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Preface

Transformation is crucial to any program improvement process. Highly transformable

notations pave the way for the application of deep and pervasive program

improvement techniques. Functional programming languages are more amenable

to transformation than their more traditional imperative counterparts. Moreover,

functional programs specify only true dependencies between values, making

improvements that reveal and exploit parallelism much easier. Some functional

programming notations are more transformable than others. Bird-Meertens-

Formalism (BMF) is a functional notation that evolved as a medium for

transformational program development. A substantial, and growing, body of work

has created novel tools and techniques for the development of both sequential and

parallel applications in BMF.

Formal program development is at its most useful when it can be carried out

automatically. Point-Free BMF, where programs are expressed purely as functions

glued together with higher-order operators, provides enhanced scope for automated

development because many useful transformations can be expressed as easily applied

re-write rules. Moreover, realistic sequential and parallel static cost models can be

attached to BMF code so the relative merits of applying various transformations can

be accurately assessed.

In spite of its potential merits there has been little work that has utilised point-

free BMF, in a pervasive manner, as a medium for automated program improvement.

This report describes a prototype implementation that maps a simple point-wise

functional language into point-free BMF which is then optimised and parallelised

by the automated application of, mostly simple, rewrite rules in a fine-grained and

systematic manner. The implementation is shown to be successful in improving the

efficiency of BMF code and extracting speedup in a parallel context. The report

provides details of the techniques applied to the problem and shows, by experiment
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and analysis, how reductions in high data-transport costs are achieved. We also

describe techniques used to keep the optimisation task tractable by alleviating the

hazard of case-explosion.

The report is structured according to the stages of the compilation process, with

related work described at the end of each chapter. We conclude with our main

finding, namely, the demonstrated feasibility and effectiveness of optimisation and

parallelisation of BMF programs via the automated application of transformation

rules. We also restate techniques useful in achieving this end, the most important

of which is the substantial use of normalisation during the optimisation process to

prepare code for the application of desirable transformations. We also present a

brief summary of potential future work including the introduction of more formally

described interfaces to some of the transformative rule-sets, the automatic production

of annotated proofs and a facility to display static estimates of the efficiency code

during transformation.
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Chapter 1

Introduction

1.1 Distributed Parallel Computing

Parallel computing has much potential. Parallel computers have substantially

more computing power and memory than their sequential contemporaries. Current

distributed parallel computers, in particular, offer scalable high-performance

computing, often, at not-unreasonable cost.

However, distributed parallel computing is hard. Computing tasks need to

be coordinated to contribute to a shared solution without interfering with each

other. Large, and increasing, volumes of data need to be managed carefully

to minimise communications costs. These factors mean program construction,

debugging, tuning and maintenance is more difficult in a parallel environment than in

a sequential environment. Errors in parallel programs are often manifest in the form

of unexpectedly bad performance or intermittent incorrect results, deadlocking, or

program crashes. These problems are not helped by the lack of a universally accepted

high-level programming model for parallel computing. As a consequence much

programming happens at a low level where many difficult details of distributed parallel

computing are exposed to the applications programmer. When a low level program

has to be ported to a new architecture, existing parallel programs have to be manually

re-tuned or re-written to extract more performance and/or just work correctly. This

costly migration process adds a large premium to the cost of owning parallel software.

As a result, distributed parallel computing is confined mainly to small but nonetheless

important niche application areas such as, geophysics, computational fluid dynamics,

computational chemistry/molecular-biology, particle and gravitational physics, finite

1
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element methods, large scale search algorithms, image-processing, and data mining.

Such applications attract large enough returns to justify substantial investments in

parallel software. That is, distributed parallel computing is primarily used by people

who really want the extra performance and are prepared to pay for it. This small

market does not produce the economies of scale required to drive the development

of hardware and software tools at the same pace as mainstream computing thus

maintaining disincentives to the widespread use of distributed parallel computing.

This problem would be alleviated by a widely-accepted high-level model of parallel

computing. Such a model needs to be:

General purpose: easily applicable to most applications,

Simple: programs easily written, understood, and verified,

Efficient: exhibiting predictable performance with a low performance penalty for

using the model rather than some low-level programming notation, and

Portable: applicable to a wide range of architecture without major changes to

programs.

To date, there is no parallel distributed model that is widely believed to meet all of

these criteria1 so there is still, much, scope for work to be done.

1.2 Implementing a model

It is the task of a compiler and runtime system to efficiently bridge the distance

between the programming model and the underlying architecture. The gap between

a sufficiently simple programming model and a distributed architecture is very

large 2. In order to make the construction of the compiler/runtime system feasible

implementors typically make one or more of the following compromises.

Making parallelism explicit in the source language: Leads to a relatively

simple implementation but leaves most of the difficult work to the programmer.

1See the survey article by Skillicorn and Talia[130] comparing a wide range of parallel models.
2As with many things, an exact definition of sufficiently simple depends very much on the

audience. A seasoned parallel applications programmer may find C or Fortran-MPI is sufficiently
simple, leading to a small gap between programming model and machine. However, we believe most
programmers would prefer a programming model where the details of parallel implementation are
less explicit.
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Restricting the source language: Restricting the programmer to common

patterns of computation or data-access in order to limit the number of cases

the compiler has to handle and also the scope for introducing inefficiency.

Compromising efficiency: Adding a layer of interpretation that results in a loss

of efficiency for some programs.

The, current, most-widely used programming languages/libraries for distributed

platforms make the first compromise, examples include MPI[105] and PVM[51].

Many models make the second compromise by restricting the ways in which

parallel programs can be expressed. Data parallel languages such as Data-Parallel

C-Extensions (DPCE)[106], Connection-Machine Lisp[132] and High Performance

Fortran (HPF)[118] allow a single thread of control but admit parallelism through

bulk operations on aggregate data. Skeletons support the same sort of bulk operations

but extend these with more general templates for composing parallel programs3.

Examples of Skeleton implementations include P3L[31] and SCL[43]. Other restricted

notations include LACS[116] and ZPL[107] which require the user to express parallel

programs in terms of transformations to arrays. As a general rule, these models with

restrictions are, at the cost of some flexibility, much easier for programming than

more explicit models.

Implementations making the third compromise offer a less-restricted programming

model at the cost of a layer of interpretation that can be costly to maintain at runtime.

Implementations making this compromise include abstractions for DSM[69] and

distributed graph reduction[135]. The extent to which performance is compromised is

heavily dependent on the sophistication of the implementation and the characteristics

of the applications run on it.

As a final note, it should be said that some implementations may not fit neatly

into the taxonomy above. Significant examples include various implementations of

the BSP model[137, 76] which achieves good performance by restricting itself to

applications expressed as a sequence of composed supersteps, and preventing the

programmer from mapping tasks to physical processors. However, the model requires

the programmer to to explicitly specify, the tasks, and the communications that are

to take place between them.

3At their most general, Skeletons can be as explicit as more general models. An example is the
DMPA Dynamic-Message-Passing-Architecture skeleton[42]. But such instances are relatively rare.
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Some restricted implementations such as Fortran 90, HPF and Data-Parallel C-

Extensions also require the programmer to specify alignment information and thus

have a degree of explicitness. Finally, Vectorising Fortran compilers[10] (section 6.2.1,

pp 305–309) provide a very implicit programming model, they extract parallelism from

extant sequential code, but, in general, the effective extraction of parallelism requires

a very sophisticated compiler.

This concludes our informal classification of models with implementations

targeted to distributed-memory machines. This provides a context for the language

implementation described in this report.

1.3 This work

This report describes an experimental implementation, targeted to a distributed

parallel platforms, Our implementation is based on the source language Adl. Adl

is small, strict, functional language where parallelism is expressed through bulk

operations on arrays, or vectors, as they are called in this work. These bulk operations

include the familiar data-parallel functions: map, reduce and scan. Adl allows these

operations to be composed and tupled. Adl also provides constructs for selection,

iteration and the introduction of new scopes. In addition Adl supports arbitrary

random access to vector elements and other variables in scope and dynamic allocation

of vectors. Chapter 2 provides a number of concrete examples of Adl programs.

The current version of Adl does not support recursive definitions of functions.

Instead the language, and its implementation are directed toward the primary goal

of expressing parallelism through bulk operators over aggregates. The recursion is

likely to be included in future versions.

The parts of Adl The Adl project consists of two parts[7]. The earlier part, based

on a highly optimised multithreaded model[54], supports efficient nested parallelism

over irregular structures by generating many small, overlapping communications. The

second part[8], the one described in this report, uses transformational programming

to generate and optimise aggregated communications.

Implementation challenges Though Adl does restrict the way in which

parallelism is expressed, compilation of Adl still presents substantial challenges,
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sum_sqrs(a:vof int) :=

let

sqr x := x * x;

add (x,y) := x + y

in

reduce(add,0,map(sqr,a))

endlet
(a)

+/0 · (× · (id, id)◦)∗
(b)

Figure 1. Adl source for sum sqrs (part (a)) and an equivalent point-free version
(part (b)).

though parallelism is easily identified through data parallel operations such as map,

the distribution and communication of data remains implicit. Furthermore, Adl places

no restrictions on which values are available inside of its parallel operations. Any value

in scope can be arbitrarily referenced from inside these operations and, in particular,

arbitrary indexing into any vector value is allowed from within these operations.

This places the onus on the implementor to generate, consolidate, and minimise the

communication that is implicit in these references.

In order to bridge this gap between what is, essentially, the shared-memory

model of Adl language and the distributed memory of the target architecture the

implementation must, at some stage, convert some arbitrary references to values into

explicit communication4. The implementation described in this report, henceforth

described as “the Adl implementation”, performs this conversion very early in the

compilation process by translating Adl code into point-free-form. Programs written

in point-free form[13, 59, 38] consist only of functions, no variables are allowed.

Figure 1 shows Adl source code for a program to calculate the sum of squares

of an input vector (part (a)) and its point-free equivalent. The source program is

reasonably conventional, using the map primitive to apply the sqr function to each

element of the input vector and the reduce function to sum the list. The point-

free version consists entirely of functions glued together using function composition,

4In the presence of arbitrary indexing into vector values, the final specification of some
communications must, by necessity, be delayed until run-time. However, many communications
can be specified statically and an efficient framework can be set up for the rest.
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denoted: ·5 , and the tupling construct: (. . .)◦ which applies all of its constituent

functions to its input value storing results in an output tuple. The ∗ symbol denotes

a map function that applies the prefixed function to each element of an input vector.

The / symbol denotes a reduce function that inserts the prefixed binary function

between the elements of an input vector. The point-free version is completely free of

variables for the runtime storage of values.

The lack of variables in point-free form means that functions are not only

responsible for computation on values, but also responsible for determining the

movement of values to functions to be executed in later parts of the program. In,

other words, in point-free programs, must contain functions to route as well as

compute data. Many of these routing-functions will still be present, in optimised

and distributed form, in the final parallel code.

To summarise: once code is in point-free form, data movement is explicit; once

data-movement is explicit, it can be optimised by replacing functions that generate

a lot of data movement with functions that generate less data movement. Similarly,

point-free code can be made explicitly parallel by inserting functions with parallel

semantics into the code. Note that all of this processing can only take place if point-

free form can:

1. express the required sequential and parallel functions

2. be transformed in the way required by this application

Fortunately, there is a large body of literature describing an algebra6 and its notation,

that together meet these requirements very well.

The Bird-Meertens formalism The Bird-Meertens Formalism (BMF) is a set of

theories of types and operations over those types[17, 18, 21, 20, 131, 58, 15, 114]. BMF

was developed as a medium for transformational programming. The idea is to start

with an obviously correct but inefficient specification of a program and transform it, by

the incremental application of correctness-preserving steps, to a much more efficient

but less obvious version. Because transformation is much easier in a functional context

5We use · rather than the traditional ◦ to denote function composition to make code slightly
more compact.

6Actually, a family of algebras for different data types.
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than an imperative context7, BMF programs have functional semantics. Most BMF

programs work with aggregate types such as lists. The notation is often, but not

always, point-free and quite terse8, for example:

sqrt ∗ ·sqr ∗

expresses a program to find the absolute values of an input array of numbers9. A large

number of simple and broadly applicable program identities can be used to transform

BMF programs. For example, the identity f ∗ ·g∗ = (f · g)∗ can be used to fuse the

two map functions in the above program into one:

sqrt ∗ ·sqr∗
= {f ∗ ·g∗ = (f · g)∗}

(sqrt · sqr)∗
Note that the transformation is annotated with the equality used to drive it, written

in braces ({ }). Also note that the program above is expressed in point-free form.

When BMF programs are expressed in point-free form, transformation rules can be

applied as simple re-write rules10.

BMF has fundamental operations corresponding to the map, reduce and scan

constructs provided by Adl. Moreover, all of these functions have efficient sequential

and parallel implementations[126].

1.3.1 The role of BMF in this project

A priori, point-free BMF has all of the ingredients needed for targeting to a distributed

architecture. It has the explicit data transport of point-free form; it has the requisite

sequential and parallel functions and it has a large number of program identities that

can be used to transform code. What is now required, for our implementation, is a

compiler to translate Adl into point-free BMF, and a compilation process to apply

transformations to this BMF code to produce efficient distributed code. Figure 2

gives the structure of the Adl compiler with the stages utilising BMF highlighted

in bold. The first two stages of the compiler, the lexer/parser and typechecker are

7Where the presence of side-effects and an implicit state that evolves over time make simple,
equals-for-equals transformations, only narrowly applicable.

8See chapter 3 for a more thorough introduction to BMF.
9It should be noted that several BMF variants for functions over aggregate data, such as the map

function, exist for a large variety of types including, lists, arrays, bags, sets, trees and others.
10Infrequently, these rules have conditions attached which have to be true before the rule can be

validly applied.
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Lexical Analysis
and Parsing

Adl source
code

Adl Syntax 
Tree

Type-annotated
Adl Syntax Tree

Type Checker Translator

BMF

Data Movement
Optimiser

ParalleliserCode Generator

Target
Machine

Optimised BMFParallel BMF

Target Machine Code

Figure 2. Outline of the Adl implementation. Stages that use or generate
point-free BMF code are highlighted in bold.

reasonably conventional. The next four stages are all required to interact with BMF

code in some way. The novel aspects of this work lie in these stages. The last stage,

the target machine, will have to execute explicitly distributed code. Our very early

prototype code generator[111] produces C/MPI code.

Briefly describing the stages that interact with BMF:

• the translator takes Adl code and converts it to point-free form with explicit

transport of values in the scope to each function11;

• the data-movement optimiser uses incremental transformation of BMF

code to drastically reduce the quantity of data transported through the code

produced by the translator;

• the paralleliser uses incremental transformation to propagate functions with

distributed semantics through the code produced by the optimiser;

• the code generator translates distributed functions into their equivalents on

the target architecture. Sequential functions are compiled down to ordinary

imperative code.

Prototype implementations for each of these stages have been produced to

demonstrate the feasibility of the pervasive use of BMF as an intermediate form.

11This process is made feasible by the functional semantics of Adl. Translation of imperative code
into BMF is an open problem.
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The novelty of this work is the extent to which the implementation is based on

automated transformations in BMF and the techniques developed to assist the process

of automation. A brief overview of related work follows.

1.4 Related work

The other part of the Adl project In terms of lineage, the closest relative to

this work is a complementary sub-project of the Adl project investigated in [53]. The

source language is identical and some tools such as the partitioning function (described

in chapter 6) are very similar. However, the implementation strategy for this earlier

part is based on compilation to a highly efficient, multithreaded abstract machine.

Under that implementation, access to remote values is piecemeal and demand-

driven. Most static analysis of data requirements is confined to a separate process

to determine the partitioning of input data. In contrast, the part of the Adl project

described here uses compile-time transformations to consolidate communications and

map code to a more low-level platform. Moreover, the intermediate forms used are

very different in the two parts of the Adl project.

EL* The Adl implementation described resembles, in some ways, the

implementation of EL*[117]. Like Adl, EL* is a small data-parallel language focused

on extracting data-parallelism from arrays. EL* permits a restricted form of recursion

that can be used to express patterns of computation such as those found in map and

reduce. Access to global variables and array elements from within these definitions

is more restricted than the access allowed in Adl. The first stage of the EL*

implementation translates EL* source code into FP*, a strongly-typed variant of

Backus’ point-free FP language[13]. The translation process from Adl to point-free

BMF uses similar strategies to the EL* to FP* translator to achieve similar ends.

At this stage, however the two implementations diverge. The FP* compiler[144]

performs a small amount of transformation in FP* before translating directly to CM-

Fortran[134] whose compiler targets the code to a parallel platform. In contrast,

the Adl implementation intensively optimises and parallelises the BMF code before

translation to an imperative form.
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Transformational programming The idea of automating at least some of the

program transformation process is a significant driver in the development of the field of

transformational programming. Many mechanisable techniques have been developed

to optimise parts of sequential and parallel functional code[27, 21, 61, 123, 77, 78].

However, with some notable exceptions12, the application of these techniques often

involves some insight to the problem or at least proof obligations13. Partial

automation of the transformation process has been carried out using a theorem-

prover[98] and, more recently, using an interactive system with a built-in cost

model[3]. Mottl[104] surveys a range of techniques for the transformation of functional

programs and describes an implementation of a safe automated partial evaluator for

a simple strict functional language. This partial evaluator could form an important

component of a larger optimisation system.

The Adl implementation is almost fully automated14. This level of automation

is achieved by applying, with great frequency, a number of simple transformations

to point-free programs15. To make this process tractable, the Adl compiler makes

very heavy use of normalisation16 to reduce the number of cases that need to be

handled. Note that applying transformations in this way will not achieve optimality

in most cases, that will typically require some deeper insight into the problem and

the application of conditionally beneficial transformations with reference to a cost-

model[129, 5] but, even so, efficiency is greatly enhanced.

Data-parallel and Skeleton implementations Adl is, essentially, a single-

threaded data-parallel language exploiting familiar data-parallel vector constructs

such as map, reduce and scan. This is a similar strategy for exploiting parallelism

12These exceptions include, Wadler’s de-forestation algorithm[143] and Onoue’s HYLO fusion
system[108].

