
2: Vanishing points and horizons.
Applications of projective transformations.

� Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

� Lecture 2: Vanishing points. Horizons. Applications of projective transfor-
mations.

� Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

� Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.
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Recall: Perspective (central) projection — 3D to 2D 2.1
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Vanishing Points 2.2
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Vanishing Points in 1D and 2D 2.3
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All parallel lines meet at the same vanishing point 2.4

A line of 3D points isrepresented as� �#"$�%�'& ()"+*
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�J. depends only on the direction * , not
on & .� Parallel lines have the same vanishing
point.
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The Homogeneous KMLON Projection Matrix 2.5
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Homogeneous image coordinates �Q�SRT�T�VUW�T��XT� � correctly represent � � �-, � if?@@@A �YR� U� X
G�HHHI Z�

[\\\]
F ^ ^ ^^ F ^ ^^ ^ F ^

_a```b
?@@@@@@A
� � � F

G�HHHHHHI � ced	fhgji ?A � F GI
because then �P� � R��X � � � �k� � U�VX � � �
Then perspective projection is a linear map, represented by a l�mMn projection
matrix, from 3D to 2D.

Vanishing points using homogeneous notation 2.6

A line of points in 3D through the point & with direction * is� �Qo�� Z� & (poY*
Writing this in homogeneous notation?@@@@@@A

� R �Qo��� U �Qo���qXr�Qo���tsu�Qo��

G HHHHHHI Z�
?A & F GI (vo ?A * ^ GI Z� F

o
?A & F GI ( ?A * ^ GI

In the limit o � w the point on the line is

?@Atxzy G�HI
� So, homogeneous vectors with �qs{� ^

represent points “at infinity”.� Points at infinity are equivalent to directions
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Vanishing points using homogeneous notation: Example 2.7

The vanishing point of a line with direction * is the image of the point at w ...

. �
[\\\]
F ^ ^ ^^ F ^ ^^ ^ F ^

_a```b
?A * ^ GI �

?@@@A >CB>|D> <
G�HHHI

Exercise: Compute the vanishing points of lines on an �}� plane:
(1) parallel to the � axis; (2) at n�~�� to the � axix; (3) parallel to the � axis.
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The advantages of homogeneous notation ... 2.8

Jump you daft cat.

There are two advantages of using
homogeneous notation to represent
perspective projection:
1. Non-linear projections equations are
turned into linear equations. The tools
of linear algebra can then be used.
2. Vanishing points are treated
naturally, and awkward limiting
procedures are then avoided.
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Plane to Plane Projective Transformations 2.9

Z=0 plane

O
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Y X

?@@@A � R� U��X
G HHHI �'�

?@@@@@@A
� R� U�qX�ts

G HHHHHHI
Choose the world coordinate system such that the world plane has zero � co-
ordinate. Then the l�m�n matrix � reduces to a l�mpl plane to plane projective
transformation.?@@@A � R� U� X

G�HHHI �
[\\\]
� R�R � R�U � RQX � R�s� U�R � U�U � U�X � U#s� X�R � X�U � X�X � X�s

_a```b
?@@@@@@A
� � ^ F

G�HHHHHHI �
[\\\]
� R�R � R�U � R�s� U�R � U�U � U#s� X�R � X�U � X�s

_a```b
?@@@A � � F

G�HHHI
� This is the most general transformation between the world plane and image
plane under imaging by a perspective camera.� A projective transformation is also called a “homography” and a “collineation”.
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Computing a projective transformation 2.10
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?@@@A �+� R� � U�+�X
G HHHI Z�

[\\\]
� R�R � R�U � R�X� U�R � U�U � U�X� X�R � X�U � X�X

_ ```b
?@@@A �YR�VU��X

G HHHI
Z� �

?@@@A �YR�VU��X
G�HHHI

where � is a l�m�l non-singular homo-
geneous matrix with EIGHT degrees of
freedom.� Each point correspondence gives two constraints

� � � �+� R� � X � � R�R��	( � R�U���( � RQX� X�R �	( � X�U ��( � X�X � � � � �+�U� � X � � U�R���( � U�U���( � U�X� X�R ��( � X�U ��( � X�X
and multiplying out give two equations linear in the elements of �

� � � � X�R ��( � X�U ��( � X�X � � � R�R �	( � R�U ��( � RQX� � � � X�R ��( � X�U ��( � X�X � � � U�R �	( � U�U ��( � U�X
Simple Example 2.11� Suppose the correspondences �Q�����+��� �Q�V�1������� are known for four points (no
three collinear), then � is determined uniquely.

