d
9=5x**T 5,9

we find that

B B
/ (y’xdx + yx’dy) = / dg
A A

= JB — 9A

which depends solely on the value of g at the start and end points, and not at all
on the path used to get from A to B. Such a vector field is called conservative.

One sort of line integral performs the integration around a complete loop and is
denoted with a ring. If E is a conservative field, determine the value of

7{E-dr.

In electrostatics, if E is the electric field the the potential function is

¢:—/Edn

Do you think E is conservative?
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4.3.1 A note on line integrals defined in terms of arc length

Line integrals are often defined in terms of scalar arc length. They don't appear
to involve vectors (but actually they are another form of type 2 defined earlier).

The integrals usually appears as follows

| = /LF(x,y,z)ds

and most often the path L is along a curve defined parametrically as x = x(p),
y = y(p), z = z(p) where p is some parameter. Convert the function to F(p),
writing

Pend
| = F(p)— d
/,, (p) a5 P
where
ds dx2+ dy 2+ dz\?
dp dp dp dp
Note that the parameter p could be arc-length s itself, in which case ds/dp =1

of course! Another possibility is that the parameter p is x — that is we are told
y = y(x) and z = z(x). Then
1/2

s dy\’  (dz\’
/—/XStart F(X) 1+ <a> + <E> ] dx .

4.4 Surface integrals

These can be defined by analogy with line integrals.

The surface S over which the integral is to be evaluated is now divided into in-
finitesimal vector elements of area dS, the direction of the vector dS representing
the direction of the surface normal and its magnitude representing the area of the
element.

Again there are three possibilities:

o [ UdS — scalar field U; vector integral.
e [ca-dS — vector field a; scalar integral.

e [cax dS — vector field a; vector integral.

(in addition, of course, to the purely scalar form, [ UdS).
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Physical example of surface integral

e Physical examples of surface integrals with vectors often involve the idea of
flux of a vector field through a surface, fs a.dS For example the mass of fluid
crossing a surface S in time dt is dM = pv.dSdt where p(r) is the fluid
density and v(r) is the fluid velocity. The total mass flux can be expressed as

a surface integral:

oy :/Sp(r)v(r).ss

Again, though this expression is coordinate free, we evaluate an example below
using Cartesians. Note, however, that in some problems, symmetry may lead us

to a different more natural coordinate system.

& Example

Evaluate [ F - dS over the x = 1 side of
the cube shown in the figure when F =
yi+ zj + xk.

dS is perpendicular to the surface. Its +
direction actually depends on the nature
of the problem. More often than not,
the surface will enclose a volume, and the
surface direction is taken as everywhere
emanating from the interior.

Hence for the x = 1 face of the cube

dS = dydzi

and

/F-dS = //ydydz
1 1

211 1
Ey‘OZ‘O_E

=Y

dS = dydzi

4.5 Volume integrals

The definition of the volume integral is again taken as the limit of a sum of products
as the size of the volume element tends to zero. One obvious difference though is
that the element of volume is a scalar (how could you define a direction with an

infinitesimal volume element?). The possibilities are:
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e [, U(r)dV — scalar field; scalar integral.

e [,adV — vector field; vector integral.

You have covered these (more or less) in your first year course, so not much more
to say here. The next section considers these again in the context of a change of
coordinates.

4.6 Changing variables: curvilinear coordinates

Up to now we have been concerned with Cartesian coordinates x, y, z with coor-

dinate axes 7,7, k. When performing a line integral in Cartesian coordinates, you
write

r=xi+yj+ zk and dr = dxi+ dyj+ dzk

and can be sure that length scales are properly handled because — as we saw in
Lecture 3 —

|dr| = ds = \/dx?+ dy? + dz? .

The reason for using the basis 1, ], k rather than any other orthonormal basis set is
that 7 represents a direction in which x is increasing while the other two coordinates

remain constant (and likewise for J and k with y and z respectively), simplifying
the representation and resulting mathematics.

Often the symmetry of the problem strongly hints at using another coordinate
system:

e |ikely to be plane, cylindrical, or spherical polars,

e but can be something more exotic

The general name for any different “u, v, w” coordinate system is a curvilinear
coordinate system. \We will see that the idea hinted at above — of defining a
basis set by considering directions in which only one coordinate is (instantaneously)
Increasing — provides the approriate generalisation.

We begin by discussing common special cases: cylindrical polars and spherical
polars, and conclude with a more general formulation.

