3: Convex Hulls and Conics & Quadrics

e Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

¢ Lecture 2: Vanishing points. Horizons. Applications of projective transforma-
tions.

e Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

e Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.



Definition of convex hull 3.1

Informal definition (in 2D):

The convex hull of a set of points is the shape taken by a rubber band wrapped
around the points.

[ )
Formal definition (in 2D):

The convex hull is the smallest convex polygon that contains the points.

Convex sets of points 3.2

A set S is convex if the line joining any two points in S is contained in S.

L4 4

NOT CONVEX CONVEX

Given points x1, X2, ... X,, the following generates a convex set:

n
a;x; with o; >0 and Y a; =1
=1 1=1
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e.g.n= 2, *T=a1X1+asXe, as =1— g

X
3 X,
'/(2
‘ ®x
X4 2
X1
n=2 n=3




Applications 3.3

2. Shadows

1. Robot path  planning

/0N T

Convex Hull Graphics Example 3.4

e Testing against the hull is quicker, for example “falling bodies video” uses the
* quick hull algorithm




Convex hull algorithms 3.5

Problem: Given a set of n points find their convex hull.
We will look at four algorithms and in each case examine their time complexity.

¢ Informally, the time complexity measures how the number of computational
steps scales with the size of the problem.

¢ For example, an algorithm to sort n numbers in order of increasing size might
have time complexity O(n?).

¢ Formally, this is a performance measure of the worst-case asymptotic complex-
ity.

CH Algorithm I: Naive extraction of extreme points 3.6

e Identify non-extreme points by o extreme points
finding those points inside triangles ° b (i.e.on hull)

formed from the points. o A . o
e This really is naive. It is included only
to give an example of a very slow o

algorithm! c

[
For each a of n points do (n)
For each b # a do (n—1)
For each ¢ # b # a do (n—2)
Foreachd # c # b +# a do (n—3)

If point d is inside the triangle abc
then d is non-extreme. (fixed time)

o Complexity is .....ccccovviviviiiiiiiiiiicne,



CH Algorithm II: Extreme edges 3.7

e Identify non-extreme edges by finding

those that have points on both sides. non-extremal
L

e Adopt the convention that “left” of a °

directed line is inside. PY

For each a do a PY

For each b # a do * o0
For each ¢ # a # b do
If point c is not to the left C. b
of
line ab then line ab is .L\..

non-extreme.
extremal edge
e Complexity is O(n?).

Which side of the line ab is the point c? 3.8

Treat a, b, c as three vectors a = (a,, a,,0), etc. Use the sign of the z component
of the vector product (b — a) x (c — a).

This is C b
z-((axb)+ (bxc)+(cxa))
= (azby — byay) + (bscy — caby) + (coay — azcy)

= lay by ¢

111
a



CH Algorithm III: “Gift wrapping” 3.9

e To start, pick the “lowest-y” point. Set o
a horizontal through it, then fan round, 7
finding the point with the smallest az- /_\//
imuthal angle. 7

e Set this as the first hull edge, and use it

as an anchor to find the next one.
¢ Note that the output is an ordered hull e\
boundary. START

For each successive points a found on convex hull
For each point b # a do
Find the point b* with smallest angle 6 from the previous edge.
Assign b* to the convex hull

o Complexity is .....cccoviviiiiininiiiinnnn,

CH Algorithm IV: Graham’s (1972) 3.10

e Sort points counter clockwise about an interior point,
and grow a convex polygon.

1. Select an interior point (does not have to be!)
2. Perform an angular sort around the interior point <.
3. Perform a scan to incrementally grow the boundary,

. ) . . ~—_ first
removing non-extreme points as they are detected. _ cholce

e Complexity is O(nlogn).
(The sort is O(nlogn) and the scan complexity is at
most an addition of O(2n)).

It can be shown that nlogn is a lower bound on the i \;%?Le
complexity of computing a convex hull.



Representation of plane curves 3.11

A curve can be represented in implicit f(z,y) = 0 or explicity = y(z) or z = z(y)
form.

Example 2: A circle is represented im-

Example 1: A line in implicit formis  plicitly as
2, .2 _ 2
Ty =a
ar + by +c=0. Y
To obtain y explicitly as a function of z

Then y as an explicit function of z is requires rearrangement: y = ++v/a2 — z2

ax C

_ B a
y——T—B—mx—i—c /\
and z as an explicit function of y is \J a
by ¢
r=————
a a
y=+va:—22 y=—Va®— 22
Problems, problems ... 3.12

There are obvious disadvantages in using explicit forms y = f(z) for curve draw-
ing in graphics applications:

e Curves have to be drawn in several segments,

e.g y=+va:—z?andy = —va? — 22

e Curves cannot always be written explicitly as a function of z,
e.g. a circle cannot be written as y = f(z) for z > 0.

The implicit form does not have these problems, but

e It does not directly provide points on the curve.

An alternative is to parameterize both z and y.



