
4: Parametric curves and surfaces

� Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

� Lecture 2: Vanishing points. Horizons. Applications of projective transforma-
tions.

� Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

� Lecture 4: Interpolating and Approximating Splines: Cubic splines, Bezier
curves, B-splines
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Introduction 4.1

� In the last lecture we saw that curves can be represented conveniently in para-
metric form. Eg in 2D �������	� ��
��
���������
�������
and we saw some “regular” curves like ellipses, and so on.� In this lecture we introduce how to build “irregular” shaped curves in a piece-
wise fashion out of splines.� Splines are widely used in graphics and CAD — indeed one of the pioneers
of their computational use, Pierre Bézier, developed his ideas while working for
Renault in the 1970’s.

Example of an interpolating spline 4.2

An idea of what were are about can be gained by considering the following prob-
lem

How should one specify the path of a road through a number of villages ...

Roads made up of separate functions ��� .
Continuous � � ���� � ����� ����� ���� � �
Smooth �! � ���� � �����" ����� ���� � �
Cont 2nd d? �  # � ����$�%�	���  # ����� ����$�%�

These are interpolating splines, because they actually go through the points.
Later we will see approximating splines, where the points are control points,
which define the shape of the curve, but do not necessary lie on the curve.

Other constraints might be applied ...
Eg, need to have particular orientation
to meet other roads, rivers at right
angles ...
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Parameterization 4.3� Convenient to use �� as a global
parameter along the entire curve, and �
as a local parameter running from 0 to 1
between points.
That is, within spline & , the local
parameter is �'� ��)( ��$���$�����*( ��$�
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� Polynomials provide usable functions for the splines...
But what degree to use ?

Linear? — a “Roman Road” spline, so not smooth!
Quadratic? — let’s see ...

Quadratic splines? 4.4

Think just with the ���+���� part of �,� �-
.����/�0�1���+����1� �
Using the global parameterization�32 � 465879��$2.5;:<��/=2�>� � 465879����!5;:<�� = ��  2 � 7�58?@:<�� 2

Using the local parameterization�32 � 4�>� � 465A7B5A:�  2 � 7
This suggests:� Choose gradient �C 2 at D 2 .� Use gradient and � 2 , � � to fit quadratic.� This fixes gradient �  � at D � .� Use gradient �  � and �>� , � = to fit next� ... and so on ...� ... Then repeat for 
 part ...
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Gradients
equal

p p p� So for a continuous, smooth quadratic spline simply choose of gradient at the
first (or any one) point, and the entire curve is fixed.� Too sensitive to choice of gradient. Likely to oscillate.
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Cubic splines 4.5

Now consider just the local parameterization of the & th cubic spline sequence.
Again, we just look at � — similar equations are written for 
 — but you should
realize that the 4 � , 7 � , etc are different.� � ����� � 4 � 5A7 � �E5;: � � = 5GF � �$HI � � �KJL� � 4 ��@���1MN� � 4O�95A7P�95A:Q�95GFO��  � �KJL� � RS���T7P��  � �1MN� � RS�����B�U7P�95V?@:Q�W58XYFO�
Re-arranging, and writing �3�Z�[M\�	���@����� ,4O��� �@�7P��� R]�:Q��� X/�%�@�����^(_�@�%�.(8?ORS�/(ARS�����F � � (`?$�%� ����� (a� � �!5VR � 5VR �����
We make the derivative equal at the junction of two splines. The is called Hermite
interpolation. So, for a b segment spline, there are b 5cM degrees of freedom.

How are the derivatives specified? 4.6

1. By external constraints (eg, the perpendicular road)

2. Automatically:� For example, fit parabola to � �ed$� , � � , � ����� ,
and use value of gradient at � � as the gradient R � .� Also need to choose end point gradients: eg, set R 2 �cJ and RSfG�TJ .

3. But, we could ask the 2nd derivatives to match as well.
This is a natural cubic spline.
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Natural cubic splines 4.7

Try a counting argument to show that we have sufficient d.o.f.
Again we think only about the � cubic: the 
 cubic is similiar.� Each of the b segments between D 2 and D f requires 4 parameters to specify the
cubic in � . I g b UNKNOWNS.