4.6.1 Cylindrical polar coordinates

As shown in figure 4.4 a point in space P having cartesian coordinates x, y, z can
be expressed in terms of cylindrical polar coordinates, r, ¢, z as follows:

r = xi+yj+ zk
— rcosi+ rsingj+ zk
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Lines of
constant r

' Lines of
R constant z

Lines of
constant ®

(a) (b)

Figure 4.4: Cylindrical polars: (a) coordinate definition; (b) “iso” lines in r, ¢ and z.

Note that, by definition, % represents a direction in which (instantaneously) r is

changing while the other two coordinates stay constant. That is, It is tangent to
lines of constant ¢ and z. Likewise for 2 56 P and &, Thus the vectors:

9z

Aside on notation: some texts
use the notation #, ¢, ... to rep-
or resent the unit vectors that form
e = — =cospi+sing] the local basis set. Though | pre-
%rr o X fer the notation used here, where
€y = 56 —rsin gl + r cos ¢J the basis vectors are written as
ar . é with appropriate subscripts (as
e = - = k used in Riley et al), you should be
aware of, and comfortable with,

either possibility.

form a basis set in which we may describe infinitessimal vector displacements in
the position of P, dr. It is more usual, however, first to normalise the vectors to
obtain their corresponding unit vectors, €., &;, €,. Following the usual rules of
calculus we may write:

dr = gdr—i—g—;dqb—l—ﬂdz
= dre, + doey + dze,

= dré, + rd¢éy + dzé,

Now here is the important thing to note. In cartesian coordinates, a small change
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in (eg) x while keeping y and z constant would result in a displacement of

ds = |dt| = Vdr.dr = \/dx>+ 0+ 0 = dx

But in cylindrical polars, a small change in ¢ of d¢ while keeping r and z constant
results in a displacement of

ds = |dr| = \/r?(d¢)? = rd¢

Thus the size of the (infinitessimal) displacement is dependent on the value of r.
Factors such as this r are known as scale factors or metric coefficients, and we
must be careful to take them into account when, eg, performing line, surface or
volume integrals, as you will below. For cylindrical polars the metric coefficients
are clearly 1, r and 1.

Example: line integral in cylindrical coordinates

Q Evaluate ¢-a-dl, where a = x3j — y3i+ x2yk and C is the circle of radius r
in the z = 0 plane, centred on the origin.

A Consider figure 4.5. In this case our cylindrical coordinates effectively reduce
to plane polars since the path of integration is a circle in thAe z = 0 plane, but

let's persist with the full set of coordinates anyway; the k component of a
will play no role (it is normal to the path of integration and therefore cancels
as seen below).

On the circle of interest
a = r3(—sin® ¢i + cos® ¢j + cos? psin k)
and (since dz = dr = 0 on the path)
dr = rdoé
rdg(— sin ¢1 + cos ¢J)
so that

3w,

2m
%a-dr:/ r*(sin* ¢ + cos* ¢)dep = =—r
5 0 2

since

27 21
3
/ sin4¢d¢:/ cos* pdp = =&
0 0 4
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4

From above
v A

Figure 4.5: Line integral example in cylindrical coordinates
Volume integrals in cylindrical polars
In Cartesian coordinates a volume element is given by (see figure 4.6a):
dV = dxdydz
Recall that the volume of a parallelopiped is given by the scalar triple product of

the vectors which define it (see section 2.1.2). Thus the formula above can be
derived (even though it is “obvious”) as:

dV = dxi.(dy] x dzIA() = dxdydz

since the basis set is orthonormal.
In cylindrical polars a volume element is given by (see figure 4.6b):

dV = dré,.(rdes x dz&,) = rdpdrdz

Note also that this volume, because it is a scalar triple product, can be written as
a determinant:

&.dr e dr % O
dV = | &yrdd | = | eydd | = | & & 5 |drdpdz
é,dz e,dz % g—JZ/ g—i
where the equality on the right-hand side follows from the definitions of &, = % =

%%L g—_{j + %IA(, etc. This is the explanation for the “magical” appearance of the

determinant in change-of-variables integration that you encountered in your first
year maths!
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2 A

A , dV = dxdydz

dzé,

X do >
— »Z ¢ rd¢
(a) (b)

Figure 4.6: Volume elements dV in (a) Cartesian coordinates; (b) Cylindrical polar coordinates

Surface integrals in cylindrical polars
Recall from section 4.4 that for a surface element with normal along 7 we have:
dS = dydzi

