4: Parametric curves and surfaces

e Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

e Lecture 2: Vanishing points. Horizons. Applications of projective transforma-
tions.

e Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

e Lecture 4: Interpolating and Approximating Splines: Cubic splines, Bezier
curves, B-splines



Introduction 4.1

e In the last lecture we saw that curves can be represented conveniently in para-
metric form. Eg in 2D

x(p) = ( z(p), y(p) )
and we saw some “regular” curves like ellipses, and so on.

e In this lecture we introduce how to build “irregular” shaped curves in a piece-
wise fashion out of splines.

e Splines are widely used in graphics and CAD — indeed one of the pioneers
of their computational use, Pierre Bézier, developed his ideas while working for
Renault in the 1970’s.

Example of an interpolating spline 42

An idea of what were are about can be gained by considering the following prob-
lem

How should one specify the path of a road through a number of villages ...

Roads made up of separate functions x;.
Continuous  x;(p;) = Xi+1(Di)
Smooth X;(Pi) = X;41(Di)
Cont2nd d? xJ(p;) = x/1(Pi)
These are interpolating splines, because they actually go through the points.

Later we will see approximating splines, where the points are control points,
which define the shape of the curve, but do not necessary lie on the curve.

Other constraints might be applied ... \
Eg, need to have particular orientation

to meet other roads, rivers at right

angles ...



Parameterization 4.3

e Convenient to use p as a global
parameter along the entire curve, and p
as a local parameter running from 0 to 1
between points.

That is, within spline 7, the local
parameter is

_ P—Di
Pi+1 — Di
¢ Polynomials provide usable functions for the splines...
But what degree to use ?

Linear? — a “Roman Road” spline, so not smooth!
Quadratic? — let’s see ...

Quadratic splines? 4.4

Think just with the y(p) part of x = (z(p), y(p))

Using the global parameterization Using the local parameterization
Yo = a+bpo+ch v = a
Y1 = a+bﬁ1+6ﬁ% 1. = a+b+c
Yo = b+ 2cpo yo = b

This suggests: A 1st choice

¢ Choose gradient y; at Fp. Yo r
e Use gradient and y, y: to fit quadratic.
e This fixes gradient y; at P;.
e Use gradient y; and y, y» to fit next y
e ...andsoon... 1
e ... Then repeat for z part ... - | >

P 0 P 1 P 2
e So for a continuous, smooth quadratic spline simply choose of gradient at the
tirst (or any one) point, and the entire curve is fixed.

nd choice

. Gradjents
7 equa|

e Too sensitive to choice of gradient. Likely to oscillate.



Cubic splines 4.5

Now consider just the local parameterization of the ¢th cubic spline sequence.
Again, we just look at y — similar equations are written for £ — but you should
realize that the a;, b;, etc are different.

vi(p) = a;+bp+cp® + dip®
= yl(O) = q

yl(l) = az-—i—bi-l—cz-—i—di

yi(0) = Di=b

yi(1) = Dip1 = b+ 2¢; + 3d;

Re-arranging, and writing y;(1) = y,41,

a; = Y
b = D;
¢ci = 3Wir1 — i) —2D; — D
di = —2(Yi+1 —¥i) + Di+ Diy1

We make the derivative equal at the junction of two splines. The is called Hermite
interpolation. So, for a m segment spline, there are m + 1 degrees of freedom.

How are the derivatives specified? 46

1. By external constraints (eg, the perpendicular road)
2. Automatically:

e For example, fit parabola to y;_1, ¥i, yi+1,
and use value of gradient at y; as the gradient D;.
e Also need to choose end point gradients: eg, set Dy = 0 and D,, = 0.

3. But, we could ask the 2nd derivatives to match as well.
This is a natural cubic spline.



Natural cubic splines 4.7

Try a counting argument to show that we have sufficient d.o.f.
Again we think only about the y cubic: the z cubic is similiar.

¢ Each of the m segments between F, and F,, requires 4 parameters to specify the

cubic in y. = 4m UNKNOWNS.
At each of m — 1 internal points on spline
yi-1(1) = yi yi(0) = yi yi-1(1) = y;(0) yi1(1) = 57 (0)

= 4(m — 1) CONSTRAINTS

At the end points

00) =y  Yn(l) = Ym+1
— 2 CONSTRAINTS

Now, 4m — 2 < 4m so we can do it!

The extra two degrees of freedom are setting the second derivatives at the end
points:

= 2 CONSTRAINTS

Computing Natural Cubic Splines 438

Don't solve for the cubic splines by inverting a 4m x 4m matrix. Instead ...