Parametric form

3.13

z and y are both functions of a single parameter p, say:

z = z(p)
1. Aline x(p) = a+ pd

2. Anellipse z = acosp, y = bsinp.
b

P

—
S

y = y(p)

e The parametrization is not unique,
e.g. T = acosp?, y = bsinp?
and z = acos2p, y = bsin2p
define the same ellipse.

Choice of parameters

3.14

e The parameter p may be time, or by
a suitable choice distance (“arc length”)
travelled along the curve.

e The parameter can be eliminated to
obtain the implicit form: e.g. from z =
acosp,y = bsinp

1 = cos’p+sin?p
= (z/a)*+ (y/b)*

e The derivative of the curve wrt the
parameter is the tangent vector to the
curve: e.g. for z = acosp,y = bsinp

(7))
b tangent vector
/ 2




Arc length s is special ... 3.15

Arc length s is special because, using Pythagoras’ theorem on a short piece of
planar curve, ds = |dr| = v/dz? + dy?, whatever the parameter p is.

So if a curve is parameterized in terms of p as z(p) and y(p):

d 2 rdyr?
SZJ NS
dp

dp
So only if \/z'(p)? + /(p)? = 1 is the parameter p actually the arc length.

d_:v
dp

If the parameter really is arc length, then |dr/ds| = 1, i.e. the tangent is a unit
vector.
Exercise (A) 3.16

¢ Describe the 3D curve with the parametric representation
X =acosp Y =asinp Z =bp

Is p arc length? How would you write p in terms of s?



Exercise (B) 3.17

e Find the implicit form of

2s 1— g2
1+ s2

r=a with —1<s<1

> K

(x/2)%2+y?=1 y= x? X -y?=1
ellipse parabola hyperbola

All conics can be represented by the implicit form:
az® +bry +cy’ +de+ey+ f=0
i.e. a polynomial of degree two.

e A conic has five degrees of freedom in general.

Exercise What is the implicit form of a circle?

10



Conic sections 3.19

l
|
i

Circle: Ellipse Parabola Hyberbola

Point Single Line Pair of Line.s

Conic computation 3.20

Problem: Determine the conic passing through five points.
Each point places one constraint on the

conic coefficients, since if the conic Stacking the constraints from five points
passes through (z1,y;) then:

2 2
1 T1Y1 Y1 T1 Y1

ari® + bxy + cy12 +dri+ey1+f=0 :v% TolY y% To Yo
T3 T3Y3 y§ T3 Y3

This can be written as 5 5
Ty Ta¥Y4 Yqg T4 Y4

2
(m% Ty yi 1 Y 1)c:0 Ty T5Y5 Y5 Ts5 Ys

Y
(@)
Il
o

and the conic is the null-space (kernel) of
this 5 x 6 matrix.

where c is the 6-vector

c = (a,b,c,d,e, f)T

11



Example 3.21

10

Compute the circle through the three points

(0,1), (1,0), (0, —1).
The conic has the special form o

a(z®* +y*) +dr +ey+ f=0

10

Stacking the constraints from three points

a a 0
2+ oy 1 4 10 1 1 d 0
2 2
o+ yY; T2 Y2 1 =111 0 1 =10
2 4 g2 1] € 10 -11||¢
T3+ Y3 T3 Y3 f f 0

and the circle is the null-space (kernel) of this 3 x 4 matrix, which is (1,0,0, —1),
ie. z2+9y?—-1=0.

Homogeneous representation 3.22

A conic az? + bzy + cy® + dz + ey + f = 0 can be represented by a symmetric 3 x 3

matrix C
a b/2 d/2| [z
(zy 1)[b/2 ¢ €/2 y | =0
d/2 e/2 f |\1

or more concisely as x' Cx = 0 where x = (z,y,1)".

Example: The ellipse z2/4 + y? = 1 is represented by the matrix

1/4 0 0 0
c=| 0 0 0
0

S = O

1
or 0
-1 0 —4

¢ The conic matrix is homogeneous (as is any implicit form), since multiplying by
a constant does not affect the curve.

e The homogeneous representation is particularly useful for transforming conics.

o If the conic matrix has rank less than three then the conic is degenerate.

12



Conic Shadows 3.23

Ex1: Find the shape of the illuminated region cast by a (circular) torch on a plane

Ex2: Find the shape of the illuminated region cast by the table lamp on the wall.

e Intersecting the light cone with a plane, or by

e Projectively transforming a circle from one plane to another.

Transforming conics 3.24

Under a plane to plane transformation x’ = Hx, a conic transforms as
C'=H "cH'
where x = (z,y,1)",x' = (2/,¥/,1)T, His a homogeneous 3 x 3 matrix,
andH~ " = HHT
Proof
Start from
x'Cx=0
If x' = Hx, then x = H™!x/, and substituting for x
x'cx = x [H Y TcH ¥/
= x 'H'CH X' =0
which is a quadratic form x ' ¢'x’ = 0 with
¢'=H TcH '

and, again, is a symmetric matrix which represents a conic.