More explictly this comes from finding normal to the plane that is tangent to the
surface of constant x and from finding the area of an infinitessimal area element

on the plane. In this case the plane is spanned by the vectors J and k and the area
of the element given by (see section 1.3):

ds = ’dy] x dzk

Thus
dS = dyj x dzk =idS = dydzi
In cylindrical polars, surface area elements (see figure 4.7) are given by:

dS = dré, x rd¢péy = rdrdoé, (for surfaces of constant z)
dS = rd¢é, x dzé, = rdpdzé, (for surfaces of constant r)

Similarly we can find dS for surfaces of constant ¢, though since these aren’t as
common this is left as a (relatively easy) exercise.

dV = rdrdpdz
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dS, = rdrd¢é,

dS, = rdpdze,

dSy &= drdzéy-— |-

Figure 4.7: Surface elements in cylindrical polar coordinates

4.6.2 Spherical polars

Much of the development for spherical polars is similar to that for cylindrical polars.
As shown in figure 4.6.2 a point in space P having cartesian coordinates x, y, z
can be expressed in terms of spherical polar coordinates, r, 8, ¢ as follows:

r = xi+yj+ zk
— rsin@cosi+ rsinfsindj+ rcos ok

The basis set in spherical polars is obtained in an analogous fashion: we find unit

Lines of
constant @
(longitude)

Lines of
constantr

<V

Lines of
constant
(latitude)
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vectors which are in the direction of increase of each coordinate:

or A
e = 3 = sin B cos @1 + sin@sin ¢j + cos Ok — @,

0 . o s R
EQIa—g: rcos@cos@i + rcosfsing) — rsinfk = rég

0
ey = 8_;5 = —rsin@sin i+ rsinfcos ¢ = rsin0éy

As with cylindrical polars, it is easily verified that the vectors &, &, €; form an
orthonormal basis.

A small displacement dr is given by:

or or or

= dre, 4 dbeg + doey
= dré, 4+ rd6é&g + rsin 0dpé,

Thus the metric coefficients are 1, r, rsiné.

Volume integrals in spherical polars

In spherical polars a volume element is given by (see figure 4.8):
dV = dré,.(rd6&y x rsindpéy) = rsinfdrdode

Note again that this volume could be written as a determinant, but this is left as
an exercise.

Surface integrals in spherical polars

The most (the only?) useful surface elements in spherical polars are those tangent
to surfaces of constant r (see figure 4.9). The surface direction (unnormalised) is
given by & x €4 = €, and the area of an infinitessimal surface element is given by

|rd0&y x rsinOdpéy| = r?sin 6dode.
Thus a surface element dS in spherical polars is given by

dS = rdféy x rsindpés = r’ sin 6,
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z
dré,
rsin@
rsin 0dgé
dV = r’sin@drdbd¢
rdoéy
0
IRVeZd
y
X 10) N

de — 7 sin6d¢

Figure 4.8: Volume element dV in spherical polar coordinates

& Example: surface integral in spherical polars

Q Evaluate [.a - dS, where a = 23k
and S is the sphere of radius A cen-
tred on the origin.

A On the surface of the sphere:
a=Acos’0k dS = A’sinf db doe,

Hence

2T T
/a-dS = / / Adcos®9 A’sinb [, - k] dod¢
s $=0 J6=0
2T U
= A5/ dqb/ cos>0sin B[cos 6] db
0 0

1
= 27rA5g [— cos> G}g
4 A®
5




4.6. CHANGING VARIABLES: CURVILINEAR COORDINATES 59

Z
rsin 0dgé,

dS, = r’sin 6dodpe,

Figure 4.9: Surface element dS in spherical polar coordinates

4.6.3 General curvilinear coordinates

Cylindrical and spherical polar coordinates are two (useful) examples of general
curvilinear coordinates. In general a point P with Cartesian coordinates x, y, z can
be expressed in the terms of the curvilinear coordinates u, v, w where

x=x(u,v,w), y=y(uv,w), z=2z(uv,w)
Thus

r=x(u,v,w)i+y(u,v,w)j+ z(u, v, W)IA(
and

or Ox, Oy, 0z

50 =30 " 3t ok
and similarly for partials with respect to v and w, so

or or or
dr = %du + adv + a—WC]’W

We now define the local coordinate system as before by considering the directions
in which each coordinate “unilaterally” (and instantaneously) increases:

or or| . .
eu:%:aeu:hueu

or or| . .
ev:a:aev:hvev

or or | . .
e = a—W:|a—W S =
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The metric coefficients are therefore h, = \Gr\ h, ‘a | and h,, = \g .
A volume element is in general given by
dv = h,dué,.(h,dvé, x h,dwé,)
and simplifies if the coordinate system is orthonormal (since &,.(é, x &,) = 1) to
dV = h,h,h,dudvdw
A surface element (normal to constant w, say) is in general
dS = h,dué, x h,dveé,
and simplifies if the coordinate system is orthogonal to
dS = h,h,dudvé,

