
3: Convex Hulls and Conics & Quadrics

� Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

� Lecture 2: Vanishing points. Horizons. Applications of projective transforma-
tions.

� Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

� Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.
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Definition of convex hull 3.1

Informal definition (in 2D):

The convex hull of a set of points is the shape taken by a rubber band wrapped
around the points.

Formal definition (in 2D):

The convex hull is the smallest convex polygon that contains the points.

Convex sets of points 3.2

A set
�

is convex if the line joining any two points in
�

is contained in
�

.

CONVEXNOT CONVEX

Given points �������	�
���
������� , the following generates a convex set:��� ����� ��� � � ������� � � �"!$# %�&(' ����� �)� � � *
e.g. +,�.-/� 01� � � � ��2 � � � � � � � � *43 � �
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Applications 3.3

1. Robot path planning

?

2. Shadows

Convex Hull Graphics Example 3.4� Testing against the hull is quicker, for example “falling bodies video” uses the
‘ quick hull algorithm
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Convex hull algorithms 3.5

Problem: Given a set of + points find their convex hull.

We will look at four algorithms and in each case examine their time complexity.� Informally, the time complexity measures how the number of computational
steps scales with the size of the problem.� For example, an algorithm to sort + numbers in order of increasing size might
have time complexity 5768+ �:9 .� Formally, this is a performance measure of the worst-case asymptotic complex-
ity.

CH Algorithm I: Naı̈ve extraction of extreme points 3.6

� Identify non-extreme points by
finding those points inside triangles
formed from the points.� This really is naı̈ve. It is included only
to give an example of a very slow
algorithm!

a
b

c

d

extreme points
(i.e. on hull)

For each ; of + points do ( + )
For each <>=�?; do ( +13$* )

For each @A=��<A=�?; do ( +13B- )
For each C,=�?@D=�E<A=�?; do ( +13GF )

If point C is inside the triangle ;/<:@
then C is non-extreme. (fixed time)� Complexity is ..........................................
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CH Algorithm II: Extreme edges 3.7

� Identify non-extreme edges by finding
those that have points on both sides.� Adopt the convention that “left” of a
directed line is inside.

For each ; do
For each <>=�?; do

For each @A=�E;,=��< do
If point @ is not to the left

of
line ;/< then line ;H< is

non-extreme.� Complexity is 5I6J+�K 9 .
bc

a

extremal edge

non−extremal

Which side of the line LNM is the point O ? 3.8

Treat P , Q , R as three vectors P�� 6J;TSU�V;UWX� # 9 , etc. Use the sign of the Y component
of the vector product 6ZQ[3\P 94] 6JR^3GP 9 .
This is _`ba 6c6dP ] Q 9 2 6dQ ] R 9 2 6JR ] P 9c9� 6J; S < W 3e< S ; W 9 2 6d< S @ W 3\@ S < W 9 2 6J@ S ; W 3\; S @ W 9� fffffffff ;gS < S @�S;gW < W @�W* * *

fffffffff a

c b
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CH Algorithm III: “Gift wrapping” 3.9� To start, pick the “lowest- h ” point. Set
a horizontal through it, then fan round,
finding the point with the smallest az-
imuthal angle.� Set this as the first hull edge, and use it
as an anchor to find the next one.� Note that the output is an ordered hull
boundary. START θ
For each successive points ; found on convex hull

For each point <A=�$; do
Find the point <ji with smallest angle k from the previous edge.
Assign <ji to the convex hull� Complexity is .....................................

CH Algorithm IV: Graham’s (1972) 3.10� Sort points counter clockwise about an interior point,
and grow a convex polygon.

1. Select an interior point (does not have to be!)
2. Perform an angular sort around the interior point l .
3. Perform a scan to incrementally grow the boundary,
removing non-extreme points as they are detected.� Complexity is 5I6J+nm8oXpT+ 9 .
(The sort is 5I68+nmJoXpT+ 9 and the scan complexity is at
most an addition of 576q-r+ 9 ).
It can be shown that +nmJoXpT+ is a lower bound on the
complexity of computing a convex hull.

choice

c

f

a

b
d

e

point
starting first

i

0

θ

final 
choice
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Representation of plane curves 3.11

A curve can be represented in implicit s�6d0	�Vh 9 � # or explicit ht�?h�6J0 9 or 01�?0N68h 9
form.