(0,1) (1,1)

(0,0) (1,0)

(2,1)

(0,0) (1,0)

(0,1)

H

First correspondence � ^ � ^ � � � ^ � ^ �
"�R

?@@@A
^^ F
G�HHHI �

[\\\]
� R�R � R�U � R�X� U�R � U�U � U�X� X�R � X�U � X�X

_a```b
?@@@A
^^ F
G�HHHI �

?@@@A
� RQX� U�X� X�X

G�HHHI
Whence

� R�X � � U�X � ^
.

Second correspondence � F � ^ � � � F � ^ �
�u� ?@A

�
� � G�HIP� [\] �¡ ¢ r�� £� ��r�� r�h�¢� ��r¤� r�h¤¢���r¤¢¤

_a`b ?@A
�
� � G�HIP� ?@A �� ¢ �h�� �h¤� ¦¥q�r¤¢¤

G�HI
Whence

� U�R§� ^©¨¡ª+« � R�R%� � X�RS( � X�X
7



Simple example Continued 2.12

Third correspondence � ^ � F � � � ^ � F � gives
� R�U¬� ^

and
� U�U¬� � X�U­( � X�X .

Fourth correspondence � F � F � � �#®�� F �
" s

?@@@A ® FF
G HHHI �

[\\\]
� X�R ( � X�X ^ ^^ � X�U ( � X�X ^� X�R � X�U � X�X

_ ```b
?@@@A
FFF
G HHHI �

?@@@A
� X�R ( � X�X� X�U ( � X�X� X�RS( � X�U­( � X�X

G HHHI
Take ratios ¯ 2 equations in 3 unknowns ¯ solve for ratio of matrix elements
only.

�k��"
[\\\] ® ^ ^^ F ^^ °EF ®

_ ```b Z�
[\\\] ® ^ ^^ F ^^ °�F ®

_ ```b

Computational Algorithm 2.13

The equations,

� � � � X�R ��( � X�U ��( � X�X � � � R�R �	( � R�U ��( � RQX� � � � X�R ��( � X�U ��( � X�X � � � U�R �	( � U�U ��( � U�X
can be rearranged as[] � � F ^ ^ ^ ° � � � ° � � � ° � �^ ^ ^ � � F ° � � � ° � � � ° � �

_b9± � g
where ± � � � R�RT� � R�UW� � R�X²� � U�RT� � U�UW� � U�X²� � X�RT� � X�UW� � X�X³� � is the matrix � written as a 9-
vector.
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continued ... 2.14

For 4 points, [\\\\\\\\\\\\\\\\\\]

�YR��¦R F ^ ^ ^ ° � � R �YR ° � � R �¦R ° � � R^ ^ ^ �SR´�µR F ° �¦�R �YR ° ���R �¦R ° ���R�VU ��U F ^ ^ ^ ° � � U �VU ° � � U ��U ° � � U^ ^ ^ � U � U F ° � �U � U ° � �U � U ° � �U� X � X F ^ ^ ^ ° � � X � X ° � � X � X ° � � X^ ^ ^ � X � X F ° � �X � X ° � �X � X ° � �X� s � s F ^ ^ ^ ° �+�s � s ° �+�s � s ° �+�s^ ^ ^ ��s �¶s F ° � �s �+s ° � �s �us ° � �s

_a``````````````````b
± � g

which has the form · ± � g , with · a ¸�mp¹ matrix. The solution ± is the (one
dimensional) null space of · .

If using many points, one can use least squares. Solution best found then using
SVD of · — ie º�»¡¼j½)¾ · Then ± is the column of ¼ corresponding to smallest
singular value. (The smallest singular value would be zero of all the data were
exact ...)

Some Matlab 2.15

npoints = 4 (or 5 later -- 5th point is noisy)
x = [0,1,0,1, 1.01]; y = [0,0,1,1, 0.99];
xd = [0,1,0,2, 2.01]; yd = [0,0,1,1, 1.01];
A = zeros(2*npoints,9);
for i=1:npoints,
A(2*i-1,:)= [x(i),y(i),1,0,0,0, -x(i)*xd(i),-xd(i)*y(i),-xd(i)];
A(2*i, :)= [0,0,0,x(i),y(i),1, -x(i)*yd(i),-yd(i)*y(i),-yd(i)];

end;
if npoints==4
h = null(A);

else
[U,S,V] = svd(A);
h=V(:,9);

end;
H=[h(1),h(2),h(3);h(4),h(5),h(6);h(7),h(8),h(9);];

With the 4 exact points ...

