2: Vanishing points and horizons.
Applications of projective transformations.

e Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

e Lecture 2: Vanishing points. Horizons. Applications of projective transfor-
mations.

e Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

e Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.



Recall: Perspective (central) projection — 3D to 2D 2.1
A Y

The camera model Mathematical ideal-

ized camera 3D — 2D X X

¢ Image coordinates zy
e Camera frame XY Z (origin at optical

centre)

e Focal length f, image plane is at Z =

f.

Similar triangles
r X y Y X
=z foz x=ly

where x and X are 3-vectors, with
x=(z,y,f)", X=(X,Y,2)".

O

Vanishing Points

2.2




Vanishing Points in 1D and 2D 2.3

X
IlD image

Vanishing
point

Point at Infinity

—>
1D world

image plane v

vanishing point

v/ horizon A4
O —————— - -
§ line ¥~ vanishing
point

parallel lines

Ground plane

All parallel lines meet at the same vanishing point 2.4

A line of 3D points isrepresented as
Using x = fX/Z the vanishing point of

X(A)=A+AD its image is
v = lim x(\) = f2TAD
A= 0 X(A) D A—r+00 Az 4+ ADyg
D Dx /Dy
= f o= f| Dy/Dg
- A 1
V
0 ¢ v depends only on the direction D, not
on A.
e Parallel lines have the same vanishing
point.




The Homogeneous 3 x 4 Projection Matrix 2.5

X

Choose f = 1 from now on.

Homogeneous image coordinates (1, zq, z3) " correctly represent x = X /7 if
T 1000 ;( X
z2 [=10 100 7 :[I\O]<1)
3 0010 )

because then
I X I9 Y

Then perspective projection is a linear map, represented by a 3 x 4 projection
matrix, from 3D to 2D.

Vanishing points using homogeneous notation 2.6

A line of points in 3D through the point A with direction D is
X(p)=A + puD
Writing this in homogeneous notation

?Eﬂ; A D). 1/(A D
f% f(1)+u(o>f;(1>+<o)

4\

D
In the limit 4 — oo the point on the line is ( 0 )

¢ S50, homogeneous vectors with X, = 0 represent points “at infinity”.

¢ Points at infinity are equivalent to directions

4



Vanishing points using homogeneous notation: Example 2.7

The vanishing point of a line with direction D is the image of the point at co ...

1000 D Dy
V20100<0>: Dy
0010 Dy

Exercise: Compute the vanishing points of lines on an X Z plane:
(1) parallel to the Z axis; (2) at 45° to the Z axix; (3) parallel to the X axis.

0

The advantages of homogeneous notation ... 2.8

Jump you daft cat.

There are two advantages of using
homogeneous notation to represent
perspective projection:

1. Non-linear projections equations are
turned into linear equations. The tools
of linear algebra can then be used.

2. Vanishing points are treated
naturally, and awkward limiting
procedures are then avoided.




Plane to Plane Projective Transformations 2.9

T X1

1

Z | r9 | =P X
A~ Z=0plane . X,

Ya—" X 3 X4

Choose the world coordinate system such that the world plane has zero Z co-
ordinate. Then the 3 x 4 matrix P reduces to a 3 x 3 plane to plane projective
transformation.

X
T P11 P12 P13 Pl4 v P11 P12 P14 X
Ty | = | P21 P22 P23 P 0 | = | P2 P2 Pu Y
T3 P31 P32 P33 P34 1 D31 P32 P34 1

e This is the most general transformation between the world plane and image
plane under imaging by a perspective camera.

e A projective transformation is also called a “homography” and a “collineation”.



Computing a projective transformation 2.10

!/
Ty hi1 hiz his T
! .
Ty | = | hor hoa hog T2
4 !/
— 3 hs1 hsa hss | \ =3
O.é_/_/___— T1

’ ) = H i)
ﬁ(x T3
where H is a 3 x 3 non-singular homo-
geneous matrix with EIGHT degrees of

freedom.
e Each point correspondence gives two constraints

7 = x_ll _ hi1z + h12y + has y, _ 5!3_’2 _ horx + hooy + hosg
Ty h31T + hgoy + hag’ zh  h31x + hsoy + has

and multiplying out give two equations linear in the elements of H

z' (h31z + haay + h33) = hux + hioy + his
Y (hs1z + hsoy + h3z) = hoix + hooy + hos

Simple Example 211

e Suppose the correspondences (z,y) <> (z',y’) are known for four points (no
three collinear), then H is determined uniquely.

0,1 (1,2 (0,2) (2,1)

/

(0,00 (1,0) (0,0) (1,0
First correspondence (0,0) — (0, 0)

Second correspondence (1,0) — (1,0)
0 hi1hiahiz| (O hi3 1 B b O
M| 0| = |hathohos| |0 =] hos A ( 0 ) = {hmhm 0
1

]‘ h/].l
0f= ha1
1 h31 h3a h33 hs3 1 hai hap has | \1 a1 + has

Whence hi3 = hgs = 0. Whence ho; = 0 and hy; = h3y + hs3




Simple example Continued 212

Third correspondence (0,1) — (0, 1) gives hia = 0 and hos = hsa + hss.