At each of b (UM internal points on spline�@�ed$�0�[M\�B�h�i� �i�Z�jJC�B�h�i� �  �ed$� �[M\�B�h�  � �jJC� �  # �ed$� �[M\�k�U�  l � �jJC�I g � b (hM\� CONSTRAINTS

At the end points �@2m�jJC�	�h�@2 � f �[M\�B�h� f ��� I ? CONSTRAINTS

Now, g b (8?on g b so we can do it!

The extra two degrees of freedom are setting the second derivatives at the end
points: �  l 2 �jJC�B�TJ �  l f �1MN�	�TJ I ? CONSTRAINTS

Computing Natural Cubic Splines 4.8

Don’t solve for the cubic splines by inverting a g b p g b matrix. Instead ...
Basic equations� � ����� � 4 � 5G7 � �E5A: � � = 5AF � �$H�  � ����� � 7 � 58?@: � �E58XYF � �/=�  # � ����� � ?i:Q�]58qYFO�r�
Put in �s� J and �,� M into the first two
on the left.

Leads to4 � � � �7 � � R �:Q�h� X/�%�@������(t�i�-��(A?ORS�/(8RS�����FO�h� (`?$�%�i������(t�@�%��58RS�<5uRS�����
Now equate the 2nd derivs (�v� M for the � & (UM\� th section, �w�cJ for the & th ...?@:Q�ed$�"5GqYFO�ed$� � ?i:Q�I ?$xyX/�%�@�<(t�i�ed$�z�.(G?OR]�{d$�^(8RS�{|�5 q}x�(`?<�-�i�<(t�@�ed$�z�!58R]�ed$�"58R]�~|� ?<xrX/�%�i�����!(t�i�-��(A?ORS�/(8R]������|I R]�ed$��5 g R]�W5uRS����� � X}�-�i������(t�i�ed$�z�
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Computing Natural Cubic Splines, ctd 4.9

To repeat R �ed$� 5 g R � 5uR ����� �TX/�%� ����� (a� �ed$� �
At the first point, �C # 2 �KJL�	�TJ . So : 2 �TJ and X/�%� � (a� 2 �.(8?OR 2 (AR � �cJ , so?OR 2 5uR � �UX/�%� � (t� 2 �
Similarly for the end section �  l f �[M\�	�TJ , so ?@: f 5GqYF f �TJ from whichR f d$�!5u?OR f �UX/�%� f (a� f d$�[�
Gather all this together��������������

? MM g MM g M
... M g MM ?

���������������

��������������
R]2R��R =
...R]f d$�RSf

���������������
�
��������������

X/�%�>�*(t�@20�X/�%� = (t�@20�X/�%� H (t�C�1�
...X}�-�if,(t�@f d = �X}�-�if,(t�@f d$� �

���������������
Computing Natural Cubic Splines, ctd 4.10

Use row ops to simplify further to��������������
M �C2M �$�M � =

... M �Lf d$�M

� �������������

��������������
R]2R��R =
...R]f d$�RSf

� �������������
�
��������������
� 2� �� =
...� f

� �������������
Then back substitute to find R f , R f d$� and so in reverse order.

Having got the R ’s substitute in to4 � � � �7 � � R �:Q��� X/�%�@�����^(_�@�%�.(8?ORS�/(ARS�����FO��� (`?$�%�i�����*(a�i�-�!5VRS�95VRS�����
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Approximating curves as opposed to interpolating 4.11

� In 2D 
��%�"���1�"�%��� each a polynomial in � .

� Local control of curve.� Important examples are Bézier curves and B-splines.� Used in graphics, CAD, drawing packages ...

Bézier curves 4.12

Bezier curves were one of the earliest spline curves. The curves were originally
devised using the de Casteljau construction.
First consider a Bezier curve of degree 1,
between D 2 and D ��,� �[M�(t����� 2 5;�/� �
Now consider three control points, D 21�#��� =
and set � 2 � �[M�(t�����!2�5;�/�.�� � � �[M�(t�����.�"5;�/� =� � �[M�(t��� � 2 5t� � �
Then � follows a quadratic Bezier curve�s� �[M�(a��� = �!2.5u?i�k�[M�(_�"���.��5G� = � =
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Carrying on ... 4.13