13Such as proving associativity or distributivity of binary operators.
14Though not completely. Adl assumes that the programmers will use associative operators in its

reduce functions and the Adl compiler does require the programmer to provide some partitioning
information for the parallelisation stage.

15Adl limits the domain of programs to those most amenable to transformation. In particular,
Adl programs are easily converted to a compositional form. Any future introduction of a facility for
the expression of unrestricted recursive definitions will inevitably change this situation and perhaps
warrant the use of non-trivially applied techniques such as diffusion[78]. It is worth noting that
recent work[38] provides a sound basis for expressing recursive definitions in point-free-form but
work would still need to be carried out to produce a translation capturing recursive definitions in
their most efficient form.

16Normalising transformations are often not directly beneficial in terms of efficiency but they make
the subsequent application of beneficial transformations easier.
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as that used in Data-Parallel C-Extensions, HPF and Connection-Machine Lisp.

Unlike DPCE and HPF, Adl has purely functional semantics. Adl has a less explicit

communication structure than CM-Lisp.

Adl has more in common with NESL[22, 23] but its implementation strategy

differs in that Adl’s compiler aims: to minimise data movement at runtime, avoid

the use of a substantial run-time system, and explicitly target a distributed machine.

This approach comes at the cost of limited support for dynamically evolving nested

parallelism which is well-handled by NESL17.

Crooke[37] implemented core components of BMF using C-Libraries combined

with a work-scheduler. Because the implementation language was C, a set of criteria

for well-formed programs was also required to avoid non-deterministic behaviour.

In terms of objectives and framework Adl has much in common with various

skeleton implementations such as P3L[31], SCL[44], Ektran[71] and the FAN

skeleton framework[5]18. There are significant differences between Adl and these

implementations at a more detailed level. Access to variables other than the

immediate parameters of the skeleton functions is more implicit in Adl than it is

in most skeleton implementations. Adl allows arbitrary access to elements of vectors

in global scope, a feature not commonly found in skeleton implementations. Adl offers

fewer skeletons than either SCL or P3L and requires more partitioning information

from the programmer than P3L which uses profiling information to determine a

good partitioning for input data. Like Adl, many skeleton implementations permit

the nesting of aggregate functions though the framework for carrying this nesting

through to the parallel platform, in some implementations such as P3L and Ektran,

is more refined than that used in the Adl implementation. Finally, amenability to

transformation at the level of the skeleton functions is a motivator for skeletons

work[5, 12, 25], this is also one of the drivers behind the Adl implementation though

at this point, Adl makes more pervasive use of program transformations at a lower

level19 and less at a higher-level than other skeleton-based platforms.

17The Adl implementation can support nested parallelism but data distribution functions have to
be statically determined. A short overview of the application of nested parallelism to Adl is given
in Appendix E

18To name a few, see chapter 2 of[71] for a more comprehensive overview.
19Transformations in the Adl implementation are mainly focused on rationalising the movement

of data and, subsequently, on propagating parallelism through code. In the current implementation,
there is a limited focus on transforming skeletons to tune parallel performance. Application of such
transforms often requires reference to a cost model and some characterisation of input data. Though
we have developed a detailed dynamic cost model in the form of a simulator it has not yet been
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This concludes our very brief introductory survey of related work. More detailed

surveys of relevant work are given at the end of each chapter of this report.

1.5 Preview

This report describes the various stages developed in the implementation the Adl

language. Chapter 2 describes the Adl language and provides some examples of its use.

Chapter 3 describes the point-free dialect of BMF code used as an intermediate form

in the Adl implementation. Chapter 4 gives a formal description of the Adl to BMF

translation process and measures the efficiency of code thus produced. Chapter 5

describes the salient features of the optimisation process to increase the efficiency of

BMF code through incremental transformation. Chapter 6 defines the process for

parallelising code and canvasses issues affecting code-generation. Finally, chapter 7

summarises the findings of our work and presents ideas for future work on this project.

integrated into the transformation system.



Chapter 2

Adl

Adl is the source language for the Adl implementation. This chapter is a brief,

informal, introduction to Adl and its primary features. The chapter has three sections.

Section 2.1 is an overview of Adl. Section 2.2 very briefly lists possible enhancements

in future versions of Adl. Finally, section 2.3 reviews the main features presented in

the chapter.

2.1 The Adl language

Adl is a simple experimental language expressive enough to build, without undue

difficulty, a variety of applications. Adl is designed to encourage programming in

terms of parallelisable aggregate operations.

2.1.1 Background

Adl was first proposed by Roe[119] as a vehicle for experimentation in high-

performance functional computing. Two Adl implementations, targeted to distributed

architectures, have been developed[7]. The first implementation[53] is multi-

threaded, using latency hiding, caching, and various other techniques to minimise

communications costs. The second stream, the implementation described here, uses

transformational programming to develop parallel implementation with aggregated

communications.

13
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In developing both of these implementations Adl was found to be a good medium

for the development of small1 numerically-oriented applications.

2.1.2 Main features

The main features of Adl are:

Functional semantics: Adl is referentially transparent which helps make parallel

programming, and implementation, easier.

A strong type system: types are monomorphically instantiated at compile time

for more efficient compilation.

Strict/Eager order of evaluation: permitting easier extraction of data-

parallelism. No currying is permitted. All functions are monadic (single-

valued).

Aggregate types: a vector type for holding an arbitrary number of values of

uniform type and a tuple type for holding a fixed number of values of mixed

type. Nesting of both tuples and vectors is permitted.

Second-order vector primitives: such as map, reduce and scan for the expression

of potential parallelism over vectors.

Limited type polymorphism and overloading: syntactic polymorphism is

supported allowing functions to be monomorphically instantiated to the applied

types.

Pattern matching: irrefutable patterns are used for easy access to tuple elements.

No recursion: strengthens role for vector operators.

Implicit parallelism: programmer need not be directly concerned with

parallelism2.

1and possibly large, though this has not yet been tested.
2In Adl most vector functions have the potential to execute in parallel. The programmer is

aware, that by using these functions, that parallelism may be exploited. Note that the expression
of parallelism is limited to these functions which makes parallelism restricted as well as implicit
according to the taxonomy of[130].
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% A program to add a constant to every element

% of a vector.

my_const := 2;

main a: vof int :=

let

add_const x := x + my_const

in

map (add_const,a)

endlet

?

Figure 3. A simple Adl program to add a constant to every element of a vector.

Other features include familiar facilities for introducing local scope and declarations

and for random access to vector elements. The features above are not set in stone. The

restriction on recursion is likely to be lifted in future implementations but, it should

be noted that, even with this restriction, Adl is still quite an expressive programming

platform.

2.1.3 Program layout

Adl programs consist of a series of function and value declarations ending with a

function declaration. Execution of the program begins in the body of this last function

declaration. Figure 3 shows a simple Adl program to add two to every element of

vector. The execution of this program begins at the main function. The formal

parameter to main is the input value to the program. In this case, the input value

is a vector of integers (vof int). No other type declarations are required3 with the

type of each function being inferred by propagating the types of input values and

constants. The let construct introduces a new local scope. In this case the scope

contains just one function declaration, add const. The body of the let is the starting

point of program execution. It contains the primitive function: map which takes an

input tuple consisting of a function name and a vector value and applies the function

to each element of the vector value. Informally:

3Though the programmer is free to add type annotations to any other value and/or expression.
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let

a := 4;

b := a + 5;

c := b - 3;

b := b + c

in

a + b

endlet

Figure 4. let expression with a declaration sequence containing repeated
declarations of b. This expression evaluates to 21.

map (f, [x0, x1, . . . , xn−1]) = [f x0, f x1, . . . , f xn−1]

As a final note, comments start with an % and extend to the end of the line and

programs are always terminated with a ? character.

2.1.4 Declaration sequences

The outermost scope of the program and the first part of any let expression consists

of a declaration sequence. Declaration sequences can contain one or more function

and/or value declarations. Adl enforces a rule that a value is not in scope until

immediately after its declaration. It remains visible until the end of the enclosing

expression or until another declaration of a value with the same name obscures it.

The effect of these rules can be seen in the Adl expression shown in figure 4. The

variable environment in scope from the body of the let expression, a + b, is:

[b 7→ 15, c 7→ 6, b 7→ 9, a 7→ 4]

The variable b appears appears twice in this environment but the first instance

obscures the second, giving a + b = 21. Semantically, Adl declaration sequences

are similar to the let* construct in Scheme[1]4.

Functions, scope and recursion Adl is statically scoped so functions are

evaluated in a closure containing their environment at the time of declaration.

Because this environment can contain only values declared prior to the function there

can be no recursive or mutually recursive function definitions. To illustrate, consider

4Another equivalent form is a nested series of let expressions, each binding a single value.
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odd x := if x = 1 then

true

else

not(even (x-1)) %error ‘‘even’’ not in scope

endif;

even x := if x = 0 then

true

else

not(odd (x-1))

endif;

Figure 5. An invalid Adl declaration sequence. The reference to even in the
definition of odd is undefined because even not in scope at this point.

the, invalid, Adl function declarations in figure 5 to determine if a natural number is

even or odd. These declarations will fail to compile because even is not in scope from

the declaration of odd. The same scoping rule also prevents functions from calling

themselves.

Higher-order functions In common with languages such as SISAL[55] and

NESL[22] Adl provides second order functions such as map and reduce, but does

not allow programmers to define their own higher order functions. This restriction is

not an impediment to writing the numerical computations over aggregates that are

the focus of this work. However, lifting this restriction may be considered for future

implementations.

2.1.5 Types

Adl supports three primitive scalar types:

int: integer values.

real: floating point values5.

bool: boolean values.

Integer literals are any sequence of numerals, optionally prepended with “-”, without

a decimal point. Real literals look like integer literals except with a decimal point

5assumed to be equivalent to double in C.
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and at least one numeral to the right of the decimal point. Boolean literals are true

and false. Adl provides a broad range of overloaded arithmetic and comparator

functions on int and real values and some trigonometric functions on real values.

Two coercion functions, int() and float() are provided to allow conversions between

values of numeric type. Logic primitives such as and, or and not are provided for

boolean values.

Adl supports two aggregate types, vectors and tuples. These types, and their

functions, are described in turn.

Vectors and their functions Vector literals are comma-separated sequences

of zero or more expressions enclosed in square brackets. Examples of valid

vector literals include: [1,-2,3], [true], [1.2,-4.0], [sqr(3.0),-2.3],

[(2,true),(0,false)] and []. Vectors can be nested so, [[],[3,2,1]] and

[[true],[false,true,false]] are valid vectors. All elements of vectors must be of

the same type so literals such as: [1,[2,3]] and [3.4,2] are not allowed.

vector functions There are a number of primitive vector functions including:

length: written #, returns the number of elements in a vector. Example:

# [1,2,3] = 3.

index: an infix function, written ! to randomly access a vector element. Example

[1,2,3]!0 = 1.

iota: takes a integer n and produces a list of consecutive integers from 0 to n− 1.

Mechanism for dynamic allocation of vectors. Example: iota 4 = [0, 1, 2, 3].

map: a function taking a pair consisting of a function f and a vector v and producing

a vector containing the results of applying the function to each element of

the vector. Example: map (plus,[(1,1),(2,2),(3,3)]) = [2, 4, 6] where

plus (x,y) = x + y.

reduce: takes a triple (⊕, z, v) consisting of a binary function ⊕, a value z and

a vector v. reduce returns z if v = [ ]; v1 if v = [v1]; and v1 ⊕ . . . ⊕ vn−1 if

v = [v1, . . . , vn−1]. Example: reduce(plus,0,[1,2,3]) = 6.
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%concatenate two vectors a and b

concat (a:vof int,b: vof int) :=

let

la := #a;

lb := #b;

f x :=

if x < la then

a!x

else

b!(x-la)

endif

in

map (f,iota (la + lb))

endlet

?

Figure 6. An Adl program using both map and iota to concatenate two input
vectors.

scan: takes a pair6: (⊕, v), consisting of a binary function ⊕ and a vector v. scan

returns [ ] if v = [ ]; v1 if v = [v1]; and [v1, . . . , v1⊕. . .⊕vn−1] if v = [v1, . . . , vn−1].

Example: scan(plus,[1,2,3]) = [1, 3, 6].

The semantics of length and index are self-evident. Figure 6 shows a program that

uses both map and iota to concatenate two vectors. This usage of iota, as a generator

of indices, to guide a subsequent map, is quite common.

Vector functions are easily combined. The program in figure 7 uses both map and

reduce to calculate the sum of squares of a vector.

Vector functions may also be nested. The program in figure 8 adds two to every

element of a nested input vector.

The scan function is useful when intermediate values in a calculation are required.

The program in figure 9 calculates the running maximum of a vector of floating-point

numbers. It bears mentioning that all vector operations that can have a parallel

implementation such as map, reduce, and scan will, potentially, be compiled to

parallel code. This means that the programmer must use an associative binary

function in reduce and scan. Failure to do so will lead to non-deterministic results.

6Earlier versions of Adl had a version of scan that took an additional zero-element in its input
arguments. This argument has been eliminated in this version.
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% calculate the sum of squares

%of an input vector

sum_squares (a:vof integer) :=

let

plus (a,b) = a + b;

sqr a = a * a

in

reduce(plus,0,map(sqr,a))

endlet

?

Figure 7. An Adl program to calculate the sum of squares of an input vector using
map and reduce.

% A program to add a constant to every element

% of a nested input vector.

my_const := 2;

map_map_addconst a: vof vof int :=

let

add_const x := x + my_const;

f x = map(add_const, x)

in

map (f,a)

endlet

?

Figure 8. An Adl program that adds a constant to each element of a nested input
vector.
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% running maximum of a vector of reals

running_max a: vof real :=

let

max (x,y) = if x > y then x else y endif;

in

scan (max,a)

endlet

?

Figure 9. An Adl program to calculate the running maximum of a vector of
floating point numbers.

Where the programmer wishes to use a non-associative operator in reduce and scan

the non-parallel variants: reducel,scanl (for left-reduce/scan) or reducer and scanr

(right-reduce/scan) must be used7. Additionally, a function reducep is provided for

functions that do not have a convenient zero-element8. reducep does not take a zero-

element but insists upon a non-empty input vector. reducep is potentially parallel.

This concludes the description of Adl vectors and vector functions. A brief

overview of the Adl tuple type follows.

tuples Tuples are fixed-length aggregates of mixed type. In Adl programs, tuples

are specified as literals such as (2,3) and (true,a,5.0). Tuples can be nested

as in ((a,b),(3,c)) or ((4,5.0,false),b). Literals are the sole mechanism for

expressing and constructing tuples. An example performing such construction is the

function:

vec to pair a := (a!0,a!1)

using a literal to construct a pair out of the first two elements of an input vector.

Members of tuples in Adl are accessed through pattern matching. For example,

first(a, b) := a;

is a polymorphic function to project the first element from a tuple. Patterns do not

need to specify all of the detail in the input tuple. For example, given a function f

7The Adl compiler does not enforce this use but non-determinism ensues if the programmer uses
a non-associative function in reduce and/or scan.

8An example of such an operation is: left (x,y) := x;.
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with the input type:

((int,bool),vof real)

any one of the following declarations is valid:

f ((a,b),c) := ...;

f (x,y) := ...;

f z := ...;

The choice adopted by the programmer is dictated by the parts of the tuple explicitly

accessed on the right-hand-side of the function.

All patterns used in Adl must be irrefutable. A pattern is irrefutable if it cannot

fail to match. The patterns above are all irrefutable. In contrast, the pattern

(a,b,a))

is refutable because it can fail to match when its first and third elements are not the

same. The pattern

(a,[c])

is refutable because it can fail to match if its second element is not a vector of length

one. Adl patterns are used solely for access to tuple elements whereas refutable

patterns can also be used for case-analysis. Adl uses if expressions rather than

patterns for case-analysis.

As a concrete example of the use of tuples and pattern matching, figure 10 shows

a program which zips and then unzips a pair of input vectors. The program is an

identity function, leaving the input unchanged9, but it serves to demonstrate the role

of pattern matching and tuple literals.

This concludes the explanation of Adl types and their primitive operations.

Conditional expressions and iteration are considered next.

2.1.6 Conditional expressions and iteration

Conditional evaluation is expressed using the:

if predicate then consequent else alternative endif

construct which evaluates the boolean expression predicate and evaluates consequent

if it is true or alternative if it is false. Examples containing if expressions have

already been shown.

9Assuming that both input vectors are the same length.
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% a program to zip and then unzip a

% pair of input vectors. Leaving them

% unchanged.

% Precondition: vectors have the same length

zip (a,b) :=

let

f x := (a!x, b!x)

in

map (f,iota (# a))

endlet;

unzip a :=

let

first (x,y) := x;

second (x,y) := y

in

(map (first,a), map (second, a))

endlet;

zip_unzip (a:vof int, b:vof int) :=

unzip(zip(a,b))

?

Figure 10. An Adl program to zip and then unzip a pair of input vectors, leaving
the input unchanged.

Iteration is expressed using while functions. while functions take the form:

while(state transformer , predicate function , state)

This expression applies the state transformer to the state to produce a new state

while the predicate function, applied to state, is true. while is used whenever the

bounds of iteration cannot easily be determined prior to the beginning of iteration.

Figure 11 shows an Adl program for calculating an approximation of the square root of

a floating-point input value, using Newton’s method. The while loop will terminate,

for positive input values, after a small number of iterations.

This concludes the overview of the Adl language in the current implementation.

A brief description of possible enhancements for future versions of Adl follows.
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% calculate the square root of a positive

% input value

epsilon := 0.00001;

newtons a:real :=

let

abs x := if x > 0 then x else -x endif;

finished x := abs((x * x) - a) < epsilon;

next_guess x := (x + (a/x))/2.0

in

while (finished,next_guess,1.0)

endlet

?