13



Example 3.25

Determine the conic representing the el-
lipse 2 + 4y* = 4 after a clockwise rota- H 1(
tion of 45° and a translation of (1,1). /4 N
N 1\J/
C Cc
R(—a5) = | V2 1/v2]
SYN-RYN
10 0 1 0
C=|04 0 H= R(_45)‘ 1 H! = R(45)‘ —V2
00 —4 0 0 |1 0 0| 1
0]f[10 o0 0 5/2 3/2 —4
—4
¢ =HTCH'= R 5)‘ 0|04 0 R(45)‘ V2 |=13/2 5/2 —4
0 —v2[ 1 ]|00 —4|[0 0] 1 -4 -4 4
This is the conic 2.5z + 3zy + 2.5y> — 8z — 8y + 4 = 0.
Conic drawing problem 3.26

How can we draw the conic

2522 +3zy + 2.5y — 8z — 8y +4 =10

1. Determine the canonical form and the
Euclidean transformation to the canoni- H <
cal frame /4 \ - N
T
C

2. Parametrize the canonical form. This \/‘
determines points on the conic. Cc
Map points back to original frame.

Here C is known, but the canonical form C¢ and Euclidean transformation H are
unknown.

But, if C = H~ "CcH™!, then Cc = H' CH.

In fact, we are going to take it in two steps.

14



1a) The rotation is an eigen problem 3.27

e The matrix of the conic we desire to draw is

5/2 3/2 —4
C=3/2 5/2 —4|= [Cmpgf;axz ?]

—4 —4 4

e Diagonalize top-left 2 x 2. From this Ciopleft 2x2 = RAR'

5/23/2] 1 [1 1][10]1[1 -1
3/25/2| V2|-11[|l04|v2|1 1
where R transforms points on an ellipse A aligned with the canonical one to the

R O
desired one. That is x = H,,1X4 = [ o' 1

X4.

So that means x ' Cx = xLHrTotCHmtx 4= X;C x4 =0

. A a A R'd

Also note that C4 can be writtenasC4 = | + = T
o dR ¢
1b Translate to complete the diagonalization. 3.28
Now we want to find the translation t such that x4 = Hi,ansXo = |[ t
1
T T_.T T

But X4Cux4 = XcHipanCaliransXe = XoCoXc So
Co = HipansCaHirans

1o A a I t] A At + a a0
o tT 1 a' al|0" 1| |tTA+a’ tTAt+2at+d]| |07 ¢

The key thing to emerge is that
t=-A"a=-A"R'd

Hence in our example
c__[r o] -1](-a)_(o0
|0 1/4142]1 1 —4 )\ V2

15



Now work out the canonical ellipse matrix ... 3.29

Cc = Ht—l;ansCAHtrans

T T

- HtranerotCHrOthrans
(1 0 |0][1 O 0 1 0|0

=10 1]0||0 4 —4v2|]|0 1|2
0 V2[1][0 —4v2 4 0 0] 1
(10 0 |

= (04 0
| 0 0 —4

So now “draw” the canonical conic =% + 4y = 4 using the parametrization

zc(t) =2cost  yc(t) =sint 0<t<2rm

... and transform each point into the desired frame 3.30

Then the composite transformation is by a homogeneous matrix

zc
X(t) = HrotHtrans Yc
1
2cost
= HrotHtrans sint
1
1/v/2 1/v/2(0][1 0] 0 2 cost
= | =1/v/2 1/V2[0 ]| 0 1|2 sint
0 0 [1][00]1 1

16



Plane curve intersections 3.31

A common problem in graphics is that of finding the intersection(s) of two plane
curves.

Bézout’s Theorem says that There are at most mn intersections between two plane
curves of algebraic degree m and n.

Examples
1. Line az + by + ¢ (degree 1) Between two ellipses there are 2 x 2 = 4
ellipse z2/4 + y* = 1 (degree 2). intersections.

There are at most 1 x 2 = 2 intersections.

D OO\ P D

Two real Real coincident Two complex 4 real 2 real, 2 complex 4 complex

Computing intersections 3.32

e Usually it is best to use one implicit form and one parametrized.

Example:

Compute the intersections between the
circle 22 + y?> — 1 = 0 and the line
r+y—1=0.

1. Parametrize the line: x = t,y =1 —t.
2. Substitute into the circle implicit
equation:

2?4+t —-1 = 2+ (1-1)% -1
= ?+1-2+¢*—1
= 22 — 2t
= 2(t—1)=0

3.The solutions aret =0 or ¢t = 1.
4. With t = 0, the point is (0, 1); with
t = 1, the point is (1, 0).

17



Quadrics 3.33

¢ A quadric is a quadratic surface in 3D.

o [t is represented by a symmetric 4 x 4 matrix Q as
XX =0

with X = (X,Y, Z,1)T.

Examples of Quadrics 3.34

Sphere centred at origin Cylinder along Z axis Hyperboloid of Revolution
X*+Y?*+27%=1 X*4+Yv?*=1 X*+Y?*=27*+1

\\\\\\_\_%

777
7

£ 7

SO O
o O = O
o O O O
o O O

Quadrics, more 3.35

¢ Similar ideas (parametrizations, homogeneous transformations, classifications

etc) apply to quadrics
¢ Just with one dimension more than conics.

e There are more canonical cases due to the extra dimension.

18