Now consider four control points, D 2��l��� = � H and set

� 2 � �1M�(_�"��� 2 5t�}� �� � � �1M�(_�"���.�!5t�}� =� = � �1M�(_�"��� = 5t�}� H� 2 � �1M�(_�"� � 2�5G� � �� � � �1M�(_�"� � �"5G� � =� � �1M�(_�"� � 2 5G� � �

x 2

x0

x1

x 3

u = 1
u = 0

u

Then � follows a cubic Bezier curve���%�"�B� �-
.�%���������%�"�1�z��� �[M�(o�"��H�� 2 5�X3�.�[M�(���� = � � 5�X3� = �1M/(������ = 5)�/Hz� HT�%�Y� J������ M

Bézier curves of degree 3 4.14

���%���	� �[M�(a��� H � 2 58X@�k�[M�(a���Z=Z� � 5AX3��=N�[M�(t����� = 5;� H � H �%�Y� J������ M
Properties�����jJC�B���!2 and ���[M\�	��� H , so that a
Bézier curve interpolates its end control
points.�E���i� 2����  �cX/�¡�.�^(¢��2�� . Geometric
significance?� The curve lies inside the convex hull
of its control points.� The control points need not be planar.� Is it always smooth� It can have inflections.� It can self-cross.
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Blending functions — actually Bernstein basis functions 4.15

���%�"�B� �[M�(a��� H � 2 58X3�.�[M�(a���Z=Z� � 58X@��=N�[M�(t����� = 5;� H � H� One can think of the coefficients of the control points as blending functions� These are symmetric under �¤£ �1M¥(t�"� .
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Bézier curves of degree ¦ 4.16

The de Casteljau construction can be expressed as���%���	� §¨©+ª 2<« © �-����� © ¬®­<¯ � ¯ « © �%���	� °±�² ³ ´µ¶�[M�(a��� § d © � © ·Y¸$¹ J������ M
e.g. for ² �TX (cubic Bézier):

« 2 �-��� � �1M�(_�"� H« � �-��� � X/�[M�(t�"� = �« = �-��� � X/�[M�(t�"����=« H �-��� � � H
Note that (what is the geom significance?)§¨©+ª 2 « © �-���	� �¡�o5º�[M�(t���1� § � M ·Y¸$¹ « © �-���¥»hJ �%�Y� J������ M
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Matrix form 4.17

Another representation is

���%�"�B� � « 2 �%��� « � �%�"� « = �%�"� « H �-���1� °¼¼¼¼¼¼±
�!2�.�� =� H

´%½½½½½½µ « 2 �%���	� �[M�(t����H¥� ¾�M���� = �/H[¿ °¼¼¼¼¼¼±
M(ÀX5`X(EM
´%½½½½½½µ

Collecting these together:

�¥�%��� � ¾ M���� = �/H ¿
��������

M J J J(ÁX X J JX (Áq X J(ÂM X (ÀX M
� �������
°¼¼¼¼¼¼±
� 2� �� =� H

´%½½½½½½µ� ÃTÄWÅYÆ%Ç-ÈlÆ-É�Ê
Ä ÅYÆ%Ç-ÈlÆ-É is the Bezier basis matrix for order 3.

Example 4.18

Where is ���jJ<Ë
ÌO� ?
�¥� M? � � Í3M M? Mg MÎ/Ï

��������
M J J J(ÀX X J JX (Àq X J(EM X (ÀX M

���������
°¼¼¼¼¼¼±
�!2�.�� =� H

´ ½½½½½½µ
� MÎ �zM¥XÀXEMN� °¼¼¼¼¼¼±

��2�k�� =� H
´ ½½½½½½µ � MÎ �!2.5 XÎ �.�"5 XÎ � = 5 MÎ � H

So, it is a “centre-weighted centroid”.
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Parametric surface (Tensor Product) 4.19

We would like to represent a surface using control points and blending functions,
in the same manner as a curve���%���	� �-
��-���������%�"���PÐ/�%�"�1�z��� ¨ © « © �%����� ©
For a surface, we need two parameters:���%�*��Ñ<�	� �-
��%�^�1Ñ$���1�"�%�*��Ñ<���QÐ/�%�*�1Ñ<�1�Z��� ¨f ©�Ò f � © �%�*��Ñ<��� f � ©
with � f � © a grid of 3D points.