Figure 11. An Adl program using while to calculate the square root of a floating
point input value using Newton’s method.

2.2 Future enhancements

There are a number of enhancements both minor and major that are likely to appear

in future versions of Adl. Perhaps the easiest enhancement is the use of syntax-level

transformations (syntactic sugar) to increase conciseness. Applications of syntactic

sugar include:

Operator substitution: allowing the programmer

to use expressions like reduce(+,0,[1,2,3]) instead of the more awkward

reduce(plus,0,[1,2,3]), which requires the programmer to define plus.

Operator sectioning: allowing the programmer to use operator sections like: (+1)

in contexts such as: map((+1),[3,4,5]).

Refutable patterns: allowing the programmer to use patterns for case analysis in

function definitions.

Adl would also be enhanced with support for more types. Useful additions include

a primitive character type and a type for multi-dimensional vectors with fixed lengths

in each dimension10.

10There is much scope to leverage information relating to the shape as well as the basic type of
data structures. Jay uses the concept of shape-checking in his language FiSh[86].
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The addition of recursion will increase the ease with which many functions are

defined. Recursion will need to be supported by primitives allowing incremental

construction and destruction of the vector data-type. This will probably entail adding

an explicit concatenate (++) or cons primitive.

Finally, the addition of a facility for modules would increase scalability and re-

usability in an Adl software system. Any module system will need to cater for the

propagation of types through the program.

2.3 Summary

Adl is a simple strict functional language with a few primitive base types and

aggregate types for vectors and tuples. Adl has constructs supporting: the

introduction of local scope, easy access to elements of vectors and tuples, conditional

evaluation and iteration. Adl also admits a limited amount of polymorphism to

facilitate some code re-use within programs. A number of second-order operations on

vectors such as map, reduce and scan are provided to structure programs and serve

as potential sources of parallelism. Adl is quite expressive in its current form but

there is scope for enhancement with features such as a richer type system and the

admission of recursive definitions in future implementations. As it stands, Adl is a

good source language for this experimental implementation.
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Bird-Meertens Formalism

Bird-Meertens formalism [18, 58] (BMF) plays a central role in the Adl

implementation. This chapter introduces the sub-set of BMF used and its purpose in

this implementation. The chapter is divided into three parts. Section 3.1 introduces

the salient features of BMF, section 3.2 briefly defines the role of BMF as a medium for

program improvement in this work, and, finally, section 3.3 very briefly summarises

this chapter.

3.1 Introduction to Bird-Meertens Formalism

In essence, Bird-Meertens Formalism (BMF) is functional programming optimised for

the purpose of program transformation1.

The notation of BMF is loosely defined and extensible. BMF code is not restricted

to point-free form but it is at its most transformable when functions are written in

point-free form (see [38] for a good exposition on this topic). Functions written in

point-free form have no formal parameters and contain no names other than those

referring to other functions. There are no variables2, in the conventional sense, in

point-free programs.

For a concrete illustration of point-free form consider the following conventional

definition of abs, a function to generate the absolute value of its input:

abs x = sqrt(sqr x)

1Alternative names relating to BMF include squiggol , point-free-form and compositional-form .
2In this chapter, the word variable means a named place for storing a value generated at run-time.
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In point-free form we define it thus:

abs = sqrt · sqr

where · stands for function composition. In point-free form, we are not permitted

to use variables, such as x in the example above, to reference values we have put

aside for later use. The only names used in point-free programs are those of functions

defined prior to run-time.

Point-free form ensures that producers of data and consumers of data are

juxtaposed. This spatial locality paves the way for code to be transformed through

simple rewrites using equalities3. Together, the open ended notation, and the open-

ended set of equalities make up a rich programming calculus, applicable to a number

of aggregate types. This calculus is BMF. The remaining parts of this section review

the aspects of this calculus relevant to this work4 starting with a simple introduction

to the transformation process.

3.1.1 Some introductory transformations

As an example of the application of equalities, consider the following function

definitions:
abs = sqrt · sqr
sqr = × · (id, id)◦

a simple transformation, corresponding to no more than an in-lining, or instantiation,

of the right-hand-side of the equations is:

abs

= {Definition: abs}
sqrt · sqr

= {Definition sqr}
sqrt · × · (id, id)◦

Note that all substitutions are equals-for-equals substitutions. Also note that each

step is annotated with the equality applied (written in braces). These annotations

are a commentary of the transformational proof. Every BMF transformation comes

3This is in contrast to the transformation processes for more conventional notations which require
some book-keeping to trace data-dependencies through variables.

4We use only a subset of the rich variety of constructs available in BMF and point-free
programming in general, the reader is referred to [20] and [39].
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with its own proof. A core motivation for BMF is this audit-trail of proof as the

program is transformed and, hopefully, improved.

The (id, id)◦ function in the program above is new. The ( , . . . , )◦, or alltup5

function, is a second-order function that applies its constituent functions to a copy

of its input, forming a tuple consisting of the results. So, for example:

(f, g)◦ v

will return the pair: (f(v), g(v)). The id6 function is the identity function so: (id, id)◦v

returns (v, v).

The transformations above illustrate the methodology of BMF but they have very

narrow applicability. The equality7

sqr = × · (id, id)◦

can only be used to convert the name sqr to its long-hand equivalent or vice-versa.

Much more general transformations exist. Some of these are now reviewed.

3.1.2 General Transformations and Program Structures

Though narrow equalities, such as the ones we have just seen, are an important part of

BMF, the most useful and powerful equalities are those that apply to many functions.

As an example, given a function π1 that extracts the first element of an input pair,

the following equality:

π1 · (f, g)◦ = f

can be applied to effect dead-code elimination. Its applicability is not dependent on

the contents of f or g8, making it very general. A counterpart of the above equality

5The name “all-applied-to for tuples” is derivative of the “all-applied-to” construct for lists ([ ]◦)
which appears in Bird’s seminal work on BMF[18](section 2.4). There seems to be no agreed-upon
notation for alltup. alltup is a generalisation of the pair function and the split function < , >, both
mentioned by Bird in [20]. It is also a generalisation of the △ operator described in [39] and similar
to a construct used by Gorlatch[63] and Roe[120]. All of these functions map an object in a category
into a product.

6primitive BMF functions are written in sans-serif font.
7The equality states that sqr is a function that duplicates its argument and then multiplies the

duplicates.
8This must be qualified with note that if there is some valid input value v for which g(v) = ⊥ and

f(v) 6= ⊥ then the termination properties of the program will change. This is rarely an impediment
to transformation in this implementation.
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is:

π2 · (f, g)◦ = g

Other powerful equalities involving alltup functions are:

f · (g, h)◦ = (f · g, f · h)◦

and

(f, g)◦ · h = (f · h, g · h)◦

both of which show how other functions can be absorbed into alltup functions.

Equalities, like the ones above, can be used to prove other, more specific, equalities.

For instance, the equality

(f · π1, g · π2)
◦ · (h, k)◦ = (f · h, g · k)◦

can be proved in the following way:

(f · π1, g · π2)
◦ · (h, k)◦

= {f · (g, h)◦ = (f · g, f · h)◦}
(f · π1 · (h, k)◦, g · π2 · (h, k)◦)◦

= {π1 · (f, g)◦ = f}
(f · h, g · π2 · (h, k)◦)◦

= {π2 · (f, g)◦ = g}
(f · h, g · k)◦

Any equalities generated go into our tool-set for transforming programs. Also note

that not all equalities have to be generated using previously defined equalities.

Equalities can also be generated from known properties of functions using any proof

technique at hand9.

Because alltup functions can assume an infinite number of arities, producing pairs,

triples, quadruples, quintuples and so on, there is an infinite set of equalities that

apply to them. Fortunately, it is not difficult to systematically generate and apply

such equalities10.

alltup functions, their corresponding π functions and their attendant equalities

are concerned with the creation and use of tuples. A different set of functions and

9Unfortunately, such proofs sometimes require insight which inhibits mechanisation of the
transformational process.

10This implementation uses such systematic techniques during tuple optimisation defined in
chapter 5
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equalities apply to list-like aggregates. These aggregates, functions and equalities are

briefly reviewed next.

3.1.3 Functions working with list-like data

Certain aggregate datatypes, including cons-lists, concatenate-lists, arrays, sets, and

bags11 have the common charateristic of being containers for values of a single type12.

BMF theories have been developed for each of these, and a number of other, aggregate

types. Functions such as map and reduce apply quite naturally to these types and

many, very useful, equalities apply to these, and other related, functions. The data-

type that underpins the Adl implementation is the concatenate list. Concatenate lists

are defined by the constructors:

[ ]K = [ ]

[·] x = [x]

++ xs ys = xs++ ys

Where []K is a function from unit to the list type, [·] (make singleton) makes a

singleton list out of an element of the base type, and the ++ function concatenates

two lists. A key property of this type is the associativity of ++ which allows the lists to

be decomposed and processed in parallel13. All of the list functions and equalities that

follow are defined on these concatenate-lists. For consistency with the corresponding

datatype in Adl, concatenate-lists will henceforth be referred to as vectors.

The most important vector functions are map and reduce. map, written ∗, applies

the preceding function to each element of a vector. So, for example:

sqr∗

will square each element of an input vector. reduce, written /, inserts the preceding

binary function between each element of a vector and evaluates the resulting

11Trees and graphs also fall into this category.
12Contrast this with tuples, which have a fixed number of elements of mixed type.
13Contrast this with cons-lists, which have to be pulled apart one element at a time.
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expression. In addition, reduce often takes an additional value, denoted the zero-

element, that is returned in the event that the input vector is empty. So, for example:

+/0

will find the sum of an input vector and return 0 in the event that the input vector

is empty. Another example using reduce is:

++ /[ ]

which removes a level of nesting from a nested input vector14. The associativity of

the application of the binary operation is arbitrary. This means an application such

as:

++ /[ ][[1], [2], [3, 4]]

could produce:

([1]++ [2])++ [3, 4]

or it could produce:

[1]++ ([2]++ [3, 4])

This is not a problem when the binary operator is associative as above. However

directed versions of reduce, →/ or ←/ are required when the binary operator is non-

associative15.

Many general transformations apply to map and reduce. One rule, specialising the

more general promotion theorem [58], is

f ∗ ·++ /[ ] = ++ /[ ] · f ∗ ∗

which says, on the LHS, that flattening a nested list and applying f to each element

of the less-nested list is the same, on the RHS, as applying f to every element of the

nested list and then flattening it. Viewing the above equation as a transformation

from the LHS to the RHS is the same as pushing ++ /[ ] leftwards through f∗.
A second specialisation of the promotion theorem, applying to reduce, is

⊕/e ·++ /[ ] = ⊕/e · (⊕/e)∗

which says (LHS) flattening a nested list and then reducing that list with ⊕, is the

same as (RHS) reducing all of the inner elements of the nested list with ⊕ and then

14This function is often called flatten.
15Such operations are inherently sequential. Some optimisations in BMF such as the application

of Horner’s rule[18] produce such directed reductions, impacting on the potential for parallelism.
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reducing the resulting list with ⊕. Applying the equality above from left-to-right can

be viewed as a transformation that pushes ++ /[ ] leftwards through ⊕/e, absorbing

the former in the process.

We will re-visit the above equalities in chapter 6 when we describe parallelisation

of BMF programs.

There are many other identities. One intuitive identity is

f ∗ ·g∗ = (f · g)∗

which describes how two map operations can be merged into one. The application

of this equality from left to right is equivalent to merging two loops that apply a

function to each element of a vector.

Transformations to mixed list and alltup functions can be applied independently

as in the example:

(f∗, g∗)◦ · h∗
= {(f, g)◦ · h = (f · h, g · h)◦}

(f ∗ ·h∗, g ∗ ·h∗)◦
= {f ∗ .g∗ = (f.g) ∗ (applied twice)}

((f.g)∗, (g.h)∗)◦

The identity:

zip.(f ∗ .π1, g ∗ .π2)
◦ = ((f.π1, g.π2)

◦) ∗ .zip

is interesting because it shows how the levels of nesting for alltup and

map functions can be swapped. zip is a function that takes a pair

of lists ([x0, . . . , xn−1], [y0, . . . , yn−1]) and converts it into a list of pairs

[(x0, y0), . . . , (xn−1, yn−1)]. The identity above shows how moving a zip function can

be used to consolidate two map functions (LHS) into one map function (RHS)16.

16There are generalisations of zip that convert arbitrary length tuples of lists into a list of arbitrary
length tuples. One of these, in called transk, was used in FP*[145] and implemented as a primitive.
Another version was implemented in the source code of a demonstration program for Henk[110], a
language with a Pure type system, implemented by Roorda[121]. Such a generalisation would make
a useful future addition to the BMF dialect used in the Adl project.
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A similar transformation applies to reduce:

(⊕/e · π1,⊗/d · π2)
◦ = (⊕ · (π1 · π1, π1 · π2)

◦,⊗ · (π2 · π1)
◦, (π2 · π2)

◦)◦/(e,d)◦ · zip
where

# · π1 = # · π2

merging two separate reductions (LHS) into a single reduction (RHS)17. The equality

above is conditional. It only works if we can guarantee the length of its first argument

is the same as the length of the second argument. This fact is denoted by the

predicate after the where clause. # is the list-length operator in BMF. Several of

the transformations used in this work are based on such conditional equalities.

This concludes our brief discussion on some basic list transformations. There

are many other transformations on many other functions. The ones above serve as

examples, but they are important examples. The proof systems underlying these

equalities are to be found in category theory. A strong exposition of the categorical

foundations of BMF can be found in [20] and some more recent work expanding the

applicability of point-free BMF can be found in [40].

3.1.4 Homomorphisms

Homomorphisms18 are functions whose structure matches the structure of the type

on which they operate. A homomorphism on a list type is a function that has a case

for each constructor in the list type. Recall, the constructors for the list type we use

in this work are:
[ ]K = [ ]

[·] x = [x]

++ xs ys = xs++ ys

A homomorphism on concatenate-lists is a function h with the following structure:

h [ ] = e

h [x] = fx

h(xs++ ys) = (h xs)⊕ (h ys)

17The explanation for the function (π1 · π1, π1 · π2)
◦ to the right of ⊕ is that reduce will present

each instance of its binary operator with a pair of operands. In the RHS of the equality above the
pair presented to ⊕ · (π1 ·π1, π1 ·π2)

◦ has the form: ((p1, q1), (p2, q2)) where p1 and p2 are the values
destined for the binary ⊕ function. (π1 · π1, π1 · π2)

◦ is the code to extract these two operands to
form the pair (p1, p2). Similar reasoning applies to the code to the right of the ⊗ function.

18Homomorphisms on an initial algebra are called catamorphisms [58, 20, 40]. The
homomorphisms discussed here are also catamorphisms.
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where each line matches a constructor of the concatenate list. The value e is a constant

that is produced if the input list to h is empty. f is applied to each element of the

list. ⊕ is used to join list elements after they have been processed by f . e is assumed

to be the left and right identity of ⊕, that is: e⊕ x = x⊕ e = x.

The notation above is a clumsy way of writing homomorphisms. A simpler way

is to simply list the values of e, f and ⊕:

h = ([ e, f,⊕ ])

Homomorphisms can also be uniquely expressed as a combination of map and

reduce19:

h = ⊕/e · f∗

3.1.4.1 The importance of homomorphisms

Homomorphisms are important for several reasons including:

Versatility: Homomorphisms can be used to express a wide variety of functions.

They are pertinent to many programming problems.

Transformability: map and reduce have many useful equalities that apply to

them. The many functions that can be expressed as a homomorphism can

be modified/improved by these equalities.

Parallelisability: both map and reduce have obvious and efficient parallel

implementations.

Table 1 gives some examples of list homomorphisms. A much bigger class of functions

can be expressed as a homomorphism followed by a projection (π function). The

existence of these additional functions functions, called near-homomorphisms[36],

adds greatly to utility of map and reduce.

Relevance of homomorphisms to the Adl project The Adl language contains

no single construct corresponding to a homomorphism and there are no parts of the

Adl compiler designed specifically to exploit homomorphisms, yet homomorphisms,

19There is a subtle difference between the e in a homomorphism, which is a constant and the e
in reduce which is a constant function. In this work, the distinction between constant and constant
function is of little importance. The implementation can be easily adjusted to cope with one or the
other.
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Homomorphism Description

sum = ([ 0, id, + ]) The function to find the sum of a list of numbers.
prod = ([ 1, id,× ]) The function to find the product of a list of

numbers.
alltrue p = ([ true, p,∧ ]) The function to test if px is true for all elements x

of the input list.
onetrue p = ([ false, p,∨ ]) The function to test if px is true for at least one

element x of the input list.
max = ([ −∞, id, ↑ ]) The function to find the maximum value in a list

of numbers using the ↑ function to return the
maximum of two numbers.

min = ([∞, id, ↓ ]) The function to find the minimum value in a list
of numbers.

length = ([ 0, 1, + ]) The function to find the length of a list.

rev = ([ []K , [·], ∼
++ ]) The function to reverse a list using the

∼
++

(concatenate in reverse) function.
sort = ([ []K , [·],∧∧ ]) The function to sort a list using the ∧∧ (merge)

function.
map f = ([ []K , ([·] · f), ++ ]) Formulation of map f as a homomorphism.

reduce ⊕ e = ([ e, id,⊕ ]) Formulation of reduce ⊕ e as a homomorphism.
scan ⊕ e = ([ [e], [·],⊙ ]) Formulation of scan⊕ e as a homomorphism where

xs⊙ys = xs++(((lastxs)⊕)∗ys) and lastxs returns
the last element of the vector xs .

id = ([ []K , [·], ++ ]) The identity function on lists.