4.6.4 Summary

To summarise:

General curvilinear coordinates

x = x(u,v,w), y=y(u,v,w), z=2z(u,v,w)
r = x(u, v, w)i+y(u,v,w)j+z(u v, w)k
O
Y |oul|’ Y av]] Y ow
. . 1 Or R 1 Or A 1 Or
u:eu:h—ua, V=26, hva’ w:eW:h—Wa—W
dr = h,dutt+ h,dvv + h,dw
dvV = hyh,h,dudvdw i1.(V x w)
dS = hyh,dudv @t x ¢ (for surface element tangent to constant w)

Plane polar coordinates

X = rcoso, y =rsinf

r = rcosfi+ rsinfj

h, = 1, hy = r

é, = cosfi+sind], €y = —sin61+ cosb)

dr = dré, + rdféy
dS = rdrdfk
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Cylindrical polar coordinates
X = rcosq, y =rsing, z=z
r rcos @i+ rsin¢j + zk
h, 1, he =r, h, =1
€ = cos@i+sindg], €y, = —sin @1 + cos ¢, &, =k
dr = dré, +rdgéy + dzé,
dS = rdrdgk (on the flat ends)
dS = rd¢dzé, (on the curved sides)
dV = rdrd¢pdz
Spherical polar coordinates
X = rsinfcoso, y = rsin@sin g, Z = rcosf
r rsin@cos ¢i + rsinfsin¢j + r cos 0k
h, 1, hyg = r, hy = rsin@
&, = sinfcos i+ sinOsin @] + cos Ok
& = cos6cos @i+ cos@sindj+ sinbk
€, = —singl+ cosq)
dr = dré, + rd6éy+ rsin0doéy
dS = r’sinfdrdfd¢e, (on a spherical surface)
dV = r’sinfdrdbde

61
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Lecture 5

Vector Operators: Grad, Div and Curl

In the first lecture of the second part of this course we move more to consider
properties of fields. We introduce three field operators which reveal interesting
collective field properties, viz.

e the gradient of a scalar field,
e the divergence of a vector field, and

e the curl of a vector field.
There are two points to get over about each:

e The mechanics of taking the grad, div or curl, for which you will need to brush
up your multivariate calculus.

e The underlying physical meaning — that is, why they are worth bothering
about.

In Lecture 6 we will look at combining these vector operators.

5.1 The gradient of a scalar field

Recall the discussion of temperature distribution throughout a room in the overview,
where we wondered how a scalar would vary as we moved off in an arbitrary direc-
tion. Here we find out how.

If U(x,y,z) is a scalar field, ie a scalar function of position r = [x,y,z] in 3
dimensions, then its gradient at any point is defined in Cartesian co-ordinates by
ou . ou .. ou -

gradU:a—Xl + a—yj + gk.

It is usual to define the vector operator which is called “del” or “nabla”

e e
+ 75 + k+—.

V=i3s By 5z

63
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Then
gradU = VU .

Note immediately that VU is a vector field!

Without thinking too carefully about it, we can see that the gradient of a scalar
field tends to point in the direction of greatest change of the field. Later we will
be more precise.

& Worked examples of gradient evaluation
1. U=x?

2. U=r?
rF= x*+y*+27°
0 0 0 -
=VU = (—1 + —J + —k 24yt 4 22
(8 + ay_/+ e >(X +y°+z%)
— 2xi+2yj+2zk = 2r

3. U=c-r, where c is constant.

0 0 ~ 0 "
=VU=(1T—=— +j— + k — (C1X+C2y+C3Z):Cl/l\—i‘CQj—i‘Cgk:C .
Ox oy 0z

4. U=f(r), where r = \/(x2 + y2 + z2)
U is a function of r alone so df /dr exists. As U = f(x, y, z) also,

of _ df or of _ df or of _ df or
Ox  drox Oy  drdy 0z droz
of. Of, Of. df (Or. Or, Or,

But r = \/x2 + y? + 22, so Or/0x = x/r and similarly for y, z.