Example 1: A line in implicit form is;T0 2 <�h 2 @�� # �
Then h as an explicit function of 0 ish7� 3 ;T0< 3 @ < �vuw0 2 @
and 0 as an explicit function of h is01� 3 <�h; 3 @;

Example 2: A circle is represented im-
plicitly as 0 � 2 h � �$; �
To obtain h explicitly as a function of 0
requires rearrangement: hI�.xDy ; � 3\0 �

a

a

hI� 2 y ; � 3G0 � h7� 3 y ; � 3G0 �
Problems, problems ... 3.12

There are obvious disadvantages in using explicit forms h7�zs�6J0 9 for curve draw-
ing in graphics applications:� Curves have to be drawn in several segments,

e.g. h7� 2 y ; � 3G0 � and h7� 3 y ; � 3G0 � .� Curves cannot always be written explicitly as a function of 0 ,
e.g. a circle cannot be written as h7�zs�6J0 9 for 0[{ # .

The implicit form does not have these problems, but� It does not directly provide points on the curve.

An alternative is to parameterize both 0 and h .
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Parametric form 3.13

0 and h are both functions of a single parameter | , say:01�?0�6}| 9 hI�?h~6}| 9
1. A line ��6}| 9 �?P 2 |��
2. An ellipse 01�?;��
�g��|	��hI�?<�� �
& | .

b

a
p

� The parametrization is not unique,
e.g. 0��E;��
�g��| � ��hI�?<�� �
& | �
and 0��E;��
�g��-:|	��h7�E<�� �
& -:|
define the same ellipse.

Choice of parameters 3.14

� The parameter | may be time, or by
a suitable choice distance (“arc length”)
travelled along the curve.� The parameter can be eliminated to
obtain the implicit form: e.g. from 0 �;��
�g��|	�VhI�?<�� �
& |

* � �
�g� � | 2 � �
& � |� 6J0���; 9 � 2 68h��)< 9 �� The derivative of the curve wrt the
parameter is the tangent vector to the
curve: e.g. for 0��E;��
�g��|	�VhD��<�� ��& |

�� 0(��6}| 9hU�J6}| 9 �� � �� 3�;�� ��& |<����g��| ��

a

b tangent  vector

p
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Arc length � is special ... 3.15

Arc length � is special because, using Pythagoras’ theorem on a short piece of
planar curve, C���� ��CT�(��� y CT0 � 2 CUh � , whatever the parameter | is.

So if a curve is parameterized in terms of | as 0�6�| 9 and h�6}| 9 :C��CX| � �����   CT0C�|N¡ � 2   CUhC�|�¡ � �
So only if ¢ 0 � 6}| 9 � 2 h � 6�| 9 � � * is the parameter | actually the arc length.

If the parameter really is arc length, then �£C/�)�rC��H�¤� * , i.e. the tangent is a unit
vector.

Exercise (A) 3.16

� Describe the 3D curve with the parametric representation¥ �?;��
�g��| ¦ �E;�� �
& | §?�E<¨|
Is | arc length? How would you write | in terms of � ?
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Exercise (B) 3.17

� Find the implicit form of0��E; -g�* 2 � � hI��< *43B� �* 2 � � ����� � 3?*ª©E�^© *

Conics 3.18

(x/2)   + y  = 1 x  − y  = 12 22 2

hyperbolaellipse

y =  x 2

parabola

All conics can be represented by the implicit form:;T0 � 2 <:0«h 2 @:h � 2 CT0 2­¬ h 2 s1� #
i.e. a polynomial of degree two.� A conic has five degrees of freedom in general.