Table 1. Some list-homomorphisms.

and their near-relatives, are very important to the Adl project. This importance

stems from the fact that the Adl language is designed to encourage the programmer to

express solutions in terms of aggregate functions including map and reduce. Any code

expressed in terms of either of these two functions inherits their transformability and

their potential for parallelism. Moreover, their combination forms a homomorphism

which can be used to express the solution to a large variety of problems. The relevance

of homomorphisms to Adl stems from the fact that the primitives of Adl can be used

to express homomorphisms, along with the fact that homomorphisms can be used to

express readily tranformable solutions to many problems.
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3.1.4.2 The role of scan

Adl provides a small family of scan primitives but the BMF equivalent: scan20,

written //, has not yet been mentioned. Informally the semantics of // is:

⊕// [x0, x1, . . . , xn−1] = [x0, x0 ⊕ x1, . . . , x0 ⊕ x1 ⊕ . . .⊕ xn−1]

scan is a very versatile operation, useful when the intermediate results of a reduction

are needed. As indicated in table 1, scan can be implemented in terms of map and

reduce but, due to the inefficiency of doing this, it usually kept as a primitive in

its own right. There are several useful equalities that apply to scan, which do not

bear direct mention here, but a sample of these can be found in [64]. Like reduce,

some varieties of scan have a fast parallel implementation. The Adl implementation

exploits this parallelism.

This completes the overview of BMF. This description barely scratches the surface.

There are many more BMF types, primitives and equalities available. The reader

is referred to [20] for a good introduction to the theoretical basis of BMF and

the methodology and to [78] for an overview of some more recent developments in

optimisation of parallel BMF.

We have also omitted descriptions of several of the BMF functions used in the Adl

implementation. These will be introduced in later chapters as they become relevant.

A description of the role of BMF in the Adl implementation follows.

3.2 The role of BMF in the Adl project

Figure 12 highlights the role of BMF in the Adl implementation. The places where

BMF is produced or consumed are highlighted in black. The primary role of BMF

in this project is as a medium for program improvement. The translator emits BMF

code which is then improved by the optimiser resulting in faster code. The syntax

of optimised code is slightly richer due to new primitives injected to increase the

efficiency of code21. The parallelisation process injects and propagates implicitly

20Sometimes called prefix.
21All other things being equal, a richer syntax in an intermediate form is a bad thing: it

gives us more cases to handle. Some rationalisation of this language may be possible in future
implementations.
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Figure 12. The role of BMF in the Adl project. The places where BMF acts as a
bridge between two stages are highlighted in black.

distributed BMF primitives through code22. At all stages, all code is expressed

completely in point-free form down to the level of BMF primitives. To a large

extent, this is made feasible by code-inlining which is made feasible by the absence

of recursion. The aim of using BMF in this project is to attempt to exploit, to the

maximum possible extent, the transformability of point-free BMF. That is, to find

out what techniques are most productive in the automated improvement of such code.

3.3 Summary

This ends our brief introduction to BMF and aspects of the point-free variant used in

the Adl implementation. To summarise: BMF is unmatched as a medium for program

transformation and improvement; transformations in BMF rely on mathematical

equalities, making them safe, and to an extent, mechanisable; it is this safety and

mechanisability that we aim to exploit in the Adl implementation. As a final note,

it should be said that point-free BMF with its need for explicit transport of values is

not an easy notation for programming. This lack of ease motivates the use of a more

22In theory, such parallelisation may seem unnecessary since it is possible to directly map the
data-flow-graph formed by BMF code and its input onto a machine with an unbounded number of
virtual processors. However, this approach rules out any algorithms extract efficiency by recognising
the boundary between on-node and distributed processing. As an example, the efficient algorithm
for parallel scan given in chapter 6 relies upon such knowledge.
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friendly source language, Adl, and the implementation of an Adl to BMF translation

process. This translation process is the subject of the next chapter.



Chapter 4

Adl to BMF translation

The last two chapters explored two different notations. The first notation, Adl, is a

small strict functional language with built-in second-order functions. The second

notation, point-free BMF, is a calculus for programming, based on a notation,

consisting entirely of functions, glued together by second order functions.

This chapter describes a translation process from Adl to BMF. The first section

of this chapter consists of a brief statement of the role of the translator in this

project. The second section contains a brief, informal summary of what the translator

does. The third, and largest, section defines the translator formally. The detailed

explanations in this section can be skipped on a first reading. The fourth section

shows examples of code produced by the translator and assesses the efficiency of this

code. Finally we briefly summarise related work.

4.1 What the translator does

In this work, the translator has the task of converting between Adl programs and BMF

programs. The nature of Adl and BMF, and their role in this work, is summarised

below.

Adl and its role Adl and the point-free BMF1 used in this project share a strict

functional semantics and a reliance on second order functions.

1Henceforth, we will use term “BMF” to refer to the dialect of point-free BMF used in this
project.

39
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The main point of divergence is that Adl, like most languages, supports variables

as means of storing run-time data while BMF does not2. Variables provide

programmers with an abstraction of a, single-assignment, random-access store.

Such a store lets the programmer decouple consumers of data from producers of

data. With variables, the programmer concentrates more on the actual production

and consumption of values and less on how to get values between producers and

consumers, the implicit store handles the problem. This separation of concerns makes

programming simpler and is largely taken for granted, especially in non-distributed

environment where the random access store is efficiently realised in hardware.

We believe it is valuable for programmers to maintain the abstraction of a random-

access store even in a distributed environment3. Adl, the source language for this

implementation does maintain this abstraction.

BMF and its role BMF does not support variables as a means of storing run-time

data. In BMF a function producing data and a function consuming that data must be

composed with each other. Transport of data is carried out by passing values through

sequences of composed functions. From the point of view of the BMF programmer

storage exists only fleetingly in the form of the immediate input and output values of

the currently executing function.

BMF is easily transformed through the localised application of program identities.

Moreover, its primitives have naturally parallel implementations. These two

properties make it, a priori, a good candidate for the intermediate form of our

implementation.

The translator’s task The translator assumes that the Adl source file has been

parsed and type-checked before it begins its operations4. The translator takes an Adl

abstract syntax tree and converts all of it to BMF. The translator is highlighted in

black in the map of our implementation shown in figure 13. One goal of this project is

2In other words, Adl supports point-wise functional programming while the BMF notation we
use is point-free.

3There is a strong opposing argument that, for the sake of efficiency, the distinction between access
to local values and to remote values should be visible to, and under the control of, the programmer.
We believe the need for this distinction is diminished for Adl where it is most convenient for the
programmer to use constructs with efficient parallel implementations and the cost of data movement
is statically reduced by the compiler.

4Parsing and type-checking of Adl programs are reasonably straightforward activities and of little
research interest so we omit details of these operations from this document.
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Figure 13. The Adl project with the translation stage highlighted in black.

to leverage the transformational properties of BMF to the maximum possible extent.

In keeping with this goal, the translation process was kept as straightforward as

possible. Any optimisation of the Adl source or optimisation during the translation

process is eschewed in favour of performing that optimisation once the program is

expressed in BMF5.

The primary change wrought by the translation process is the elimination of

variables. Other things including the names and semantics of primitive functions are

preserved to the maximum possible extent. An overview of the translation process is

given next.

4.2 Overview of translation

The Adl to BMF translator’s primary task is to change the method of data access from

variables to functions. During translation, each reference to a variable is replaced by

a function that projects, the value from the values in scope. So, given the program:

simple(a:int,b:int) := a

our translator produces the BMF code

5An open question is what optimisations are more easily performed while the program is is still
expressed in Adl. Certainly some simple substitutions and optimisations such as common sub-
expression elimination appear to be easily done in Adl. The question of what is best done in Adl
and what is best done in BMF is interesting future work.



CHAPTER 4. ADL TO BMF TRANSLATION 42

π1

that is, the function that returns the first value out of the input tuple.

A slightly more complex example

simple2(a:int,b:int) := b - a

is translated to the BMF code

− · (π2, π1)
◦

where the two input arguments are permuted before the subtraction operation is

performed.

Declaration sequences In the programs above, the only values in scope are

formal parameters. Scope is more complex in Adl programs that contain declaration

sequences. Each variable declaration in a sequence introduces a new value to the

previous scope. The translator must produce BMF code to transport values in scope

to places they are used. The Adl program:

not_as_simple(b:int) :=

let

a = 20

in

b - a

endlet

translates to:

− · (π1, π2)
◦ · id · (id, 20)◦

Reading from right to left, the first part of this program, (id, 20)◦, wraps the input

value with the value 20 to form a tuple

(val(b), 20)

where val(b) denotes the value that replaces the parameter b at runtime. The middle

id in the BMF code is an artifact of the translation process. The last part, −·(π1, π2)
◦,

extracts both values from the input tuple and subtracts one from the other.
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Functions in declaration sequences Function declarations are treated differently

from variable declarations. Variable declarations are converted immediately into code,

whereas no code is produced when a function declaration is encountered. Instead a

closure is created consisting of the function’s code, formal parameters and referencing

environment at the time of function declaration. Every time the function is called

code for the function is built, using the information in the closure and information

about the current referencing environment, and in-lined into the target program6.

As a concrete example of this process, consider the translation of the code:

function_tester a: int :=

let

f(x,y) := x + y;

b := 20

in

f(a,b)

endlet

into the BMF code:

+ · (π1 · π2, π2 · π2)
◦ · (id, (π1, π2)

◦)◦·
id · (id, 20)◦

The start of the program, on the second line above, corresponds to the

declaration b := 20. There is no code corresponding to the function declaration

f(x,y) := x + y. Instead the first line:

+ · (π1 · π2, π2 · π2)
◦(id, (π1, π2)

◦)◦

corresponds to the call f(a,b). The first part of this line to be executed:

(id, (π1, π2)
◦)◦

appends the values of the actual parameters of f to the end of the input tuple. The

end of the program, at the beginning of the first line:

+ · (π1 · π2, π2 · π2)
◦

is the body of the function f applied to the actual parameters.

The flows of data through the above program are illustrated in figure 14. The

6In-lining of calls to recursive functions is problematic. The Adl implementation currently avoids
this problem by banning recursive definitions. Translation of recursive functions into BMF is an
active research topic[78, 40].
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Figure 14. The translated code for function tester.Adl (top), a diagrammatic
rendering of this code (middle) and a description of the data at various points of

execution (bottom).

translated code for function tester.Adl is shown at the top of the diagram. A

graphical representation of the translated code is in the middle of the diagram. The

text below the diagram shows the set of input/output values at each stage of the

program. It is worth noting that, even though the function f accesses only the values

attached to its formal parameters, the code also transports other copies of these values

just in case they might be accessed via the variables a and/or b inside the body of

f. This leads us to an important point: the translator has a policy of producing

code that transports every value that was previously visible to the code of a function

to each call of that function. This policy is conservative: the code never fails to

transport a value that is needed. The drawback of the policy is that values that are

not needed are transported along with the ones that are.

The results of the translator’s conservative policy are visible in figure 14; the

code produces correct results but is more complex than required. In this work,

the translator’s sole responsibility is producing a correct translation. Later on, the

optimisation stage of the implementation, described in chapter 5 attempts to minimise

the amount of data transported.

The role of types in translation The Adl typechecker monomorphically

instantiates and annotates every node in the Adl syntax tree. The translation process

does not directly utilise this type information but it is useful for parallelisation and

code generation so it is assumed the translator preserves all type information.
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This concludes our brief overview of the translation process. Next, we describe

the translation process in much more detail, presenting the semantic rules used to

build our prototype translator.

4.3 The rules of translation

The prototype translator Adl to BMF is formally defined using Natural Semantics[89].

Natural Semantics is a variety of structural operational semantics (see [74] for a

very clear introduction). By using natural semantics we can describe an aspect of

a language or a process in terms of relations between expressions. These relations

are written as rules. A set of rules can be used to prove if a relation holds between

expressions. Moreover, if the expressions given to a set of rules is partially undefined,

the rules can be used to instantiate the undefined parts.

The rules in this chapter define the relationship between Adl code and the BMF

code produced by the translator. The relationship can be written as:

A⇒ B

where “⇒” means “translates to”. If B is unspecified the translator rules instantiate

it to the first valid translation of A (assuming one exists). If B is specified then the

relationship acts as a predicate that is proven when B is a valid translation of A.

The translator’s semantic rules have been implemented and tested using the

Centaur[24] system from INRIA. Centaur provides the means to execute a definition

in Natural Semantics against expressions in the input syntax of the definitions. In

the translator implementation, our rules are applied to Adl programs and BMF code

is automatically instantiated on the other side of the rule.

4.3.1 The source and target syntax

The abstract syntax definitions of the source and target languages follow starting

with a definition of the Adl abstract syntax.
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4.3.1.1 Adl syntax

In Centaur, syntax definitions are divided into two parts. The first part defines

the classes of objects, called Phyla that appear in the abstract syntax. The Phyla

mappings serve to convey the role of each part of the syntax to the reader.

The second part is the abstract syntax itself. It is written in a variant of

extended Backus-Naur form. Here, Adl construct names are in typewriter font.

Phyla names are in capitalised italics. Operators of fixed arity (e.g. map(ID,EXP))

have round brackets. Operators with a list of descendants have square brackets (e.g.

decls[DEC ∗])

A superscript of ∗ inside square brackets indicates zero or more occurrences of

the objects of the preceding phyla name. A superscript of + denotes one or more

occurrences7.

Empty parentheses, following an operator (e.g. int()) show that it has no

descendants. Other terminal objects whose range of possible values is too large to

enumerate (e.g. REAL) are defined by “implemented as” clauses. The domain from

which these values are drawn is described in English.

The following definition is the complete abstract syntax of Adl so it is quite

lengthy8. It is included as a reference for the Adl expressions in the translator rules.

The most relevant aspect of the syntax for the reader is the allocation of syntax

objects to phyla. Phyla names are used to denote the type of expressions in the

translator rules.

Phyla

PROG 7→ Programs, DECLS 7→ Declarations, DEC 7→ Declaration,

EXP 7→ Expressions, PAT 7→ Patterns , TYPE 7→ Type specifier ,

ID 7→ Identifier , IDT 7→ Optionally typed identifier ,

BOP 7→ Binary operator , UN OP 7→ Unary operator , NUM 7→ Integer ,

REAL 7→ Real .

7Ideally, we would have a +2 superscript for items in a tuple but this is not supported by Metal,
the Centaur language used to define this syntax.

8One reason for this length is the explicit overloading of primitive arithmetic operations. Later
versions of this implementation will insert coercion operations during the type-checking phase.
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Abstract syntax

PROG ::= pr(DECLS)

DECLS ::= decls[DEC ∗]

DEC ::= vardec(IDT,EXP) | fundec(IDT,PAT,EXP)

EXP ::= let(DECLS,EXP) | funapp(ID,EXP) | if(EXP,EXP,EXP) |
while(ID,ID,EXP) | map(ID,EXP) | binop(BOP,EXP,EXP) |
iota(EXP) | reduce(ID,EXP,EXP) | reducer(ID,EXP,EXP) |
reducel(ID,EXP,EXP) | reducep(ID,EXP) | reducelp(ID,EXP) |
reducerp(ID,EXP) | scan(ID,EXP) | scanl(ID,EXP) |
scanr(ID,EXP) | uop(UN OP,EXP) | vecl[EXP ∗] | ID | NUM |
REAL | tuple[EXP+]

PAT ::= ID | typed id(ID,TYPE) | pat list[PAT ∗]

TYPE ::= int() | real() | bool() | vof(TYPE) | type tuple[TYPE+]

IDT ::= ID | typed id(ID,TYPE)

BOP ::= and() | or() | eq() | eqii() | eqir() | eqri() | eqrr() | eqbb() |
neq() | neqii() | neqir() | neqir() | neqri() | neqrr() | neqbb() |
leq() | leqii() | leqir() | leqri() | leqrr() | leqbb() |
geq() | geqii() | geqir() | geqri() | geqrr() | geqbb() |
gt() | gtii() | gtir() | gtri() | gtrr() | gtbb() |
lt() | ltii() | ltir() | ltri() | ltrr() | ltbb() |
plus() | plusii() | plusir() | plusri() | plusrr() |
minus() | minusii() | minusir() | minusri() | minusrr() |
times() | timesii() | timesir() | timesri() | timesrr() |
div() | divii() | divir() | divri() | divrr() |
power() | powerii() | powerir() | powerri() | powerrr() |
index() | intdiv() | mod()

UN OP ::= uminus() | uminusi() | uminusr() |
length() | neg() | round() | float() | trunc() |
sin() | cos() | tan() | asin() | acos() | atan()

BOOL ::= true() | false()
ID ::= id implemented as a string

NUM ::= num implemented as an integer

REAL ::= real implemented as a real number
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4.3.1.2 BMF syntax

The conventions followed in BMF syntax are very similar to those followed for Adl.

Primitive BMF functions are defined in sans-serif font to help further distinguish

target and source code in the rules9.

The phyla and abstract syntax definition are each divided into two parts. The

first parts are the core of the target language. The second parts are definitions of

auxiliary constructs. The auxiliary constructs are used to set up an environment in

which the translation can take place, acting as scaffolding for the translation process.

Objects defined in the Auxiliary syntax do not appear in the target code produced

by the translator.

Finally, the abstract syntax of types defines valid type annotations for functions

in BMF programs. All functions in BMF programs are annotated with a type

from the B FTYPE phyla. The syntax for types reflects the restriction of user-

defined functions to being first-order and uncurried. It should be noted that type

annotations are, currently, not exploited by the translator or optimiser phases of this

implementation so we leave them implicit in the rules shown in this chapter and the

next. Types are exploited during parallelisation so we will see them again in chapter 6.