Fourth correspondence (1,1) — (2,1)

2 hsi +hsz 0 01](1 hs1 + hss
M1 = 0 hss + hss 0 1| = hss + has
1 hs1 hsa  hsz| \1 hs1 + hsa + hss

Take ratios = 2 equations in 3 unknowns = solve for ratio of matrix elements
only.

0 0
1 1

Computational Algorithm 2.13

The equations,

2’ (hs1z + hgoy + hg3) = huz + higy + has
Y (hs1T + haoy + has) = haux + haoy + hos

can be rearranged as

0 -2z —2'y —2o

xry 100

h =
000zy 1l —yzr —yy —v 0
where h = (h11, h12, h13, h21, hQQ, h23, h31, h32, h33)T is the matrix H written as a 9-
vector.



continued ... 2.14

For 4 points,
21y 1 0 0 0 —2lay —2ly —a) |
0 00z yi 1 —yz1 —viy1 —v
2o y2 1 0 0 0 —ahzy —zhyy —z)
00 02 g 1 —ghza —oy2 —%5 | _
3 y3 1 0 0 0 —zhey —ahys —ah
0 0 0 z3 y3 1 —whzs —vhys —uh
24 ys 1 0 0 0 —ahzy —2lys —a
0 0 0 =4 ya 1 —yhma —Viysa —V,

which has the form Ah = 0, with A a 8 x 9 matrix. The solution h is the (one
dimensional) null space of A.

If using many points, one can use least squares. Solution best found then using
SVD of A — ie USV' < A Then h is the column of V corresponding to smallest
singular value. (The smallest singular value would be zero of all the data were
exact ...)

Some Matlab 2.15
npoints =4 (or 5 later -- 5th point is noisy)
x =10,1,0,1, 1.01]; y [0,0,1,1, 0.99];

xd =[0,1,0,2, 2.01]; vyd
A = zeros(2*npoints, 9);
for i=1:npoints,
A(2*i-1,:)=[x(i),y(i),1,0,0,0, -x(i)*xd(i),-xd(i)*y(i),-xd(i)];
A((jZ*i. :)=100,0,0,x(i),y(i),1, -x(i)*yd(i),-yd(i)*y(i),-yd(i)];
end;
i f npoints==4

h = null (A);
el se

[U S V] = svd(A);

h=V(:,9);
end;
H=[h(1), h(2), h(3);h(4),h(5),h(6);h(7),h(8),h(9);];

[0,0,1,1, 1.01];

With the 4 exact points ... Adding the fifth noisy point ...
0.6325 —0.0000  0.0000 0.6295 —0.0000 —0.0000

H= 0.0000 1.0000 —0.0000 H=| —0.0001 0.9999 0.0001
0.0000 —0.3162  0.6325 —0.0050 —0.3155 0.6344



Example 1: Removing Perspective Distortion 2.16

Objective: Back project to world plane
1. Find Euclidean coordinates of four points on the flat object plane (z;, ;).
2. Measure the corresponding image coordinates of these four points (z},y})".
3. Compute H from the four (z;,4;)" + (z},y.)".

4. Euclidean coords of any image point are (z,y,1)" =1 1(z/,¢/,1)".

The image can be warped onto the world plane using H. How?

Moving the image plane 2.17

An image is the intersection of a plane with the cone of rays between points in
3-space and the optical centre. Any two such “images” (with the same optical
centre) are related by a planar projective transformation.

As the camera is rotated the points of intersection of the rays with the image
plane are related by a planar projective transformation. Image points x and x’
correspond to the same scene point X.

10



Relationship in terms of rotations 2.18

For corresponding points x; and x; in two views 1 and 2,

1000]r . if X X
x1=[0 100 [(ﬁ 1] o |=R|Y Xp=Ry | ¥
0010 . 1 1

Hence
X9 = R2R1_1X1

The cameras could have different focal lengths — so one can do all of this while
rotationing and zooming. Then

Xy = KoRoR] 'K 'x;

where in the simplest case

fi 00
Ki=]0 f; O
0 01
Example 2: Synthetic Rotations 2.19
Original image Warped: floor tile square Warped: door square

The synthetic images are produced by projectively warping the original image
so that four corners of an imaged rectangle map to the corners of a rectangle.
Both warpings correspond to a synthetic rotation of the camera about the (fixed)
camera centre.

11



Example 3: Mosaics 2.20

Eight images (out of 30) acquired by rotating a camcorder about its optical centre.

| e |

Register all the images to one reference image by projective transformations.

Keble Panoramic Mosaic 2.21

12



Example 4: Projective pointing devices: not just for artists!  2.22

:i'\lf Frontal
Here the rotation joint of a pan-tilt e : ™
camera become the projection centre, @ .
and tracking people in the ground plane active " Restifg gkt

Camers Direction

produces a track on a notional frontal
plane — like Durer’s marks. These
frontal plane tracks are then converted

in Cartesian tracks viewed from above.

D e
N %

et WA
1 oy W i
=" *-'t

2.23

We have looked at four classes of transformation (in 2D):

ri1 ri2 iy sr11 STr12 iy

Euclidean: 3 DOF 21 T929 ty S1m1lar1ty 4 DOF ST91 ST99 ty
0O 0 1 0 0 1

ail aip t hi1 hiz2 hiz

Affine: 6 DOF 921 Q99 ty Projective: 8 DOF h21 h22 h23
0 0 1 h31 hsa hss

and their 3D counterparts.
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