Exercise What is the implicit form of a circle?
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Conic sections 3.19

Conic computation 3.20

Problem: Determine the conic passing through five points.
Each point places one constraint on the
conic coefficients, since if the conic
passes through 6J0��V�ch/� 9 then:;/0~� � 2 <:0~�®h/� 2 @:hT� � 2 C/0~� 2B¬ hT� 2 s¯� #
This can be written as° 0 � � 0 � h � h �� 0 � h � *^±~RD� #
where R is the 6-vectorRA� 6J;²� <³� @r�VC²� ¬ �js 9µ´

Stacking the constraints from five points¶·········¸ 0 � � 0��®hT�.h �� 0~�zhT� *0 �� 0 � h � h �� 0 � h � *0 �K 0 K h K h �K 0 K h K *0 �¹ 0 ¹ h ¹ h �¹ 0 ¹ h ¹ *0 �º 0 º h º h �º 0 º h º *
»½¼¼¼¼¼¼¼¼¼¾ RD��¿

and the conic is the null-space (kernel) of
this À ]ÂÁ matrix.
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Example 3.21

Compute the circle through the three points6 # �X* 9 �r6Ã*)� # 9 �³6 # �
3A* 9 .
The conic has the special form;�6J0 � 2 h � 9 2 CT0 2B¬ h 2 sw� #

−1

1

1

Stacking the constraints from three points¶···¸ 0 � � 2 h �� 0 � h � *0 �� 2 h �� 0 � h � *0 �K 2 h �K 0 K h K *
» ¼¼¼¾

�ÄÄÄÄÄÄ� ;C ¬s
�8ÅÅÅÅÅÅ� � ¶···¸ * # * ** * # ** # 3A* *

» ¼¼¼¾
�ÄÄÄÄÄÄ� ;C ¬s

�8ÅÅÅÅÅÅ� � �ÄÄÄÄÄÄ� ####
�8ÅÅÅÅÅÅ�

and the circle is the null-space (kernel) of this F ]ÂÆ matrix, which is 6Ã*)� # � # ��3A* 9 ,
i.e. 0 � 2 h � 3v*�� # .

Homogeneous representation 3.22

A conic ;T0 � 2 <:0«h 2 @:h � 2 CT0 2Ç¬ h 2 sw� # can be represented by a symmetric F ] F
matrix È ° 0 h *^± ¶···¸ ; <
��- C��g-<
�g- @ ¬ ��-C��g- ¬ �g- s

»½¼¼¼¾ �ÄÄÄ� 0 h *
�8ÅÅÅ� � #

or more concisely as � ´ Èg��� # where �Ç� 6J0	�Vh²�³* 9 ´ .

Example: The ellipse 0 � � Æ 2 h � � * is represented by the matrix

Èt� ¶···¸ *�� Æ # ## * ## # 3>*
»½¼¼¼¾ ��É ¶···¸ * # ## Æ ## # 3 Æ »½¼¼¼¾� The conic matrix is homogeneous (as is any implicit form), since multiplying by

a constant does not affect the curve.� The homogeneous representation is particularly useful for transforming conics.� If the conic matrix has rank less than three then the conic is degenerate.
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Conic Shadows 3.23

Ex1: Find the shape of the illuminated region cast by a (circular) torch on a plane

Ex2: Find the shape of the illuminated region cast by the table lamp on the wall.

Compute the curve on the plane either by� Intersecting the light cone with a plane, or by� Projectively transforming a circle from one plane to another.

Transforming conics 3.24

Under a plane to plane transformation � � �?Ê/� , a conic transforms asÈ � �?Ê«Ë ´ ÈUÊ�Ë �
where ��� 6J0	�Vh²�³* 9 ´ �c� � � 6J0 � �ch � �³* 9 ´ , Ê is a homogeneous F ] F matrix,
and Ê Ë ´ � 68Ê Ë �µ9 ´
Proof

Start from � ´ Èg��� #
If � � �$ÊT� , then ���$Ê Ë � � � , and substituting for �� ´ ÈU� � �	Ì ´�Í Ê«Ë �ZÎ ´ ÈUÊ�Ë � � �� �	Ì ´ Ê Ë ´ ÈUÊ Ë � � � � #
which is a quadratic form � Ì ´ È � � � � # withÈ � �?Ê�Ë ´ ÈUÊ�Ë �
and, again, is a symmetric matrix which represents a conic.
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Example 3.25