Basic equations

Leads to
Yi (p) = a; + bzp + Cip2 + dip?’
a;, = .
| ¢ = 3(Yiv1 — i) —2D; — Dy
Put in p = 0 and p = 1 into the first two di = —2(yis1 — i) + Di + Diss
on the left.

Now equate the 2nd derivs (p = 1 for the (¢ — 1)th section, p = 0 for the ith ...

2¢ci_1 4 6d;_,

= 2[3(yi —yi-1) — 2D — D] +
= 2
= Dj1+4D;+ Djy1 =

2Ci

6[—2(y; — yi-1) + Di—1 + D
[3(yz+1 ) 2D Dz—H]
(yH—l )

w



Computing Natural Cubic Splines, ctd 49

To repeat
Di—1+4D; + Djt1 = 3(Yi+1 — yi-1)
At the first point, y;(0) = 0. So ¢ = 0 and 3(y1 — yo) — 2Dy — D1 = 0, s0
2Dy + D1 = 3(y1 — o)
Similarly for the end section y,,, (1) = 0, so 2¢, + 6d,, = 0 from which
Dm—l + 2Dm = 3(ym - ym—l)
Gather all this together

(21 [ Do | [ 3(y1—w)
1 41 D1 3(y2 - y())
141 Dy | _ | 3(ys—w)
141 Dm—l 3(?;/m - ym—Q)
1 2 | Dm | 3(ym - ym—l) ]
Computing Natural Cubic Splines, ctd 4.10

Use row ops to simplify further to

1 v 1T Dy | [ Tp]
1 Y1 Dl Fl

1 Y2 D2 F2

1 Ym—1 Dm—l
1 || Dpn | T |

Then back substitute to find D,,,, D,,—1 and so in reverse order.

Having got the D’s substitute in to

a; = Y
b = D,
¢ = 3(Yi+1 — i) —2D; — Djyq
di = —2(Yit1—vi) + Di+ Dipa



Approximating curves as opposed to interpolating 411

e In 2D z(u), y(u) each a polynomial in .
°

e Local control of curve.
e Important examples are Bézier curves and B-splines.

¢ Used in graphics, CAD, drawing packages ...

Bézier curves 4.12

Bezier curves were one of the earliest spline curves. The curves were originally
devised using the de Casteljau construction.

First consider a Bezier curve of degree 1,
between P, and P;

x = (1 —w)xo + ux;

Now consider three control points, Py 2
and set

a = (1—u)xo+ux;
a = (1—u)xy+ uxy
x = (1—wu)ag+uay

Then x follows a quadratic Bezier curve X 0

x = (1 —u)*xg + 2u(l — u)x; + u’xy



Carrying on ... 413

Now consider four control points, F; 2 3 and set

ag = (1—u)xo+uxy
a; = (1—u)x;+uxy
a, = (1—u)xXg+ uxs
by = (1 —wu)ag+ uay Uu=0 —
b; = (1 —w)a; + uay

X = (]_ — u)bo + Ub1
Then x follows a cubic Bezier curve

x(u) = (fﬂ(u)ay(u))T = (1_U)3X0+3U(1—u)2X1+3U2(1—U)X2+U3X3 for 0<u<1

Bézier curves of degree 3 414

x(u) = (1 — u)*x0 + 3u(l — u)?x; + 3u*(1 — u)xs + u’x3 for 0 <u <1

Properties

e x(0) = %9 and x(1) = x3, so thata
Bézier curve interpolates its end control
points.

o d’fi—g]) = 3(x3 — X¢). Geometric
significance?

e The curve lies inside the convex hull
of its control points.

¢ The control points need not be planar.
e Is it always smooth

e It can have inflections.

e It can self-cross.




Blending functions — actually Bernstein basis functions 4.15

x(u) = (1 —u)x0 + 3u(l — u)*x; + 3u?(1 — u)x2 + u’x3

¢ One can think of the coefficients of the control points as blending functions

e These are symmetric under u — (1 — ).

1
(1-u)3 u
3u2(1-u)
3u(1-u)2 l
0
0 1
Bézier curves of degree NV 4.16

The de Casteljau construction can be expressed as

N N
x(u) =Y fa(u)x, where f,(u)= ( i ) (1—u)" ™" and 0<u<1
n=0

e.g. for N = 3 (cubic Bézier):

folu) = (1-u)’
filu) = 3(1—u)u
folu) = 3(1 —u)u®
fa(u) = u?

Note that (what is the geom significance?)

]ZV:fn(’U»)Z(U—i-(l—u))N:l and f,(u) >0 for 0<u<1
n=0



Matrix form 4.17

Another representation is

X0 ].
-3
x(u) = (fo(u) fi(u) fa(u) f3(u)) 2 folw) = (1—u)® = (1uv’u’) 3
X3 —1
Collecting these together:

1 0O 00 X0

-3 3 00 X

x(u) = (1uu2 ug) 3 -6 30 X;

— U MBezier X

MBeser 1S the Bezier basis matrix for order 3.