�k�
[\\\]
^ Zz¿ l¦®À~ °Á^ Z ^¡^À^À^ ^ Z ^À^¡^À^^ Z ^À^À^À^ F Z ^¡^À^À^ °Á^ Z ^À^¡^À^^ Z ^À^À^À^ °Á^ Z l F ¿ ® ^ ZÂ¿ l�®À~

_a```b
Adding the fifth noisy point ...

�k�
[\\\]

^ ZÂ¿ ®�¹¦~ °Á^ Z ^À^¡^À^ °=^ Z ^À^À^À^°Á^ Z ^¡^À^�F ^ Z ¹À¹¡¹À¹ ^ Z ^À^À^�F°Á^ Z ^¡^ ~ ^ °Á^ Z l F ~À~ ^ Zz¿ l�nÀn
_a```b
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Example 1: Removing Perspective Distortion 2.16

Objective: Back project to world plane

1. Find Euclidean coordinates of four points on the flat object plane �Q��Ã#���¶ÃÄ� � .

2. Measure the corresponding image coordinates of these four points �Q� �Ã ��� �Ã � � .

3. Compute � from the four �Q� Ã ��� Ã ����� �Q� �Ã ��� �Ã ��� .

4. Euclidean coords of any image point are ��������� F � � �Å��Æ R ���+�1�����Ç� F � � .

The image can be warped onto the world plane using � . How?

Moving the image plane 2.17

An image is the intersection of a plane with the cone of rays between points in
3-space and the optical centre. Any two such “images” (with the same optical
centre) are related by a planar projective transformation.

X

x

x

As the camera is rotated the points of intersection of the rays with the image
plane are related by a planar projective transformation. Image points � and � �correspond to the same scene point

�
.
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Relationship in terms of rotations 2.18

For corresponding points � R and � U in two views 1 and 2,

� R Z�
[\\\]
F ^ ^ ^^ F ^ ^^ ^ F ^

_a```b
[]=È R gg�� F _b

?@@@@@@A
� � ^ F

G�HHHHHHI � È R
?@@@A � � F

G�HHHI � U Z� È U
?@@@A � � F

G�HHHI
Hence

� U � È U È Æ RR � R
The cameras could have different focal lengths — so one can do all of this while
rotationing and zooming. Then

� U¬�'É�U È U È Æ RR É Æ RR � R
where in the simplest case

É¦ÃY�
[\\\] 
ÊÃ ^ ^^ 
hÃ ^^ ^ F

_a```b
Example 2: Synthetic Rotations 2.19

Original image Warped: floor tile square Warped: door square

The synthetic images are produced by projectively warping the original image
so that four corners of an imaged rectangle map to the corners of a rectangle.
Both warpings correspond to a synthetic rotation of the camera about the (fixed)
camera centre.
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Example 3: Mosaics 2.20

Eight images (out of 30) acquired by rotating a camcorder about its optical centre.

ËÌ
ÍÎ ÏÐ Ñ�ÑÒ

Ó�ÓÔÕÖ×ØÙ�ÙÚ ÛÜ
ÝÞßà

Register all the images to one reference image by projective transformations.

Keble Panoramic Mosaic 2.21
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Example 4: Projective pointing devices: not just for artists! 2.22

Here the rotation joint of a pan-tilt
camera become the projection centre,
and tracking people in the ground plane
produces a track on a notional frontal
plane — like Durer’s marks. These
frontal plane tracks are then converted
in Cartesian tracks viewed from above.

Summary 2.23

We have looked at four classes of transformation (in 2D):

Euclidean: 3 DOF

[\\\]
á R�R á RâU ã�äá U�R á U�U ã�å^ ^ F

_a```b Similarity: 4 DOF

[\\\]
æ²á R�R æ²á R�U ã�äæ²á U�R æ²á U�U ã�å^ ^ F

_a```b

Affine: 6 DOF

[\\\]
ç R�R ç R�U ã äç U�R ç U�U ã�å^ ^ F

_a```b Projective: 8 DOF

[\\\]
� R�R � RâU � RQX� U�R � U�U � U�X� X�R � X�U � X�X

_a```b
and their 3D counterparts.
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