Determine the conic representing the el-
lipse 0 � 2 Æ h � � Æ after a clockwise rota-
tion of Æ ÀrÏ and a translation of 6Ã*)�X* 9 .Ð 6Ñ3 Æ À)Ò 9 � ¶¸ *�� y - *�� y -3A*X�Ty - *��/y - »¾

1

2
1

1

C /C

H

Èt� ¶···¸ * # ## Æ ## # 3 Æ »½¼¼¼¾ Ê7� ¶···¸ Ð 6Ñ3 Æ À 9 **# # *
»½¼¼¼¾ Ê Ë � � ¶···¸ Ð 6 Æ À 9 #3by -# # *

»½¼¼¼¾
È � �$Ê Ë ´ ÈUÊ Ë � � ¶···¸ Ð 6Ñ3 Æ À 9 ### 3 y - *

» ¼¼¼¾ ¶···¸ * # ## Æ ## # 3 Æ
» ¼¼¼¾ ¶···¸ Ð 6 Æ À 9 #3by -# # *

» ¼¼¼¾ � ¶···¸ Àg�g- FU�g- 3 ÆFT�g- À��g- 3 Æ3 Æ 3 Æ Æ
» ¼¼¼¾

This is the conic -H�}À�0 � 2 F�0«h 2 -H�ÓÀrh � 3eÔ)073eÔ)h 2 Æ � # .

Conic drawing problem 3.26

How can we draw the conic-H�ÓÀ�0 � 2 F�0«h 2 -H�}Àrh � 3eÔ�0I3eÔ)h 2 Æ � #
1. Determine the canonical form and the
Euclidean transformation to the canoni-
cal frame
2. Parametrize the canonical form. This
determines points on the conic.
3. Map points back to original frame.

1

2
1

1

CC

H

C

Here È is known, but the canonical form È�Õ and Euclidean transformation Ê are
unknown.

But, if Èt�$Ê Ë ´ È Õ Ê Ë � , then È Õ �$Ê ´ ÈTÊ .

In fact, we are going to take it in two steps.
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1a) The rotation is an eigen problem 3.27� The matrix of the conic we desire to draw is

Èt� ¶···¸ Àg�g- FT��- 3 ÆFT�g- Àg��- 3 Æ3 Æ 3 Æ Æ »½¼¼¼¾ � ¶¸ È�Ö�×¨ØcÙ�Ú�ÛÜÖ(�jÝ�� ���Þ ß »¾
� Diagonalize top-left - ] - . From this È Ö
×¨ØVÙ£Ú8ÛÜÖ��jÝ�� � Ð/àHÐ Þ¶¸ Àg�g- FT�g-FT�g- Àg�g- »¾ � *y - ¶¸ * *3A* * »¾ ¶¸ * ## Æ »¾ *y - ¶¸ * 3A** * »¾
where

Ð
transforms points on an ellipse A aligned with the canonical one to the

desired one. That is �Â�$ÊHá�×®Ö��nâw� ¶¸ Ð ¿¿«Þ * »¾ �	â .

So that means � Þ Èg���v� Þâ Ê Þá�×®Ö ÈTÊ á�×®Ö � â �$� Þâ È â � â � #
Also note that È â can be written as È â � ¶¸ à PP Þ �

»¾ � ¶¸ à Ð Þ ���Þ Ð ß »¾
1b Translate to complete the diagonalization. 3.28

Now we want to find the translation ã such that � â �$Ê Ö
áåä®æVç �"èé� ¶¸\ê ã¿ Þ * »¾ �	è
But �	Þâ È â � â � �	Þè Ê�ÞÖ
áåä®æVç È â Ê Ö�á�ä¨æVç �	è � �	Þè ÈTè²�	è SoÈ è � Ê ´Ö�á�ä¨æVç ÈTë«ÊUÖ�á�ä¨æVç� ¶¸ ê ¿ã ´ * »¾ ¶¸ à PP ´ � »¾ ¶¸ ê ã¿ ´ * »¾ � ¶¸ à à ã 2 Pã ´ à 2 P ´ ã ´ à ã 2 -�P��Üã 2 C »¾ � ¶¸ à ¿¿ ´ @ »¾
The key thing to emerge is thatãì� 3 à Ë � P � 3 à Ë � Ð Þ �
Hence in our exampleãì� 3 ¶¸ * ## *X� Æ »¾ *y - ¶¸ * 3>** * »¾ �� 3 Æ3 Æ �� � �� #y - ��
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Now work out the canonical ellipse matrix ... 3.29