:>VU:£ <X7+yj+zl}) _df <r>

dr r T dr \r
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Figure 5.1: The directional derivative

5.2 The significance of grad

If our current position is r in some scalar field U (Fig. 5.1), and we move an
infinitesimal distance dr, we know that the change in U is

ou ou ou
dU = —dx+ —dy + —dz .
U I X + 5y Y+ 32 z
But we know that dr = (idx + jdy + kdz) and VU = (idU/dx + joU/dy +
koU/0z), so that the change in U is also given by the scalar product

dU=VU-dr.

Now divide both sides by ds
dUu dr
VU —
ds v ds

But remember that |dr| = ds, so dr/ds is a unit vector in the direction of dr.

This result can be paraphrased as:

e gradU has the property that the rate of change of U wrt distance in a
particular direction (d) is the projection of gradU onto that direction
(or the component of gradU in that direction).

The quantity dU/ds is called a directional derivative, but note that in general it
has a different value for each direction, and so has no meaning until you specify
the direction.

We could also say that
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e At any point P, gradU points in the direction of greatest change of
U at P, and has magnitude equal to the rate of change of U wrt
distance in that direction.

Another nice property emerges if we think of a surface of constant U — that is the
locus (x, y, z) for

U(x,y,z) = constant .

If we move a tiny amount within that iso-U surface, there is no change in U, so
dU/ds = 0. So for any dr/ds in the surface

dr
U.-— = 0.
v ds
But dr/ds is a tangent to the surface, so this result shows that

e gradU is everywhere NORMAL to a surface of constant U.

gradU

/
Surface of constant U Surface of constant U
These are called Level Surfaces
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5.3 The divergence of a vector field

The divergence computes a scalar quantity from a vector field by differentiation.
If a(x, y, z) is a vector function of position in 3 dimensions, that is a = a;1+ a>J +
ask, then its divergence at any point is defined in Cartesian co-ordinates by
Oa Oa Oa

1 O3  0ds
Ox oy 0z

We can write this in a simplified notation using a scalar product with the V vector
differential operator:

diva =

. 0 o o
d|va—<l§ —I—J@ + k&) -a=V-a

Notice that the divergence of a vector field is a scalar field.

& Examples of divergence evaluation

a diva
1) xi 1
2) v(=xi+yj+zk) 3
3) r/r3 0
4) rc, for c constant (r-c)/r

We work through example 3).
The x component of r/r® is x.(x* + y? 4+ z?)73/? and we need to find 8/0x of it.

0

&X'(X2+y2+22)_3/2 = 1.4y + 2% 3/2 4 2 (X 24 22" 5/2 5y
= r? (1 — 3x2r*2) :

The terms in y and z are similar, so that

div(r/r’) = r>(3=3(x+y*+2°)r?)=r>(3-3)
— 0

5.4 The significance of div

Consider a typical vector field, water flow, and denote it by a(r). This vector has
magnitude equal to the mass of water crossing a unit area perpendicular to the
direction of a per unit time.

Now take an infinitesimal volume element dV and figure out the balance of the
flow of a in and out of dV.
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To be specific, consider the volume element dV = dxdydz in Cartesian co-
ordinates, and think first about the face of area dxdz perpendicular to the y axis
and facing outwards in the negative y direction. (That is, the one with surface
area dS = —dxdzj.)

E

N i dz .
dS=-dxdz | . dS = +dxdz]
- |
----f R
y
dx
dy
X

Figure 5.2: Elemental volume for calculating divergence.

The component of the vector a normal to this face is a-J = a,, and is pointing
inwards, and so the its contribution to the OUTWARD flux from this surface is

a-dS = -—a(y)dzdx,
where a,(y) means that a, is a function of y. (By the way, flux here denotes mass
per unit time.)

A similar contribution, but of opposite sign, will arise from the opposite face, but
we must remember that we have moved along y by an amount dy, so that this
OUTWARD amount is

0
ay(y + dy)dzdx = (ay + ai;dy) dxdz

The total outward amount from these two faces is

da, da
—Ydydxdz = =2dV
Oy yaxas Oy

Summing the other faces gives a total outward flux of

da, 0Oa, Oa, B
(ax+ay+az>dV—V-a dVv

So we see that
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The divergence of a vector field represents the flux generation per unit
volume at each point of the field. (Divergence because it is an efflux not
an influx.)

Interestingly we also saw that the total efflux from the infinitesimal volume was
equal to the flux integrated over the surface of the volume.