Phyla

B EXP 7→ Expressions, B K 7→ Constant functions ,

B OP 7→ Operators, B INT 7→ Integers, B REAL 7→ Real numbers

Auxiliary Phyla

B ENV 7→ Environment, B VAR 7→ Variable environment

B VB 7→ Variable binding, B VOD 7→ Variable or Dummy entry ,

B FUN 7→ Function environment, B FB 7→ Function binding ,

B CLOS 7→ Function closure, B NUM 7→ Number , B V 7→ Variable name

Type Phyla

B FTYPE 7→ Function types , B TYPE 7→ Non-Functional types ,

B TVAR 7→ Type variables

9Our Centaur implementation does not maintain an explicit distinction between source and target
syntax, they are both components of the same syntax definition.
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Abstract syntax

B EXP ::= b comp(B EXP,B EXP) | b alltup[B EXP+] | b con(B K ) |
b allvec[B EXP ∗] | b op(B OP) | b id() | b map(B EXP)|
b reduce(B EXP,B EXP) | b reducel(B EXP,B EXP) |
b reducer(B EXP,B EXP) | b reducep(B EXP) | b reducelp(B EXP) |
b reducerp(B EXP) | b scan(B EXP) | b scanl(B EXP) |
b scanr(B EXP) | b if(B EXP,B EXP,B EXP) |
b while(B EXP,B EXP) | b addr(B NUM,B NUM ) |

B K ::= b true() | b false() | B INT | B REAL

B OP ::= b iota()| b and()| b op()| b distl()|
b eq() | b eqii() | b eqir() | b eqri() | b eqrr() | b eqbb() |
b neq() | b neqii() | b neqir() | b neqri() | b neqrr() | b neqbb() |
b le() | b leii() | b leir() | b leri() | b lerr() | b lebb() |
b ge() | b geii() | b geir() | b geri() | b gerr() | b gebb() |
b lt() | b ltii() | b ltir() | b ltri() | b ltrr() | b ltbb() |
b gt() | b gtii() | b gtir() | b gtri() | b gtrr() | b gtbb() |
b plus() | b plusii() | b plusir() | b plusri() | b plusrr() |
b minus() | b minusii() | b minusir() | b minusri() | b minusrr() |
b times() | b timesii() | b timesir() | b timesri() | b timesrr() |
b div() | b divii() | b divir() | b divri() | b divrr() |
b power() | b powerii() | b powerir() | b powerri() | b powerrr() |
b intdiv() | b index() | b mod()

b uminius() | b uminusi() | b uminusr() |
b and() | b or() | b length() | b neg() | b round() | b trunc() |
b float() | b sin() | b cos() | b tan() | b asin() | b acos() | b atan()

B NUM ::= b num implemented as an integer

B INT ::= b int implemented as a lifted integer

B REAL ::= b real implemented as a lifted real number

Auxiliary abstract syntax

B ENV ::= b env( B VAR,B FUN,B NUM )

B VAR ::= b var[ B VB ∗ ]

B VB ::= b vb(B VOD,B EXP)
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B VOD ::= b dummy() | B V

B FUN ::= b fun[B FB∗]

B FB ::= b fb(B V,B CLOS )

B CLOS ::= b clos(B EXP,B NUM,B VAR,B VAR,B FUN )

B V ::= b v implemented as a string

Abstract syntax of BMF types

B FTYPE::= B TYPE → B TYPE

B TYPE ::= b integer t | b real t | b boolean t |
B TVAR | [ B TYPE ] | (B TYPE ,. . . , B TYPE )

B TVAR ::= b tv implemented as a string

4.3.1.3 Explanatory notes for BMF syntax

BMF Syntax for Integer Constants The syntax contains two types of integer

constant. The first type, B INT is the phyla of lifted integers10. All objects in this

phyla are functions that return an integer value when given an argument of any type.

They (and real number constants and boolean constants) are written in sans-serif

font.

The second type, B NUM is the phyla of ordinary integers. B NUM ’s are used in

the auxiliary and also in the target syntax. where B NUM ’s are used as hard-wired

parameters of the b addr( , ) function.

BMF Syntax for addressing tuple elements b addr( , ) is the way that π

functions are written in the abstract syntax. As shown in chapter 3, π functions are

the means by which elements of tuples are accessed. To date, we have only examined

tuples which are pairs of values:

(x, y)

where x and y are values of arbitrary type. To access x and y we use the functions

π1 and π2 respectively. π1 is written b addr(2, 1), in the abstract syntax, and π2

is written b addr(2, 2). When the arity of the input tuple is greater than 2 the π

10A lifted integer is a function that returns the same integer constant irrespective of its input
value.



CHAPTER 4. ADL TO BMF TRANSLATION 51

functions accessing that tuple are left-superscripted with the arity of the tuple. So,

for example, to access the first, second and third elements of the tuple:

(x, y, z)

we use the functions 3π1,
3π2, and 3π3 respectively. The corresponding functions in

the abstract syntax are b addr(3, 1), b addr(3, 2), and b addr(3, 3) respectively.

As a final but important note, the two values in the brackets of b addr( , )

functions are fixed at compile-time. In effect, b addr is a family of functions where

individual members are named, at compile time, by placing numbers in the brackets.

BMF Syntax for Function Composition Function composition is expressed

using the binary b comp( , ) operator. Under this regime, sequences of composed

functions are built using several b comp operators. For example the program:

f · g · h

can be written

b comp(f, b comp(g, h))

or, it can be written as the different but equivalent BMF expression:

b comp(b comp(f, g), h)

The flexibility of being able to associate b comp expressions in any convenient order

makes the creation of code by the translator easy. However, there is a cost, incurred

at later stages of compilation, in having to cater for multiple versions of an expression.

We could avoid multiple versions by defining composition sequences to be lists. This

means that f · g · h could be written in only one way:

b comp[f, g, h]

The compositions as lists approach used in [19](Chapter 12) and [71]. The Adl

implementation uses a binary composition instead of compositions as lists because

binary composition offers a mechanism for partitioning code without altering the

semantics of that code. Such partitionings are heavily exploited by the optimisation

process described in the next chapter.
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Auxilliary syntax Finally, the auxilliary syntax defines constructs used to

construct the environment, containing variable and function bindings, in which the

translator rules work. None of the elements of the auxilliary syntax appear in target

code. The environment is used by several rules and will be described as the rules are

introduced in the remainder of this section.

4.3.2 Interpreting the rules

The following paragraphs contain notes on how to interpret the semantic rules shown

in this section. They are also a useful guide to some conventions used throughout the

rest of this document.

4.3.2.1 How rules are structured

The environment As stated previously, all of the rules of this chapter take the

form of a relationship between Adl expressions and BMF expressions. For the most

part, the ⇒ symbol is used to denote this relationship. The rule

A⇒ B

is an assertion that the Adl expression A translates to the BMF expression B.

In most cases A will contain code that references variables and functions. Where

variable references exist in A, it cannot be translated without a context to resolve

these references. The context we use is an environment constructed from the variable

and function declarations currently in scope. In natural semantics, a rule that applies

with respect to some environment ENV is written:

ENV ⊢ A⇒ B

This is read “A translates to B in the context of the environment ENV ”.

Rules with multiple lines The single-line format above is used in the axiomatic

rules for translating some terminal expressions in Adl. For most Adl expressions,

a translation rule is contingent on other properties. For example, the translation

of a variable reference cannot be proved until we can prove that the variable can

be found in the environment. More generally, the translation of a non-terminal

expression cannot be proved until the translations of its sub-expressions are proved.
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For example, to find a valid translation for the expression exp1 + exp2 we need to find

a valid translation for exp1 and exp2. These extra conditions are integrated into the

rules in the following manner:

ENV ⊢ exp1 ⇒ b1 ENV ⊢ exp2 ⇒ b2

ENV ⊢ exp1 + exp2 ⇒ + · (b1, b2)
◦

This reads: “exp1+exp2 translates into the BMF expression +·(b1, b2)
◦ provided there

is a translation from exp1 to some BMF expression b1 and there is a translation from

exp2 to some BMF expression b2, all in the context of the environment ENV ”. When

reading a rule, we read the last line first followed by the other lines, the premises, in

descending order. In this document, we refer to the last line of a rule as the conclusion

of that rule.

4.3.2.2 Naming and style conventions for the translator rules

Where possible, naming conventions follow those used in the syntax of each language.

Variable names All variables in the rules are written in lower-case italics. This

applies whether they denote Adl code or BMF functions. Where possible, the variable

name conforms to the phylum forming its domain e.g. a variable holding BMF

expressions will usually be written as some variation of b exp. Where the name

of the phylum cannot be used the phylum of a variable can be determined from the

syntactic context.

The names of different variables of the same phylum within a rule are distinguished

using subscripts and/or prime (′) symbols.

Rule Sets Centaur requires rules to be grouped into Rule-sets . A rule-set is a

collection of rules with a single purpose. The translator definition contains several

rule-sets and two of these, Trans and Translate, are described in this chapter.

Judgements Translator rules within each set, depending on their role, have

different formats. In Centaur, formats for rules are declared at the top of each rule

set. The conclusion of each rule in a set must adhere to one of the formats declared
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for that set. These formats are called judgements. The Translate rule-set has a

judgement of the form:

B ENV ⊢ EXP ⇒ B EXP

which declares “this rule-set contains some rules whose conclusion starts with a BMF

environment followed by a ⊢ symbol, followed by an Adl expression followed by a

⇒ symbol, and finishes with a BMF expression”. Translate also contains another

judgement for rules for handling declarations:

B ENV ⊢ DECLS : B ENV ,B EXP

Different judgements are distinguished by different symbols and different phyla names.

References to other judgements References, in the premises of a rule, to a

judgement different from the one found in the conclusion of that rule are described as

calls . Where the call is to a judgement from a different rule-set, the call is qualified

by the name of the other rule-set, written in italics. Calls to different judgements in

the same rule-set do not need to be qualified.

Brackets Constructs, in both Adl and BMF, are written according to their

structure. Where operators have fixed arity, arguments are encapsulated in round

brackets. List-like structures use square brackets. List-like structures can be

composed and decomposed in the same way as cons-lists. That is, lists consist of

a head and a tail and we can recursively access the tail of a list until we encounter

the empty list. Commas can be used as shorthand notation in some instances. The

following are equivalent.

vector[2,3]

vector[2.vector[3]]

vector[2.vector[3.vector[]]]

Note that, for the sake of our implementation, tuples are treated as list-like structures

by the semantic rules.

Constructs of zero-arity are usually followed by a pair of matching round brackets.

Integer and real constants are exceptions to these rules. They are written as a name

followed by a variable or literal (no parentheses). For example: num 3, b num N .
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4.3.2.3 Miscellaneous terminology

The following describes a variety of phrases of relevance to the description of the

translator and to explanations of concepts throughout the rest of this document.

The notion of run-time In this chapter and in the remainder of this document

there are references made to the behaviour of target code at “run-time”. For example:

“At run-time this (code) will be given input representing the current environment...”.

This notion is potentially ambiguous because the nature of the target code can change

completely through the stages of compilation through to the target machine.

In this chapter, run-time is when the BMF code, taken directly from the translator,

is applied to its input values.

Upstream-downstream BMF code is read from right-to-left and from bottom-

to-top. This unconventional reading order renders terms like “beginning”, “end”,

“start”, and “finish” slightly unclear. To avoid ambiguity, in the remainder of this

document we refer to relative locations in BMF code using the terms “upstream” and

“downstream”.

Code that is closer to the point at which the BMF program begins execution is

upstream. Code closer to the point at which execution ends is called downstream. As

an example of this usage, consider the program:

⊕/e · h ∗ ·g ∗ ·f ∗ ·zip · (π2, π1)
◦

The function f∗ is upstream of g∗ but downstream of zip. The most-upstream function

is (π2, π1)
◦ where both the π2 and π1 functions are equally upstream. Finally, the

most-downstream part of the program is ⊕/e.

The meaning of body The explanations throughout the rest of this document

use the term body to refer to the core component of a BMF function or of an Adl

expression. The ways we use this term are listed below.

let body: In an expression let < decls > in < body > endlet the part labelled

< body > is the body of the let expression.

function body: In Adl, the function body is the code following the := in a function

declaration. In BMF, it is the BMF code produced from the Adl code making
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up the body of a function declaration. The BMF code to add a function’s actual

parameters to that function’s input tuple is not part of that function’s body.

map body: Used in the context of BMF to denote the code embedded inside a

map expression. The map body corresponds to the part labelled < body >

in map(< body >) (BMF abstract syntax) or in (< body >)∗ (BMF concrete

syntax).

Where the term body is used outside of the contexts above, it should be taken to

mean the core function/expression of the construct in question.

Vectors vs. Concatenate-Lists Throughout the rest of this report we use the

term vector to refer to concatenate lists.

4.3.2.4 Layout of rules in this chapter

The rules are defined in figures. Each figure contains rules for related constructs.

A figure, depending on space constraints, may or may not contain all of the rules

in a rule-set. For the purposes of documentation, we also display the structure of

each judgement used in a figure in the top-right-hand corner of the figure (see the

top-right-hand corner of figure 15 on page 57 for an example).

The translator rules follow.

4.3.3 The rules

The translator’s definition is composed of approximately 20 different rule-sets. Most

of these sets are small, auxiliary, rule-sets containing only a handful of rules and one

or two judgements. In this chapter we describe two rule sets in detail:

Trans: a small rule-set to pre-process Adl programs into a single expression plus an

environment.

Translate: the core of the translator, turning an Adl expression into a BMF

expression in the context of a given environment.

Rules in these two rule-sets call judgements from auxiliary rule-sets. The role of

each auxiliary rule set is briefly described as it is encountered but details of these

rules are not provided. A more complete description of the translation process can

be found in [6]. We start with a description of Trans, the pre-processing judgement.
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Set Trans is
⊢ PROG = B EXP
⊢ DECLS → DECLS ,DEC

Top rule

⊢ decls → decls ′, fun dec(v,pat,exp)
Rename parameters(⊢ pat → pat ′)

Rename bound vars(pat , exp → exp ′)

Extract bvar(pat ′ → b var) Length var(b var → b num)

Translate(b env(b var,b fun[],b num) ⊢ let(decls ′, exp′)⇒ b exp)

⊢ pr(decls) = b exp
(1)

Splitting declarations

⊢ decls[fun dec(v,pat,exp)]→ decls[], fun dec(v,pat,exp) (2)

⊢ decls[dec′].decls → decls ′, dec′′

⊢ decls[dec.decls[dec ′.decls]]→ decls[dec.decls ′], dec′′
(3)

End Trans

Figure 15. Top level rules. Programs are formed from a list of declarations

4.3.3.1 The Trans rule set

The rules of Trans are shown in figure 15. Their purpose is convert the Adl source

program from a sequence of declarations to a single let-expression and then pass this

expression, along with an environment containing bindings for formal parameters

of the function that is the program’s entry point, onto the Translate rule-set for

conversion to BMF.

Trans takes, as input, a program of the form:

〈defn 1〉
〈defn 2〉

. . .

〈defn n-1〉
〈id〉 〈pat〉 := 〈exp〉

where the < defn 1 > to < defn n-1 > are arbitrary function and variable

declarations and the last declaration:

< id > < pat > := < exp >
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is the function declaration that is the starting-point of program execution. Trans

converts the input above to a single let expression of the form:

let

< defn 1 >

< defn 2 >

. . .

< defn n-1 >

in

< exp >

endlet

plus an environment constructed from the formal parameter list < pat >. The first

three premises of rule 1 handle the re-formatting of code described above. The fourth

and fifth premises convert a modified parameter list into a variable environment under

which the let expression above can be translated. Both the let expression and the

environment are given to the Translate rule set in the last premise to obtain a BMF

translation. We now look at the premises to rule 1 in more detail.

The first premise is a call to the second judgement of Trans (defined by rules 2

and 3). These rules split the declaration sequence into two parts. The first part

< defn 1 > < defn 2 > . . . < defn n-1 >

(labelled decls ′ in rule 1) goes directly into the let expression given to Translate.

The second part

< id > < pat > := < exp >

is processed further. First, the formal parameters < pat >, are renamed by a call to

the auxiliary rule-set Rename parameters11. The formal parameters are renamed to

prevent a program like:

a := 2;

b := a + 5;

f(a,b) := a - b

being converted to:

11Note again, that details of auxiliary rule-sets, such as Rename parameters , will not be given
here.
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let

a := 2;

b := a + 5

in

a - b

endlet

where a and b, in the let body, now refer to incorrect values. A correct translation:

let

a := 2;

b := a + 5

in

a - b

endlet

is achieved by using Rename bound vars to prefix underscores to the names of

variables bound to the formal parameters. We also prefix underscores to the names

of parameters in < pat > to produce < pat’ > using Rename parameters.

Now, we have the program modified to a single let expression and a renamed

formal parameter list < pat’ >. The fourth and fifth premises of rule 1 build

components of an environment from < pat’ >. Extract bvar constructs a variable

environment from the parameter pattern.

The variable environment The variable environment is a set of bindings from

variable names to BMF code. The variable environment extracted from the parameter

list ( a, b), byExtract bvar , is:

b var[b vb( a, id · π1), b vb( b, id · π2)]

Extract bvar is able to convert arbitrarily nested parameter lists12 to a flat variable

environment. The fifth premise, Length var finds the length of the variable

environment. This length value plays an important role in adjusting variable

references during the translation of function calls13 (see rule 15 on page 68).

12Recall from chapter 2 that patterns in Adl can be nested to any depth.
13The length value is a measure of the level of nesting of the input tuple to the current function.

This value is used during the reconstruction of a variable environment for a function closure when
that function is called.
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Set Translate is
B ENV ⊢ EXP ⇒ B EXP
B ENV ⊢ DECLS : B ENV ,B EXP

Constants
b env ⊢ int i ⇒ b con(b int i) (4)

b env ⊢ real r ⇒ b con(b real r) (5)

b env ⊢ boolean(true()) ⇒ b con(b true()) (6)

b env ⊢ boolean(false()) ⇒ b con(b false()) (7)

Figure 16. Translator rules for constants

The last premise injects the variable environment and its length into a fully-fledged

environment and then feeds this environment and the modified code into a call to

Translate in order to complete the task of translation of the new let expression.

4.3.3.2 The Translate rule-set

The Translate rule-set is large, so we have broken it up up into several figures. Each

figure contains a set of related rules. Each element of Adl syntax has a corresponding

rule for BMF translation. The rules of Trans correspond to these elements of syntax.

We start with the simplest rules first and progress to more complex ones.

Constants The rules for Adl integer, real and boolean literals appear in figure 16.