È/Õ � Ê ´Ö
áåä®æVç È ë Ê Ö
áåä®æVç� Ê ´Ö
áåä®æVç Ê Þá�×®Ö ÈUÊ/á
×¨Ö8ÊUÖ�á�ä¨æVç� ¶···¸ * # ## * ## y - *
»½¼¼¼¾ ¶···¸ * # ## Æ 3 Æ y -# 3 Æ y - Æ

»½¼¼¼¾ ¶···¸ * # ## * y -# # *
»½¼¼¼¾

� ¶···¸ * # ## Æ ## # 3 Æ »½¼¼¼¾
So now “draw” the canonical conic 0 � Õ 2 Æ h �Õ � Æ using the parametrization0 Õ 6�í 9 �z-��
�g��í h Õ 6�í 9 �E� ��& í # ©îíðï?-�ñ
... and transform each point into the desired frame 3.30

Then the composite transformation is by a homogeneous matrix

��6�í 9 � ÊTá�×®Ö8ÊTÖ
áåä®æVç �ÄÄÄ� 0²èh è*
�8ÅÅÅ�

� Ê á�×®Ö Ê Ö
áåä®æVç �ÄÄÄ� -��
�g��í� �
& í*
�8ÅÅÅ�

� ¶···¸ *�� y - *X� y - #3A*X�Ty - *X�/y - ## # *
»½¼¼¼¾ ¶···¸ * # ## * y -# # *

»½¼¼¼¾ �ÄÄÄ� -��
�g��í� ��& í*
�8ÅÅÅ�
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Plane curve intersections 3.31

A common problem in graphics is that of finding the intersection(s) of two plane
curves.

Bézout’s Theorem says that There are at most u�+ intersections between two plane
curves of algebraic degree u and + .

Examples

1. Line ;/0 2 <�h 2 @ (degree 1)
ellipse 0 � � Æ 2 h � � * (degree 2).
There are at most * ] -^�z- intersections.

Two real Real coincident Two complex

Between two ellipses there are - ] -^� Æ
intersections.

4 complex4 real 2 real, 2 complex

Computing intersections 3.32

� Usually it is best to use one implicit form and one parametrized.

Example:
Compute the intersections between the
circle 0 � 2 h � 3$*�� # and the line0 2 h>3?*�� # .
1. Parametrize the line: 01�ví:�Vh7� *43òí .
2. Substitute into the circle implicit
equation:0 � 2 h � 3?* � í � 2 6Ã*43òí 9 � 3?*� í � 2 *43­-³í 2 í � 3?*� -³í � 3­-³í� -³í�6�í�3?* 9 � #
3.The solutions are íó� # or íó� * .
4. With íô� # , the point is 6 # �X* 9 ; withíô� * , the point is 6Ã*)� # 9 .

1,0

0,1

0,0
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Quadrics 3.33

� A quadric is a quadratic surface in 3D.� It is represented by a symmetric Æõ]éÆ matrix ö as÷ ´ ö ÷ � #
with

÷ � 6 ¥ � ¦��:§ø�X* 9 ´ .

Examples of Quadrics 3.34

Sphere centred at origin Cylinder along § axis Hyperboloid of Revolution¥ � 2 ¦ � 2 § � � * ¥ � 2 ¦ � � * ¥ � 2 ¦ � �z§ � 2 *

ö>� ¶······¸ * # # ## * # ## # * ## # # 3A*
» ¼¼¼¼¼¼¾ ö>� ¶······¸ * # # ## * # ## # # ## # # 3>*

» ¼¼¼¼¼¼¾ öù� ¶······¸ * # # ## * # ## # 3A* ## # # 3A*
» ¼¼¼¼¼¼¾

Quadrics, more 3.35

� Similar ideas (parametrizations, homogeneous transformations, classifications
etc) apply to quadrics� Just with one dimension more than conics.� There are more canonical cases due to the extra dimension.
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