(NB: The above does not constitute a rigorous proof of the assertion because we
have not proved that the quantity calculated is independent of the co-ordinate
system used, but it will suffice for our purposes.)

5.5 The Laplacian: div(gradU) of a scalar field

Recall that gradU of any scalar field U is a vector field. Recall also that we
can compute the divergence of any vector field. So we can certainly compute
div(gradl), even if we don't know what it means yet.

Here is where the V operator starts to be really handy.
0 0 ~ 0 0 0 ~ 0
. pr— N _— N _— R . 7 n _ k -
V- (VU) (I e +Jay + kaz) ((I . +J6y + 62) U)

R T R S Y CA S A
N Ox J@y 0z Ox Jay 0z

Ox2 = Oy? + 0z2
o°U N 92U N o°U
Ox?2  0Oy?2 0z?2

This last expression occurs frequently in engineering science (you will meet it next
in solving Laplace’s Equation in partial differential equations). For this reason, the

operator V? is called the “Laplacian”

o2 o2 o2
211 —
ViU = <6X2 + dy? + 6Z2> U

Laplace’s equation itself is

VU =0
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& Examples of V?U evaluation

U VU

1) rP(=x2+y?+2°) 6
2) xy?’z3 2xz° + 6xy2z
3) 1/r 0

Let's prove example (3) (which is particularly significant — can you guess why?).

1/r = (x*+y? 4 22)71/2

0 0 0
a—xa( 2424 272 = o X.(x2+y?+ 2%)7%/2
—(P+ Y+ 2T 3xx (P + 2+ 222

(1/r°) (=1 +3x%/r?)

Adding up similar terms for y and z

1 1 2 2 2
vel o L (g, sy XN
ror r2

5.6 The curl of a vector field

So far we have seen the operator V applied to a scalar field VU; and dotted with
a vector field V - a.

We are now overwhelmed by an irrestible temptation to
e cross it with a vector field V x a
This gives the curl of a vector field

V x a = curl(a)

We can follow the pseudo-determinant recipe for vector products, so that

1 7 k
S e it thi
Vxa = |35 3 3 (remember it this way)

B 832_% it 8ax_6az - %_83)( i
~ \ay oz 8z 0Oy J dx Oy
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& Examples of curl evaluation

a V x a

1) —yvi+x] 2k
2)  x%2k  2x%yi—2xy?%

5.7 The signficance of curl

Perhaps the first example gives a clue. The field a = —y7 + xJ is sketched in
Figure 5.3(a). (It is the field you would calculate as the velocity field of an object

rotating with w = [0, 0, 1].) This field has a curl of 2k, which is in the r-h screw
sense out of the page. You can also see that a field like this must give a finite
value to the line integral around the complete loop fca - dr.

by Vaord) =)
- y+dy )
~= T i
T X =Y v -:-'i
o el L e
S Yy T
— T = 3 y) — |

(a) (b)

Figure 5.3: (a) A rough sketch of the vector field —y7+ xJj. (b) An element in which to calculate
curl

In fact curl is closely related to the line integral around a loop.

The circulation of a vector a round any closed curve C is defined to be

$-a-dr

C

and the curl of the vector field a represents the vorticity, or circulation
per unit area, of the field.




72 LECTURE 5. VECTOR OPERATORS: GRAD, DIV AND CURL

Our proof uses the small rectangular element dx by dy shown in Figure 5.3(b).
Consider the circulation round the perimeter of a rectangular element.

The fields in the x direction at the bottom and top are

Oay
Oy

ax(y) and ax(y +dy)=ax(y) + dy,

where a,(y) denotes a, is a function of y, and the fields in the y direction at the
left and right are

da,
ax 9%

Starting at the bottom and working round in the anticlockwise sense, the four
contributions to the circulation dC are therefore as follows, where the minus signs
take account of the path being opposed to the field:

a, (x) and a,(x +dx) = a,(x) +

dC = +[ax(y) dx]+[ay(x + dx) dy] — [ax(y + dy) dx] — [a,(x) dy]

— 4 [a(y) dx] + Kay(x) + %dx) dy] - Kax(y) + %jjdy) dx] ~la,(x) dy]
(32
— (V xa)-dS

where dS = dxdyk.

NB: Again, this is not a completely rigorous proof as we have not shown that the
result is independent of the co-ordinate system used.

5.8 Some definitions involving div, curl and grad
e A vector field with zero divergence is said to be solenoidal.

e A vector field with zero curl is said to be irrotational.

e A scalar field with zero gradient is said to be, er, constant.
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