Each of these rules is an axiom. Their validity can be proved without resort to

premises or even to the environment. In all of these rules the Adl literal is injected

into a BMF construct, b con denoting a constant function. That is, the Adl literal is

lifted to a BMF function.

Binary operators Figure 17 contains the rule for translating applications of binary

operators. The translation process follows the structure of the binary expression. The

two arguments to the operator are translated, in turn, by the rule’s first two premises.

The third premise converts the Adl operator to its BMF equivalent by the Convert op

rule-set. As might be surmised, Convert op defines a trivial mapping between Adl

operators and BMF operators. The last step of translation, in the right-hand-side of

the rules conclusion, combines the results of the three premises.
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B ENV ⊢ EXP ⇒ B EXP

Binary operators

b env ⊢ exp1 ⇒ b exp1

b env ⊢ exp2 ⇒ b exp2

Convert op(bop → b op)

b env ⊢ binop(bop,exp1,exp2)⇒
b comp(b op(b op), b alltup[b exp1,b exp2])

(8)

Figure 17. Translator rule for binary operators

B ENV ⊢ EXP ⇒ B EXP

Vector literals
b env ⊢ vecl[]⇒ b allvec[] (9)

b env ⊢ exp ⇒ b exp b env ⊢ vecl ⇒ b allvec

b env ⊢ vecl[exp.vecl]⇒ b allvec[b exp.b allvec]
(10)

Figure 18. Translator rules for vector literals

Unary operators and the Iota function Unary operators and the iota function

are translated in a very similar manner to binary operators. The only difference being

one less premise to handle the single operand.

Vector literals Figure 18 contains the rules responsible for translating vector

literals. In Centaur, list-like structures, like vectors and tuples are recursively defined.

The two translation rules mirror this recursive structure.

Rule 9 handles empty vectors. It generates an empty b allvec expression which is,

essentially, a lifted constant which returns an empty vector given any input.

Rule 10 traverses a non-empty vector. The first premise translates the first item.

The second is a recursive call to handle the remainder of the vector. The conclusion

combines the results two premises into a single b allvec function.

Tuples Tuples are handled in a very similar ways to vector literals. The only

difference is that tuples cannot be of zero-length so we have a rule to handle singleton
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B ENV ⊢ EXP ⇒ B EXP

If expressions

b env ⊢ exp1 ⇒ b exp1

b env ⊢ exp2 ⇒ b exp2

b env ⊢ exp3 ⇒ b exp3

b env ⊢ if(exp1,exp2,exp3)⇒ if(b exp1,b exp2,b exp3)
(11)

Figure 19. Translator rule for conditional expressions

tuples rather than zero-length tuples14.

Iota functions The iota function is translated in the same manner as unary

functions.

If expressions Figure 19 contains the rule for translating Adl if expressions to

BMF if expressions. This is our first encounter with BMF if expressions in this

report. These expressions have the semantics:

if(b exp1, b exp2, b exp3) v

= b exp2 v, if (b exp1 v = true)

= b exp3 v,otherwise

Rule 11 has three premises that translate the sub-expressions, exp1, exp2, and exp3

into their corresponding BMF functions.

Let expressions let expressions introduce variables and functions into scope.

In the following pages we describe the translation of let expressions, declaration

sequences, variable references and function applications. These descriptions outline

the core task of the translator: the replacement of the role of variables with functions.

let expressions consist of two parts. The first part, the declaration sequence,

brings new values and functions into scope. The second part is the body of the let

expression. The body is an expression that has access to the new environment created

14The rule for singleton tuples is not mutually exclusive of the rule for longer tuples. This overlap
has dire consequences for efficiency when the translator fails to find a solution first time and goes
on a determined search for an alternate proof (backtracking). In short, when something goes wrong,
and rules are not mutually exclusive, Centaur can take a very long time to give up.
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B ENV ⊢ EXP ⇒ B EXP
B ENV ⊢ DECLS : B ENV ,B EXP

Let Expressions
b env ⊢ exp ⇒ b exp

b env ⊢ let(decls[], exp)⇒ b exp
(12)

b env ⊢ decls : b env ′, b exp

b env ′ ⊢ e ⇒ b exp′

b env ⊢ let(decls,e)⇒ b comp(b exp′, b exp)
(13)

Figure 20. Translator rule for let expressions

by the declaration sequence. The result of evaluating the body is the result of the

entire let expression.

The top-level rules for handling let expressions are shown in figure 20. Rule 12

is pure book-keeping; it handles let expressions with an empty declaration sequence.

These empty sequences arise only as a result of pre-processing programs consisting

of a single function declaration. All other let expressions, those with non-empty

declaration sequences, are handled by rule 13. Its first premise processes the

declaration sequence, producing both an updated environment and a BMF expression.

The second premise evaluates the body of the let expression in the context of the

new environment. The BMF code, produced by each premise, is combined in the

rule’s conclusion.

Declaration sequences Declaration sequences bring new values and functions into

scope. The process translating a declaration sequence must satisfy three obligations.

These are:

1. to produce BMF code for each variable declaration encountered.

2. to produce BMF code to ensure the transport of values generated by variable

declarations to later parts of the program.

3. to keep track of new values as they enter into scope and their relative position

in the environment.

In fulfilling these obligations, the translation process turns declaration sequences into

new BMF code, with facilities to transport values, and a modified environment.
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The rules for handling declaration sequences include detailed definitions for

keeping track of offsets within the environment. This level of detail belies the

simplicity of the process that these rules define so, in the interest of clarity, we describe

the translation of declaration sequences informally, using examples.

Example: variable declarations The translation of the declaration sequence:

a := 4;

b := a+3

in the environment:

b env(oldvar , oldfun, oldvarlength)

where oldvar , oldfun and oldvarlength are the pre-existing variable environment,

function environment and variable environment length, respectively, produces the

code

(id, + · (π2, 3)
◦)◦ · (id, 4)◦

and the new environment:

b env(b var[b vb(a, id), b vb(b, id), oldvar ], oldfun, oldvarlength + 2)

The new code wraps its input value in tuples containing the constants 4 and 3. That

is:
(id, + · (π2, 3)◦)◦ · (id, 4)◦ val =

(id, + · (π2, 3)◦)◦ (val , 4) =

((val , 4), 7)

The new environment is the old environment with two entries added to the variable

environment and the length of the environment incremented by 2. The id expressions

bound to a and b, in the new variable environment, are composed with the BMF

expression produced when these values are referenced (see the description of variable

translation, starting on page 66, for a summary of how references are handled).
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How the environment is updated The environment is updated incrementally

as the declaration sequence is processed. In the last example

a := 4;

b := a+3

the declaration of the variable a produced the updated environment

b env(b var[b vb(a, id), oldvar ], oldfun, oldvarlength + 1)

in which to evaluate the RHS of b:

a+3

Note that the declaration of b is not visible from the RHS of a’s declaration. That is,

the translator does not permit forward references. Only variables and functions that

have already been declared can be referenced; declarations further down the sequence

are invisible. This policy preserves the semantics of Adl declaration sequences.

Example: function declarations Function declarations generate new entries

in the function environment, they do not, directly, generate code. The translation of

the declaration sequence:

f(x, y) := x + y;

in the environment:

b env(oldvar , oldfun, oldvarlength)

creates the new environment:

b env(oldvar , b fun[b fb(f, fclos), oldfun], oldvarlength)

The new entry in the function environment

b fb(f, fclos)

binds the variable f to fclos where fclos is a closure for the function f. A closure

contains all of the information needed to translate a future call to a function. A
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closure contains a function’s code, its formal parameter list, and the contents of the

environment at the time of declaration. In our example, fclos takes the form

b clos(x + y, oldvarlength, oldvar , b var[b vb(x, π1), b vb(y, π2)], oldfun)

where oldvar , oldfun, and oldvarlength are taken from the old environment and the

function’s code

x + y

and formal parameter list

b var[b vb(x, π1), b vb(y, π2)]

make up the rest of the closure. The π1 and π2 functions bound to x and y indicate

that the actual parameters to f will be stored in a tuple and that the π1 and π2

functions, respectively, will be part of the code used to access these parameters. We

describe how closures are used in the section on function application, starting on

page 67.

Variables Variable references are resolved by translating Adl variables to the BMF

code that is required to access the value which is bound to the variable. It is assumed

that those translation rules applied to earlier declarations have produced code to

transport all values in scope to this current part of the program inside a nested tuple

whose structure is accurately described by the current variable environment. The

translator rule for variables need only exploit the information in this environment to

build the correct sequence of addressing functions to access the desired value from

the nested input tuple.

A simple example We illustrate how access code is built using the following

program:

f(x :int, y: int) :=

let

z := x + y

in

y - z

endlet
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B ENV ⊢ EXP ⇒ B EXP

Variable names
Lookup var(b var ⊢ idx → b exp)

b env(b var,b fun,b num) ⊢ idx ⇒ b exp
(14)

Figure 21. Translator rule for variables

Assume the translation process has reached the variable reference y, in the expression

y-z, in the body of the let expression. At the time of y’s translation, the variable

environment looks like:

b var[b vb(z, id), b vb(x, π1), b vb(y, π2)]

This environment is an encoding of the values transported to this part of the program

( (val(x), val(y)), val(z))

where the term val(var) stands for the value attached to the variable var .

To construct code for variable reference, the translator counts its way15 through

the variable environment, composing π functions to its result until a binding with the

variable’s name is reached. The code produced for the reference to y is:

π2 · π1

which can be verified as correct by applying it to the input tuple:

π2 · π1 ((val(x), val(y)), val(z)) ⇒
π2 (val(x), val(y)) ⇒
val(y)

The foregoing gives an intuition of the construction process for access code. The rule

to handle this construction is shown in figure 21. Most of the construction task, as

outlined above, is handled by the call to the rule-set Lookup var in the premise.

Function applications The translation of a function application

f < parameter-list >

requires five steps:

15There is some detail hidden in the term “counts its way” due to the occassional presence of
tuple values in the input tuple.
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B ENV ⊢ EXP ⇒ B EXP

Function application

b env(b var,b fun,b num) ⊢ exp ⇒ b exp

Lookup funenv(b fun ⊢ id → b clos(exp ′, b num ′, b var ′, b var ′′, b fun ′))

Build new env(b num,b num′,b var′,b var′′,b fun′ : b env ′)

b env ′ ⊢ exp ′ ⇒ b exp′

b env(b var,b fun,b num) ⊢ fun app(id,exp)⇒
b comp(b exp ′, b alltup[b id(), b exp])

(15)

Figure 22. Translator rule for function applications

1. Translate the < parameter-list > into BMF code.

2. Search for the closure of f in the function environment.

3. Build a new environment in which to translate the code of the function.

4. Translate the function in the context of the new environment.

5. Compose the translated function code with the code produced from the

translation of < parameter-list >.

The rule for function applications is shown in figure 22. The first four steps above

correspond to the four premises of rule 15. The last step is carried out by the right-

hand-side of the rule’s conclusion. We illustrate these steps by way of example.

Example: translating a program containing function application In this

example we translate the program:

f a:int :=

let

g b := b + a;

c := 4;

d := c + 3

in

g d

endlet
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The expression yielding the result of this program is the function application

g d

in the body of the let expression. Pre-processing of the program creates the

environment

b env(b var[b vb(a, id)], b fun[], 1)

in which to translate the expression:

let

g b := b + a;

c := 4;

d := c + 3

in

g d

endlet

The translation of the declaration sequence

g b := b + a;

c := 4;

d := c + 3

creates the code

(id, + · (id · π2, 3)◦)◦ · (id, 4)◦

and updates the environment to:

b env(b var[b vb(d, id), b vb(c, id), b vb(a, id)], b fun[b fb(g, gclos)], 3)

where gclos is (see the section on function declarations on page 65 for a description

of closures):

b clos( b + a, 1,

b var[b vb(a, id)],

b var[b vb(b, id)],

b fun[ ])

Now, the translator is ready to process the function application:
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g d

The first step is to translate the actual parameter list d into BMF code which, in this

case is:

π2

This function will, in the rule’s conclusion, be embedded in an alltup expression

producing:

(id, π2)
◦

The second step of translation is finding the closure for f in the function

environment. This step is trivial. The third step is to build the new environment in

which to translate the body of g. The new environment must contain the variable

environment as it was when g was declared

b var[b vb(a, id)]

and it should also incorporate the bindings from the environment produced by the

formal parameter list:

b var[b vb(b, id)]

The bindings for c and d must not appear, as they are not in the static scope of g,

but the new environment must take account of the fact that two new variables have

been declared since the function g was declared. The translator does this by inserting

dummy bindings, giving us the new environment:

b var[b vb(b, id), b vb(dummy, id), b vb(dummy, id), b vb(a, id)]

The number of dummy values inserted is equal to the length of variable environment

when the function is called minus the length of the variable environment when the

function was declared. In this case the number of dummy entries is 3− 1 = 2.

The fourth step is the translation of the function body in the context of the new

environment. This translation yields

+ · (id · π2, id · π1 · π1 · π1)
◦

where the first member of the alltup function is the translation of b and the second

member is the translation of a.
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B ENV ⊢ EXP ⇒ B EXP

While expressions

b env ⊢ fun app(id1, exp)⇒ b comp(b exp′′,b exp)

b env ⊢ fun app(id2, exp)⇒ b comp(b exp′,b exp)

b env ⊢ while(id1, id2, exp)⇒ b comp(b while(b exp′′,b exp′), b exp)
(16)

Figure 23. Translator rule for while expressions

The fifth and last step composes the translated code for the function body with

the code for the actual parameter (id, π2)
◦ to produce the final result of the function

application:

+ · (id · π2, id · π1 · π1 · π1)
◦ · (id, π2)

◦

When this code is combined with the code produced from the declaration sequence

we have the translation of the entire program:

+ · (id · π2, id · π1 · π1 · π1)
◦ · (id, π2) · (id, + · (id · π2, 3)

◦)◦ · (id, 4)◦

The correctness of this translation can be verified:

+ · (id · π2, id · π1 · π1 · π1)
◦·

(id, π2) · (id, + · (id · π2, 3)
◦)◦ · (id, 4)◦ val(a) =

+ · (id · π2, id · π1 · π1 · π1)
◦ · (id, π2) · (id, + · (id · π2, 3)

◦)◦ (val(a), 4) =

+ · (id · π2, id · π1 · π1 · π1)
◦ · (id, π2) ((val(a), 4), 7) =

+ · (id · π2, id · π1 · π1 · π1)
◦ (((val(a), 4), 7), 7) =

+ (val(a), 7)

by checking that the original Adl program produces the same result, + (val(a), 7),

when applied to val(a).

We have now described the bulk of the translator. The key mechanisms for

producing code without variables have been established. Now we look at core

functions whose translation depends on the mechanisms we have just described.

While expressions Figure 23 contains the rule for translating while expressions.

The two premises derive the code for the two constituent functions and of while,

along with the code for their, shared, parameter. These three sections of code are

integrated into, and around, the BMF while function in the rule’s conclusion.
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B ENV ⊢ EXP ⇒ B EXP

Map expressions

b env ⊢ fun app(id,exp)⇒ b comp(b exp′,b exp)

b env ⊢ map(id,exp)⇒ b comp(b comp(b map(b exp′), b op(distl()))), b exp)
(17)

Figure 24. Translator rule for map expressions

This is the first time we have encountered the BMF while function in this report.

The semantics of while are:

while(b exp1, b exp2) v

= v, if (b exp2 v = true)

= while(b exp1, b exp2) (b exp1 v),otherwise

Note that while is a partial function because an invocation of while can loop forever.

Program transformations involving partial functions, such as while and div can change

the termination behaviour of a program, especially in a strict setting16.

Though such problems have not surfaced in tests thus far, systematic strategies

for avoiding changes in termination behaviour need to be implemented.

Map expressions Rule 17 for translating map expressions is shown in figure 24.

This rule translates Adl code of the form

map(g,e)

to BMF code of the form:

(< translation of g >) ∗ ·distl · (id, < translation of e >)◦

16Under strict evaluation, a transformation like:

if(pred ,⊥, alt)⇒ if(pred · π1, π1 · π2, π2 · π2) · (id, (⊥, alt)◦)◦

introduces non-termination. Likewise, the transformation:

π2 · (⊥, f)◦ ⇒ f

removes non-termination. The introduction of non-termination can be avoided by not moving partial
functions out of if functions. Avoiding the removal of non-termination is more problematic but not
as pressing, though Mottl[104] gives a scenario where the removal of non-termination has serious
implications.
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We have not yet described the distl function17. distl distributes its left-hand argument

over its right hand argument. An informal definition is:

distl (v, [x0, x1, . . . , xn−1]) = [(v, x0), (v, x1), . . . , (v, xn−1)]

The effect of distl can be observed by considering the translation of the Adl program

incr_by (a:vof int, delta:int) :=

let

g x = x + delta

in

map(g,a)

endlet

to the BMF code:

(+ · (π2, π2 · π1)
◦) ∗ ·distl · (id, π1)

◦

This code, applied to a pair of input values ([1, 2, 3, 4], 3), is evaluated:

(+ · (π2, π2 · π1)
◦) ∗ ·distl · (id, π1)

◦ ([1, 2, 3, 4], 3) =

(+ · (π2, π2 · π1)
◦) ∗ ·distl (([1, 2, 3, 4], 3), [1, 2, 3, 4]) =

(+ · (π2, π2 · π1)
◦)∗ [(([1, 2, 3, 4], 3), 1), (([1, 2, 3, 4], 3), 2),

(([1, 2, 3, 4], 3), 3), (([1, 2, 3, 4], 3), 4)]
=

(+)∗ [(1, 3), (2, 3), (3, 3), (4, 3)] =

[4, 5, 6, 7]

Two observations, arising from this evaluation, are:

• Some distribution of data is required to ensure the second input value (3 in this

case) is added to every element of the vector.

• The distribution of all input causes, unnecessarily, large intermediate data

structures to be created.