Example 4.18

Where is x(0.5)?

1 0 00]/(x
X(g) B (1111> 3 3 00]]| x
27 248 3 -6 30 X9
1 3 =3 1|\ x3
X0
1 X 1 3 3 1
— 2(1331 — - d 2 -
5 ( M x, |TgotgXtgaetes
X3

So, it is a “centre-weighted centroid”.

10



Parametric surface (Tensor Product) 4.19

We would like to represent a surface using control points and blending functions,
in the same manner as a curve

x(u) = (w(u),y(u), 2(w) " =3 fu(u)xn
For a surface, we need two parameters:
x(u,v) = (z(u,v),y(u,v), 2(u,v))" = %gmm(u, V)Xmp

with x,, ,, a grid of 3D points.

Natural choice
gm,n(ua U) = fm(u)fn(v)

This is simply a “product” of Bézier curves

x(t,0) = 5 () (3 Fol0) x|

The 16 control points for a Bézier bicubic patch 4.20

Properties
¢ x(0,0) = %00, x(0,1) ==Xg3...so that corners are pinned.

¢ Convex hull property

% % Gmn (U, v) = (mé fm(u)) ( é fn(v)> =1

m=0n=0

11



Another way of picturing the process 421

You might prefer to look at the expression x(u,v) = L fin(w) (Zn fo(v)Xm ) in a
rather different way.

Form =0,1,2,3 (, fo(v)Xmn) for Then construct a Bezier curve out of
0 < wv < 1 defines four separate Bezier these for 0 <v <1—ie
curves, each parallel to the v axis. Yo fm(w) (S frn(V)Xm ).

Choose a value of v and you have four Then pick a point on this curve by
points on these curves. choosing u.

Matrix form 4.22

Another representation is using matrices. Recall x(u) = UMX.
x(u,v) =UMBM' V'  4loops

where
Xp,0 Xp,1 Xp2 X0,3

X1,0 X111 X12 X13
B= ’ ’ ’ ’ V:(lvv2v3)
X200 X21 X292 X23

7 ? 7 ’

X3,0 X31 X32 X33

’ 7

12



Graphics application of Bézier tensor product surface 423

More teapots ... 4.24
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Other properties of Bezier curves 4.25

Switching to higher degree A Bezier curve of degree N is also a Bezier curve of
degree N' = N + 1.

This means that the N + 1 control points can be replaced by N + 2 control points
in different positions and the curve shape remains unchanged, and hence one can
increase the degree arbitrarily.

Here are the expressions for moving the
control points to increase the degree by

1.
/ m
X, = Lx- —|—<1— i )x- 2
i N+ N+1)™"
i=1...,N Degree 4

/
XN+1 = XN

Piecewise Bezier curves 4.26

Suppose we require many control points ...
e Piecewise Bézier curves

e Need an extra point inserted midway. This will be a point of inflexion.
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B-Splines 427

e Like draftsperson’s spline, but approximating.

¢ A B-spline consists of several curve segments, each represented by a polyno-
mial.

e Controlled smoothness: e.g. cubic B-splines are C?, or can be made to be less: C!
or C°.

Key advantage:
¢ Local control: moving a control point only affects part of the curve.

e This isn’t the case with a Bezier curve of high degree. But often it is said not to
be the case with, say, cubic Bezier curves. But introducing the “extra” points does
provide decoupling ...

Example - a cubic B-spline 4.28

e m + 1 control points, xg, X1, ..., Xm, with m > 3.
e m — 2 cubic polynomial curve segments cs, c4, ..., Cp,.

e Each curve segment is defined as

Xi—3 1 4 10

Xj—2 : 11-3 0 30

X;(u) = (1 u u? u3) B Xy with B = 6l 3 26 30
X; —1 3 =31

o If the spline is closed then B is the same for all curve segments and xy = xy,.

o If the spline is open then the matrices B can be modified at the curve ends so
that the curve segments interpolate the end control points.

15



B-splines, ctd 4.29

Xy

o e %2 Xg
join \
X .
0 . join
o ® X4
X3

— influenced by xg, X1, X2, X3
— influenced by x3, x3, X4, X5
Convex hull property

° ®

/\_o/\/
[

Spline demo: http:/ /www.geocities.com/msheinrichs/curve html
Tracking application of B-splines 4.30

¢ Used in computer vision as “Active Contours”. Here the local control is a bonus.

e See Blake and Isard “Active Contours” Springer 1999.
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