Natural choice Ò f � © �%�^�1Ñ$�k� « fÁ�%��� « © �%Ñ<�
This is simply a “product” of Bézier curves���-�*��Ñ<�k� ¨ f « f®�%�"� Í ¨ © « © �%Ñ<���"f � © Ï
The 16 control points for a Bézier bicubic patch 4.20

���%�^�1Ñ$�k� ¨f © « f®�-��� « © �%Ñ$���"f � ©
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Properties�����jJ<�PJC�B����21� 2+�^���KJ9�mM\�k���!2�� H ËNË+Ë so that corners are pinned.� Convex hull property§¨f ª 2 §¨©+ª 2 Ò f � © �-�*��Ñ<�k� °± §¨f ª 2<« f®�-��� ´µ °± §¨©+ª 2<« © �-Ñ<� ´µ,� M
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Another way of picturing the process 4.21

You might prefer to look at the expression ���%�^�1Ñ<��� Ó f « f �%�"�!�%Ó © « © �%Ñ$��� f � © � in a
rather different way.
For b �TJ<�mM@�0?W�PXÂ� Ó © « © �%Ñ<���"f � © � forJ���Ñv� M defines four separate Bezier
curves, each parallel to the Ñ axis.
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u

Choose a value of Ñ and you have four
points on these curves.

Then construct a Bezier curve out of
these for J���Ñ�� M — ieÓÔf « f �-���!� Ó © « © �%Ñ<��� f � © � .
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Then pick a point on this curve by
choosing � .

Matrix form 4.22

Another representation is using matrices. Recall ���-���	��ÃSÄÕÊ .�¥�%�*��Ñ<�k�VÃÂÄÕÖ6Ä �E×$� g`Ø �W�YÙ}Ú
where

Ö��
��������
��21� 2 ��21�#�T�!2�� = �!2�� H�k��� 2 �k���#�T�.��� = �.��� H� = � 2 � = �#�T� = � = � = � H� H � 2 � H �#� � H � = � H � H

� ������� × � ¾ M�Ñ`Ñ>=�Ñ H[¿
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Graphics application of Bézier tensor product surface 4.23

More teapots ... 4.24
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Other properties of Bezier curves 4.25

Switching to higher degree A Bezier curve of degree ² is also a Bezier curve of
degree ²  � ² 5UM .
This means that the ² 5cM control points can be replaced by ² 5V? control points
in different positions and the curve shape remains unchanged, and hence one can
increase the degree arbitrarily.
Here are the expressions for moving the
control points to increase the degree by
1. �  2 � �!2�  � � &² 5TM �!�{d$�"5 Í3M�( &² 5TM Ï �"�& � M3�+ËNË+Ë0� ²�  § ��� � � § Degree 4

Degree 7

Piecewise Bezier curves 4.26

Suppose we require many control points ...� Piecewise Bézier curves� Need an extra point inserted midway. This will be a point of inflexion.

14



B-Splines 4.27

� Like draftsperson’s spline, but approximating.� A B-spline consists of several curve segments, each represented by a polyno-
mial.� Controlled smoothness: e.g. cubic B-splines are Û = , or can be made to be less: Û �
or Û 2 .
Key advantage:� Local control: moving a control point only affects part of the curve.� This isn’t the case with a Bezier curve of high degree. But often it is said not to
be the case with, say, cubic Bezier curves. But introducing the “extra” points does
provide decoupling ...

Example - a cubic B-spline 4.28

� b 5cM control points, � 2 �[� � �NË{Ë~Ë{�[� f , with b »hX .� b (8? cubic polynomial curve segments Ü H � ÜYÝ �+Ë{Ë{Ë~� Ü f .� Each curve segment is defined as

�"�Z�%�"�B� ¾ MÞ��� = � H ¿ Ö °¼¼¼¼¼¼±
� �ed H� �ed =�"�ed$��!�

´ ½½½½½½µ ¬®ß�àP­ Ö)� Mq
��������

M g M J(ÁX J X JX (Áq X J(ÂM X (ÁX M
���������

� If the spline is closed then Ö is the same for all curve segments and � 2 �h� f .� If the spline is open then the matrices Ö can be modified at the curve ends so
that the curve segments interpolate the end control points.
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B-splines, ctd 4.29
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—– influenced by � 2 �1� � �1� = �1� H
—– influenced by � = �1� H �1� Ý �1��á
Convex hull property

Spline demo: http://www.geocities.com/msheinrichs/curve.html

Tracking application of B-splines 4.30

� Used in computer vision as “Active Contours”. Here the local control is a bonus.

� See Blake and Isard “Active Contours” Springer 1999.
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