The second of these two observations indicate that there is scope for using a more

selective means of distribution. We explore this issue later in this chapter and describe

ways of achieving more selective distribution in chapter 5.

17distl appears in the FP language described by Backus[13]. A related function distr or
distribute-right appears in category theory as a defining natural transformation τ of strong
functors [84].
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As a final note, close scrutiny of rule 17 reveals an implementation trick. The rule

applies the function inside the map to the whole vector rather than an element inside

the input vector. This mis-match does not affect the correctness of the two sections

of code produced by the rule for function application and avoids the need to define a

new rule.

Reduce expressions In Adl, reduce expressions take the form:

reduce(f,e,xs)

where f is the name of a binary function, xs is an expression evaluating to an input

vector and e is an expression representing the value returned by reduce when its

input vector is empty. We often refer to e as the zero-element.

If the function f depends only on its parameters and the expression e contains no

variable references, then a valid translation of reduce is:

reduce(f,e,xs) ⇒< translation of f > /
<translation of e>

· < translation of xs >

This translation schema applies in most circumstances. Unfortunately, in the rare

cases where e accesses variables, the translation of reduce must produce code that

transports values, referenced by these variables, to the translation of e. Compounding

this problem, are cases where the binary function f contains references to values other

than its parameters, that is, it references free variables. To support such references

the translator must produce code to distribute values of these variables over each

element of the input vector and also supply code to help the translation of f extract

values from its parameters in the way it expects.

The combination of code required to support variable references in e and free

variable references in f is quite complex. Such references can legitimately occur in

Adl source code and the translator, being conservative, has a rule for reduce that

produces this complex code. Fortunately, this complex code is, except in rare cases,

short-lived in our implementation. The optimisation stage of our compiler, described

in chapter 5 ascertains the references made by translator code and simplifies the

translator’s BMF code accordingly. The practical effect is, that for most instances of

reduce, the simplified translation above is the one that applies.

Here, we do not show the complex, conservative, translator rule for reduce. A

full description of the rules for reduce, scan and all of their variations is given in[6].
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reducep, reducel, reducer, reducelp, reducerp, and all varieties of scan

The translator has separate rules for all variants of reduce and scan. All of these

rules are too similar to the rule for reduce to warrant a separate description. The

main difference is that rules for reducep, reducelp, reducerp, scan, scanl, and

scanr are less complex because they do not handle a zero-argument.

This concludes our detailed description of the rules of the translator. We now

examine the performance of translator code.

4.4 Performance

In this section we analyse, by way of examples, the performance of the code produced

by the translator. Prior to any discussion of performance, we need to establish a

metric for sequential performance.

4.4.1 Measuring sequential performance

Measurement of the translator’s performance needs both an execution model and

baseline of BMF programs against which to compare the performance of the

translator’s programs. Our model though very simple, incorporating none of the

vagaries involved with running programs on modern architectures18, is sufficient for

the gross comparsions made in this context.

4.4.1.1 Execution model for measuring sequential performance

A semi-formal description of the sequential execution model used in this chapter and

the next is given in appendix D. To avoid the need to examine this code in detail we

briefly characterise the model’s behaviour by stating the conventions it consistently

applies.

Conventions of the sequential model The following conventions apply to the

sequential performance model:

• Storage for output of each scalar function is allocated just prior to evaluation

of that function.

18Just some of these are measured and discussed in appendix F.
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• Storage for input data of each scalar function is de-allocated just after evaluation

of each function.

• The time taken to allocate or deallocate any amount of storage is one time unit.

• With the above in mind, functions on scalar data, such as + and × have the

following execution profile:

1. allocate storage for the result (one time unit).

2. perform the operation (one time unit).

3. deallocate storage for the input (one time unit).

• A vector takes up one unit of space plus the combined space used by its elements.

• A tuple takes up a space equal to the combined space used by its elements.

• The cost of copying one item of scalar data is one time unit.

• During aggregate operations, data is copied/allocated at the last possible

moment and deallocated at the first possible moment.

Using the design decisions above it is straightforward to derive an execution model

for each BMF primitive. Some examples follow.

Execution models for some functions The following descriptions of execution

models for a selection of functions may assist in the interpretation of the examples

that follow.

length The length function, although it works on vectors, takes only three time

units. Its operation is as follows:

1. Allocate memory for the scalar result (one time unit).

2. Perform the length function by looking at the vector descriptor (one time unit).

3. Deallocate the storage allocated to the input vector (one time unit).

The length function has a peak storage consumption of one plus the storage taken up

by the vector. Note, the index function has very similar characteristics to the length

function.
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Figure 25. Time/Space graph of sequential evaluation of the expression:
(# · π1, !.(π1, π2)

◦, π2, 3)◦ (3, [1, 2, 3, 4, 5])

iota The iota function operates as follows:

1. Allocate the result vector (one time unit).

2. Fill up the vector (time equivalent to the number of items in the vector).

3. Deallocate the input value (one time unit).

Note that the model does not currently account for the very small amount of time

taken to compute the next value in the result vector.

alltup alltup functions create a copy of the input value, in order to apply it to

each component of the alltup. The copy is made just prior to the application of each

component. There is no copy made just before the last component is applied. The

trace of the expression:

(# · π1, !.(π1, π2)
◦, π2, 3)◦ (3, [1, 2, 3, 4, 5])

shown in the graph in figure 25 illustrates the behaviour of alltup. The significant

features of the trace are the copying of the input values for the first, second, and

third components of the alltup function starting at times 0, 20, and 52 respectively.

On each occasion, copying takes time equal to the length of the value being copied.

Copying takes a large proportion of the processing time for the alltup expression19

19Much of this copying time can be eliminated by preventing all but the last function in the alltup

from deleting its input value. If we maintain this “no-delete-unless-I’m-last” policy we could get
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Figure 26. Time/Space graph of sequential evaluation of the expression:
(+.(1, id)◦) ∗ [1, 2, 3, 4, 5]

map The map function allocates an empty output vector, taking up one unit

of space, and then consumes elements of the input vector, one at a time, allocating

space for output values and deallocating input values as it proceeds. This behaviour

gives map a quickly-alternating pattern of allocation and deallocation, evident in the

trace of the expression:

(+.(1, id)◦) ∗ [1, 2, 3, 4, 5]

shown in figure 26.

reduce Reduce evaluates its zero-argument before using its binary function to

perform a sequential reduction of the vector. In our model, evaluation of the zero-

argument requires a copy of the input vector, just in case the evaluation of the zero-

argument demands it.

The production of the result consumes the input vector one element at a time.

Figure 27 shows a trace of the evaluation of the expression:

+/0 [1, 2, 3, 4, 5]

The decline of space consumption in the latter half of the trace represents the gradual

consumption of the input vector.

by with one copy of the input. Unfortunately, this policy complicates the model beyond what is
necessary for gross comparisons of program efficiency we need here.
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Figure 27. Time/Space graph of sequential evaluation of the expression:
+/0 [1, 2, 3, 4, 5]

The examples above, in combination with the conventions outlined earlier,

illustrate and delineate our metric for sequential performance. Now, we need to

establish a benchmark for comparison of translator code performance.

4.4.1.2 Baseline for comparison

We use hand-crafted BMF programs as benchmarks for assessing efficiency of

translator and, in the next chapter, optimiser code. These benchmark programs

are built with the aim of obtaining a fast execution time without excessive use of

memory20. Now, we perform a series of comparisons between translator code and our

hand-crafted programs.

4.4.2 Examples of performance of translator code

We present a sample of problems whose solutions demonstrate the performance

characteristics of translator code.

4.4.2.1 Adding a constant to elements of a nested vector

An Adl program, called map map addconst.Adl, that adds a constant to elements of

a nested input vector is shown in figure 28

20Using an excessive amount of memory tends to slow down BMF programs in any case; in BMF
operations have to copy data around themselves and that movement takes time.
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main a:vof vof int :=

let

f x :=

let

g y := y + 2

in

map (g,x)

endlet

in

map (f,a)

endlet

Figure 28. map map addconst.Adl, an Adl program that adds a constant to each
element of a nested vector

((+ · (π2, 2)◦) ∗ ·distl · (id, π2)
◦ · id) ∗ ·distl · (id, id)◦ · id

Figure 29. BMF code, for map map addconst.Adl, produced by the translator.

The translation of map map addconst.Adl is shown in figure 29. The translation

also consists of nested calls to map functions. The distl functions ensure that each

invocation of each map body has access to all of the elements of the nested input

vector. Such broad access is not required but it is not the translator’s job to determine

this.

Figure 30 shows an equivalent hand-crafted BMF program. The relative

performance of these two programs when presented with the data:

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

is shown in figure 31. The top line shows the time and space consumption of the code

produced by the translator and the bottom line shows the time and space consumption

of the hand-crafted BMF code. The very large gap in performance means there is

considerable scope for optimisation. The next chapter outline an optimisation process

((+ · (id, 2)◦)∗)∗

Figure 30. Hand-crafted BMF code for map map addconst.Adl
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Figure 31. Time/Space graph of sequential evaluation of translator and
hand-crafted BMF code for map map addconst.Adl applied to the nested vector

[[1, 2, 3], [4, 5, 6], [7, 8, 9]].

to bridge most of this gap. For now, we will focus on the reasons for this performance

gap.

The translator code suffers from the overhead of executing nested distl functions.

The most upstream distl function is responsible for the first part of the initial rise in

the top-most curve. The rising steps in each of the three peaks that follow are caused

by the application of the nested distl further downstream. Both the translator and

hand-crafted code produce the same result but the translator version uses a lot more

time and space in the process. Moreover, this performance gap increases rapidly with

both the size and level of nesting of the input vector. This is because the translator

produces code whereby all values in scope are distributed over each vector in each map

operation. At the very least, the values in scope include the vector itself, resulting in

code the space consumption of which grows, at least, with the square of the size of

the input vector to the map operation.

4.4.2.2 Summing a list of numbers (using reduce)

The program sum.Adl, shown in figure 32, uses reduce to produce a sum of the

numbers in its input vector.

Figure 33 shows the equivalent translator, and handcrafted code respectively. As

mentioned in section 4.3.3.2, the translation of reduce is very conservative. The

translator assumes access to any value in scope might be required as the reduction
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main a: vof int :=

let

add(x,y) := x + y

in

reduce (add,0,a)

endlet

Figure 32. sum.Adl, a program to sum a vector of integers

if( 6= ·(0, # · π2)
◦, π2 · ((π1 · π1, + · (π1 · π1, (π2 · π1, π2 · π2)

◦)◦)◦)/ · distl, 0 · π1) · (id, id)◦

(a)

+/0

(b)

Figure 33. Translator code (part(a)) and hand-crafted code (part(b)) for sum.Adl.

proceeds. In reality, the need for such access rarely arises, the translator produces

quite detailed code to support it nonetheless. A full explanation of this code is given

in[6]. In contrast to translator code, handwritten BMF version of sum.Adl is very

simple:

+/0

We have already analysed the performance of this code on page 78. Figure 34

compares the performance of translator code to hand-crafted code. The very large

performance gap, already evident with very small data, shows there is much scope for

optimisation. Fortunately, as we shall see in the next chapter, the optimiser works

very effectively on most instances of reduce.

What about scan? The observations we have just made regarding reduce also apply

to scan. Both have an inefficient initial translation, both have an efficient hand-crafted

implementation and both translated versions are amenable to optimisation. Next, we

give an example where crafting an efficient solution requires deeper analysis.
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Figure 34. Time/Space graph of sequential evaluation of translator and
hand-crafted BMF code for reduce plus.Adl applied to the vector [1, 2, 3, 4, 5].

4.4.2.3 A one-dimensional finite-difference computation

Finite difference techniques are commonly used in simulations of physical systems

and in image processing [57]. Finite difference computations are performed on arrays

of values. Each element of the array has a value or set of values. Values in each

elements are combined in some way with those of neighbouring elements to produce a

new result. This localised interaction at each datum can be applied repeatedly until

the goal of the computation is reached. The localised nature of operations in finite

difference algorithms makes them very well suited to parallel execution.

The Adl program in figure 35 contains the basic elements of a finite-difference

application. The array in this case is an un-nested vector. A new value for each

element is derived from the element’s own value and the values on either side. The

function for deriving a new value is called stencil21. To simplify our example

we apply stencil only once for each vector element and the boundary elements

of the vector are not included in the result. The translation of finite diff.Adl

is shown in figure 36 and the hand-crafted BMF version of finite diff.Adl is

shown in figure 37. There are only minor differences between the translator and

hand-crafted code for finite diff.Adl. Both versions of code distribute the entire

input vector to each invocation of the map function that produces the result. These

slight differences do have an impact on efficiency, a fact that is borne out by the

relative performances of the two programs as shown in figure 38. However, the

21Stencil is the standard term for the pattern of interaction at each element in these computations.
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main a: vof int :=

let

stencil x := a!x + a!(x-1) + a!(x+1);

addone x := x + 1;

element_index := map(addone,iota ((# a)-2))

in

map (stencil, element_index)

endlet

Figure 35. finite diff.Adl, an Adl program to perform a simple finite-difference
computation.

(+ · (+ · (! · (π1 · π1, π2)
◦, ! · (π1 · π1,− · (π2, 1)◦)◦)◦, ! · (π1 · π1, + · (π2, 1)◦)◦)◦) ∗ ·

distl · (id, π2)
◦ · id·

(id, (+ · (π2, 1)
◦) ∗ distl · (id, iota · − · (# · id, 2)◦)◦)◦

Figure 36. Code from automated translation of finite diff.Adl into BMF

(+ · (+ · (! · (π1, π2)
◦, ! · (π1,− · (π2, 1)

◦)◦)◦, ! · (π1, + · (π2, 1)◦)◦)◦) ∗ ·
distl·
(id, (+ · (id, 1)◦) ∗ ·iota · − · (# · id, 2)◦)◦

Figure 37. Hand-coded translation of finite diff.Adl into BMF
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Figure 38. Time/Space graph of sequential evaluation of translator and
hand-crafted BMF code for finite diff.Adl applied to the vector

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
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(+ · (π1 · π1, + · (π2 · π1, π2)
◦)◦) ∗ ·

zip · (zip · (π1 · π1, π2 · π1)
◦, π2)

◦·
((select, select · (π1, (+ · (id, 1)◦) ∗ ·π2)

◦)◦, select · (π1, (− · (id, 1)◦) ∗ ·π2)
◦)◦·

(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

Figure 39. A more efficient version of finite diff.Adl using new functions.

performance of neither version of code is impressive. Even the hand-coded version

takes over 1600 operations to perform less than 30 additions. More significantly, as

we shall soon see, the performance of both versions of code gets steadily worse as the

problem size grows. Both BMF versions of finite diff.Adl waste time and space

distributing the entire input vector to each element; we only need three elements for

each invocation of map not the whole vector. This waste is unavoidable if we restrict

ourselves to using the BMF functions we have seen thus far. That is, the hand-crafted

version of finite diff.Adl is close to optimal given the limited set of tools we have.

Fortunately, as we shall see, we can improve matters if we add more BMF primitives

to our lexicon.

Figure 39 shows a more efficient translation of finite diff.Adl using extra

primitives. The functions in question are zip, from the previous chapter, and, more

importantly, a new function select. The zip function converts a pair of vectors into a

vector of pairs. The select function takes a pair consisting of a source vector and an

index vector. select produces a vector consisting of the elements of the source vector

that are indexed by the elements of the index vector. For example:

select ([10, 20, 30, 40, 50], [0, 3, 4, 3, 0, 1])

produces:

[10, 40, 50, 40, 10, 20]

The exact details of the code in figure 39 are not important at this point, and we will

revisit similar examples in detail in chapter 5; the important observations to make

are that:

• a means exists, to make access to elements of vectors from inside map efficient

in BMF and that

• to exploit this means we are forced use more BMF primitive functions and make

significant alterations to the structure of the program.



CHAPTER 4. ADL TO BMF TRANSLATION 86

0

50

100

150

200

0 500 1000 1500 2000

sp
ac

e 
(w

or
ds

)

time (in scalar operations)

Traces for a finite difference operation

hand-crafted
improved_hand_crafted

Figure 40. Time/Space graph comparing sequential evaluation of hand-crafted
BMF code for finite diff.Adl, using existing functions to hand-crafted code using

the zip and select functions. The input data used is the vector
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Note the change of scale from figure 38.

The extent to which efficiency is improved over the earlier hand-crafted version is

illustrated by figure 40. Note that the scale has changed to enlarge the two traces of

interest. The gap in performance between each of the three versions of BMF code for

finite diff.Adl grows quickly with the size of the input data. Figure 41 compares

the BMF code produced by the translator with hand-crafted BMF code and with the

improved hand-crafted BMF code. There is a significant gap between the top-line

and the middle-line. This gap represents the improvement to be had by eliminating

transmission of superfluous members of tuples. There is an even more significant gap

between the middle line and the bottom line. This gap represents the improvement

to be had by being selective about transmission of individual vector elements. The

bottom line is linear, which means it the has the same time complexity as the best

solutions to this problem22. In contrast, the two upper curves are quadratic and

sub-optimal. This difference is very important, it tells us that if we want to arrive

at a BMF solution that has an optimal order of efficiency we have to be prepared

to perform optimisation that exploits patterns of vector access and, in the process,

makes substantial changes the structure of the translator code. This is the work of

the optimiser and is described in the next chapter. A short summary of related work

is given next.

22The best sequential solutions to a one-dimensional finite-difference problem of this sort have
linear time complexity.
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Figure 41. The relative performance of different BMF versions of
finite diff.Adl applied to different sized data sets. As before, execution time is

measured in scalar operations.

4.5 Related Work

To the best of our knowledge closest relative to the Adl to BMF translator is the EL*

to FP* translator created by Banerjee and Walinsky[117]. EL*, like Adl, is a small

strict functional language aimed toward the expression of of data parallel algorithms.

Both Adl and EL* support vector and tuple aggregate types and support selection

on these types.

Adl provides primitive operations such as map, reduce and scan for specifying

operations over vector aggregates and iota for allocation of new aggregates. In

contrast, EL* allows the use of a restricted form of recursion to express divide and

conquer parallelism. These recursive functions are mapped into a standard FP*

template consisting of code to align and distribute input before performing a map

on the divided data before using a reduce to combine expressions. Another point

of contrast is the handling of references to free variables within functions passed as

parameters. Such references are supported in Adl with the help of function closures

but they are not supported in EL*.

Some translation techniques are similar between the two implementations. For
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example, the mechanism translating the passing of the referencing environment

through declaration sequences appears similar. Both translators also inject excess

distribution of data into the code, though the Adl translator seems to do this to

a larger extent due to the richer referencing environment allowed for functional

arguments.

In earlier work, the translation process, described in[100], from a simple functional

language to the Catagorical Abstract Machine (CAM) also maps a pointwise

functional language to an almost point-free form. The primary difference between the

CAM translation rules and the Adl translator is the use of a stack in CAM. This stack

does not have to be explicitly transported by code as the referencing environment is

in Adl translator code. However, the stack is accessed in a similar manner in CAM

code to the way the nested input tuples are accessed in translated Adl code.

A larger and more recent body of related work defines rules to assist the conversion

of recursive functions into compositional form (BMF). Hu[78] describes a partly

mechanised process for converting single recursive definitions in a functional language

into BMF. This is a very much more open-ended task than that attempted by the

Adl to BMF translator. The motivation behind this work appears similar to the

motivation for our translator: once a program is expressed in compositional form

(BMF) it is more amenable to transformation and parallelisation.

The thrust of the above work is extended by Cunha et. al[39] where a translation

is defined between pointwise Haskell and a point-free functional form. Their work

differs from this translation in its scope which covers the translation of recursive and

higher-order functions in a lazy language. The Adl translator has more emphasis on

translation of numerical and array operations and works in the context of a strict

language. Again, the methodology for handling the environment in both translations

is similar, using nested tuples, though the Adl translator supports a slightly richer

variety of tuple types.

This concludes our brief description of related work. The conclusions drawn from

this chapter are presented next.

4.6 Conclusions

From the work carried out to create this chapter we arrive at the following conclusions.
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Feasibility of translation Direct translation from Adl, a simple functional

language, to BMF a notation without variable references, is feasible and has been

implemented. Our implementation is an executable semantic model of the translation

process. Our implementation is conservative, it creates BMF code where all the values

that were accessible to functions in the Adl source are accessible to corresponding

functions in the BMF translation. The translator’s conservative nature keeps the

process mechanistic, deep analyses are avoided, but the code produced is not efficient.

Efficiency of translated code The translator converts from a notation where

values can be kept in scope at little cost (Adl) to a notation where keeping values in

scope incurs the cost of copying and transporting them. This cost is substantial where

functions are applied to each element of a large data set, as can occur in functions

like map.

What optimised code looks like It is clear that some optimisation of translator

code is required but what will be required of this optimisation process? We perceive

there are two parts. First, we want to eliminate the transport of surplus components

of tuples. Second, we want to eliminate the transport of surplus components of

vectors. The second form of optimisation requires the introduction of new primitives

and substantial changes to program structure.

Summary In this chapter we have shown that a translator from Adl to BMF can

be built and how such a translator is constructed. We looked at the code produced

by the translator and showed that this code needs to be optimised. Lastly, we looked

at what would be required of an optimisation process.

In the next chapter, we explore an automated optimisation process for the BMF

code produced by the translator.



Chapter 5

Data Movement Optimisation

The last chapter described a translator from Adl to BMF. This translator, whilst

reliable, was very conservative in choosing values to transmit through the program.

In this chapter we describe an optimiser that makes code more selective in the values

it chooses to transmit and, by this process, greatly increases the efficiency of code.

5.1 Chapter outline

The role of the optimiser, in the context of our implementation, is shown in figure 42

As can be seen, the optimiser takes sequential BMF code from the translator and

produces optimised sequential BMF code.

5.1.1 How the optimiser is described

The core of our prototype implementation of the optimiser, like the translator, is

defined using rules expressed in Natural Semantics.

This optimiser definition consists of several hundred rules, too many to present

here. Instead we focus on the key elements of the optimisation process and, wherever

possible, keep the discussion informal and provide illustrative examples.

5.1.2 Stages of optimisation

The results, shown at the end of the last chapter, highlighted two factors that make

translator code inefficient:

90
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Figure 43. The stages of the optimisation process

1. Entire vectors are copied to each instance of a function inside map functions,

even when only a small portion of the vector is required by each instance.

2. Members of tuples not required by functions downstream are, nonetheless,

transported to functions downstream.

The first factor is remedied by altering code so that vector elements are directed

only to the places that need them. We call this remedy vector optimisation. The

second problem is remedied by altering code so that elements of tuples that will not

be needed, are not passed downstream. We call this remedy tuple optimisation.

In the Adl implementation, tuple optimisation and vector optimisation are

performed as two, almost, separate passes. Figure 43 shows these stages of

optimisation. As can be seen, vector optimisation is performed first, followed by

tuple optimisation. Both stages produce and consume BMF code 1. The vector

optimisation stage invokes tuple optimisation on some small sections of code but

1Vector optimisation produces code containing new primitive functions but the code is still BMF.
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tuple optimisation does not invoke vector optimisation. Efficient code is produced

when the last stage of optimisation is complete.

5.1.3 Common elements and separate elements

There are many differences between vector optimisation and tuple optimisation but

these processes also share common elements. The next two sections outline the

common strategy and common tactics respectively. Sections 5.4 and 5.5 describe

the distinct elements of vector and tuple optimisation. Section 5.6 assesses the

performance of the optimiser and the code it produces and, finally, section 5.7 surveys

related work and concludes the chapter.

5.2 The common strategy

Both vector and tuple optimisation share the following strategy:

Minimising the amount of data produced at each source of data so it more

precisely matches the needs of the destination of the data.

Destination and source Where, in a BMF program, is the destination and source?

In BMF, data starts on the right, in the most upstream parts of the program, and

proceeds to the left to the innermost, most-downstream parts.

The path of optimisation Both vector and tuple optimisation start at the most

downstream part of the program and push the optimisation process, outwards and

upstream toward the source of data. Figure 44 provides a conceptual illustration of

this process and its effect on both data usage and elapsed execution time. The three

parts of the figure show snapshots of performance profiles of code at three stages of

an optimisation pass, vector or tuple2. In part (a) the optimisation pass has not

yet started. If the code were executed at this stage it would, typically, use a lot of

data, and take a long time to run. Part (b) is a snapshot of code half-way through

optimisation. At this stage the optimiser has reduced the data usage and execution

time of the downstream half of the program. There is a section of transitional code,

2The diagram most resembles the progress of tuple optimisation because it is the last pass where
all of the benefits of both stages of optimisation are made manifest.
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Destination Source
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program
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Destination Source

(b)

Start of 
program

mid-way through
optimisation

End of 
program

wish-list

Destination Source

(c)

Start of 
program

End of 
program
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finished

Figure 44. The effect of optimisation on program code from the start of
optimisation, part (a), to the mid-way through optimisation, part (b), to the final

result of optimisation part (c).
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called the wish-list , that expresses the data needs of downstream code to upstream

code, the wish-list will be more fully described shortly. Part (c) of figure 44 gives a

profile of the fully optimised program, which uses substantially less data and takes

substantially less time to run than the unoptimised program.

Note that both tuple and vector optimisation rely heavily on the wish-list always

providing an accurate expression of the data needs of the code downstream of it. We

describe what the wish-list is, and how it encodes data needs next.

The wish-list: encoding data needs The wish-list is encoded slightly differently

for vector and tuple optimisation:

• In vector optimisation, the wish-list consists entirely of ordinary BMF code.

• In tuple optimisation, the wish-list is injected into a filter expression whose

contents is either BMF code or a special value, called null.

We will investigate the filter expression and the role of null further in our description

of in section 5.5. At this point, it is sufficient to note that a filter expression containing

null can be safely treated as if it is the BMF id function. The main point is that, in

all cases, the wish-list either entirely consists of BMF code or can be easily mapped

to BMF code.

Encoding the wish-list as code avoids the need for extra syntax and rules to handle

a special form for wish-lists. It also means that the infrastructure used to guide

optimisation, the wish-list, is also part of the program itself. Optimisation could be

stopped at any point where a new wish-list is produced and, with very little effort, a

correct program forming a snapshot of that point of the optimisation process can be

extracted. The longer optimisation is allowed to run the more efficient these snapshots

get. The process is one of incremental convergence towards an efficient solution3.

Furthermore, each snapshot provides extra information that can be gathered by the

implementor for the process of fine-tuning and debugging the implementation.

Figure 45 illustrates the use of a wish-list, as applied to tuple optimisation. Part

(a) shows a simple program prior to optimisation. Part (b) shows the initial phases

3It is worth noting that this convergence is not strictly monotonic. Auxiliary rule-sets that
perform normalisation of code in preparation for future optimisation steps can, temporarily, decrease
the efficiency of code. Moreover, each of the two phases of optimisation is focused on one aspect
of performance and thus significantly improved performance may not be manifest until both phases
are complete.
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(+ · (π1 · π2, π2 · π2)
◦, + · (π1 · π2, 3)◦)◦ · (id, (π2, π1)

◦)◦ · (id, 2)◦

(a)

(+ · (π1 · π2, π2 · π2)
◦, + · (π1 · π2, 3)◦)◦ · (id, (π2, π1)

◦)◦ · (id, 2)◦ (1)
⇒ (+ · (π1, π2)

◦·(π1 · π2, π2 · π2)
◦, + · (id, 3)◦ · π1 · π2)

◦ · (id, (π2, π1)
◦)◦ · (id, 2)◦ (2)

⇒ (+ · (π1, π2)
◦, + · (id, 3)◦ · π1)

◦ · (π1 · π2, π2 · π2)
◦ · (id, (π2, π1)

◦)◦ · (id, 2)◦ (3)

⇒ (+ · (π1, π2)
◦, + · (id, 3)◦ · π1)

◦ · (π1, π2) · (π2, π1)
◦ · (id, 2)◦ (4)

⇒ (+ · (π1, π2)
◦, + · (id, 3)◦ · π1)

◦ · (π1, π2) · (2, id)◦ (5)

(b)

Figure 45. Part (a), an unoptimised program. Part (b), steps in the optimisation
process with the wish-list underlined.

of tuple-optimisation applied to the program (more on this soon). The wish-list is

underlined The wish-list is so-named because it precisely defines the data needed

by the downstream code. That is, it expresses the wishes of the code downstream.

Almost invariably, in unoptimised code, the downstream code wishes for a lot less

data than it actually gets.

Sweeping upwards and outwards The basic strategy used by tuple optimisation

(but also used by vector optimisation) can be seen in part (b) of figure 45. Firstly, the

most downstream parts are modified to become what they would be if given precisely

the data required to produce their output. So, for example, the leftmost expression

on line (1) of part (b) is converted from:

+ · (π1 · π2, π2 · π2)
◦

to

+ · (π1, π2)
◦

Simultaneously, a wish-list is inserted to provide the modified downstream code

the data it now requires. The simultaneous modification of downstream code and

insertion of a wish-list preserves program semantics. This preservation of semantics is

important because it means that even if the optimiser is, in a current implementation,

unable to work on a section of code, the result is still a correct program. That is,

the optimiser can be constructed incrementally to work on an expanded variety of
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code and still produce valid results along the way. This amenability to incremental

implementation is pleasing, from our perspective as implementors.

Once the wish-list is in-place the optimiser rolls upwards and outwards. The

current wish-list becomes the new focus of optimisation and the code immediately

upstream is modified to assume the role of the new wish-list. This effect can be seen

in part (b) of figure 45 by observing how the underlined code moves and and also by

looking at the optimised code to its left.

Note that line (2) of part (b) contains a wish-list that is fragmented over two

sections of code inside an alltup function. With the exception of function composition,

second-order functions, including alltup, allvec, if, reduce, and while, that contain

multiple functional components, open a new front of optimisation for each of their

functional components. Each functional component is optimised independently

and the wish-lists that result are coalesced to form a new, aggregated, wish-list

immediately upstream of the second-order function.

The process of modifying code and creating wish-lists finishes when the most

upstream part of the program is reached. Any wish-list that remains at the end of

this process is left in place to become part of the program code.

To this point we have described the basic optimisation strategy, based on the

propagation of a wish-list upstream, common to both tuple and vector optimisation.

Next, we examine the smaller-scale techniques, the tactics, used by both types of

optimisation, that keep the optimisation process tractable.

5.3 Common tactics

Though the basic strategy of optimisation is simple, the details of applying it are not.

The problem lies in the unbounded number of equivalent forms that any function can

take4. The optimiser works best if at each stage of optimisation, every possible case

is captured and profitably handled by some rule. However, unless steps are taken to

reduce the number of cases, defining an effective optimiser becomes infeasible.

Two, slightly-overlapping, strategies are employed to reduce the number of cases:

4Any function can be expressed in equivalent form by composing it with an id function. This
transformation can be carried out an unbounded number of times without affecting the semantics
of the function. Moreover, there are an unbounded number of ways to express an identity function
using combinations of alltup, id and π functions.
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• It is made easy for rules to ignore code that is not currently interesting, thus

narrowing the window of code each rule has to match.

• Code is kept in a predictable form.

We focus on these two strategies in turn.

5.3.1 Making it easy to ignore uninteresting code

At any intermediate stage of optimisation a BMF program has the following, idealised,

form.

< optimised-part > · < unoptimised-part >

This tells us that a program consists of an optimised part composed with an

unoptimised part. Only the unoptimised part, which, for convenience, includes the

wish-list, is of current interest to the optimiser. We can make things even better by

noticing that only the downstream part of the unoptimised part (which also includes

the wish-list) is, usually, of interest at any one time, so we have:

< optimised-part > ·
< interesting-unoptimised-part > ·
< uninteresting-unoptimised-part >

Having a small focus of interest is a good thing. All other things being equal, it

is easier to write rules for smaller sections of code than for large sections of code.

Another way of saying this is, fewer rules are needed to comprehensively capture the

cases presented by small sections of code than larger sections of code5.

The questions remain as to how code can be conveniently partitioned into

interesting and uninteresting parts and how such partitioning can be maintained.

These two questions are addressed next.

5A basic argument for this assertion can be made numerically. In a language with n different
primitive functions a function f , containing no-second order terms, can be adequately handled by
n rules. In contrast a function f · g could require up to n2 rules and f · g · h could require up to
n3 rules and so on. Of course, natural constraints in how functions can be combined will reduce
this variety. It must also be noted that this assertion has much less strength if the code has been
produced and/or pre-processed in such a way as to dramatically decrease the variety of forms. More
will be said about this shortly.
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Partitioning with function composition Consider the following, abstractly

represented, BMF program:

O0 ·O1 ·O2 ·O3 · I0 · I1 · I2 · U0 · U1 · U2 · U3

The letters represent BMF functions composed together to form a program. The

functions O0 to O3 are the part of the program that is already optimised. I0 to I2 are

the unoptimised functions which are of current interest to the optimiser. U0 to U3 are

the unoptimised functions which are not yet of interest to the optimiser. A human

reading the program above can, and should, see a sequence of composed functions

with no particular associativity. Function composition is an associative function so

where we draw the parentheses, if any, has no effect on program semantics. The Adl

implementation represents function composition as a binary operator and because it is

an operator of fixed arity, it must choose, at least in its internal representation, where

to draw the parentheses. Like the human reader, the Adl implementation has some

freedom in doing this. For example, for the program above the Adl implementation

could write:

((((((((((O0 ·O1) ·O2) ·O3) · I0) · I1) · I2) · U0) · U1) · U2) · U3)

or it could write:

(O0 · (O1 · (O2 · (O3 · (I0 · (I1 · (I2 · (U0 · (U1 · (U2 · U3))))))))))

or with any other pattern of matching parentheses without affecting program

semantics. However, though they are semantically neutral, the brackets can still be

used to capture useful information. Brackets can help guide rules to the interesting

code. For example, if parentheses are drawn the following way:

(((O0 ·O1) ·O2) ·O3) · (((I0 · I1) · I2) · (((U0 · U1) · U2) · U3))

we can easily write a rule to focus on the interesting part:

Process interesting part(bexpI ⇒ bexpR)

bexpO · (bexpI · bexpU)⇒ bexpO · (bexpR · bexpU)

If the rule above were applied to the previous program:

• bexpO matches (((O0 ·O1) ·O2) ·O3)
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• bexpI matches ((I0 · I1) · I2)

• bexpU matches (((U0 · U1) · U2) · U3)

which is precisely what we want. The association we have chosen for composition

helps the rule to focus on the I terms. Note that the rule is unaffected by how

parentheses are drawn within each group of O, I and U terms. As long as the outer

parentheses are drawn correctly the rule will work. Of course, ensuring that the outer

parentheses are drawn in the required order requires work and this, the second, issue

is addressed next.

Keeping brackets in their place Thus far, we have shown how we can use,

otherwise unimportant information, the association of function composition, to

partition code into interesting and uninteresting sections. The key to preserving this

partitioning information is for each rule, that deals with more than one partition, to

both recognise the partitions in its antecedent and produce partitions in its result. In

the Adl implementation the most common example of partitioning is between code to

the left of the wish-list, the wish-list itself and code to the right of the wish-list. All

rules that work with code that straddles the boundary of a wish-list are responsible

for producing a new wish-list, and its required context, in their conclusion.

Both stages of the optimiser make extensive use of function composition to

partition code. Next, we examine how the optimiser tries to keep code predictable.

5.3.2 Keeping code predictable

It is important to keep code predictable. For any part of the optimiser, the greater

the variety of code it encounters, the more sophisticated that part of the optimiser

needs to be. This relationship holds in general, varied environments require highly

sophisticated, or adaptable, systems to deal with them[2]6. The cost of making our

system sophisticated enough to deal with arbitrary BMF code is too great and making

it adaptable is beyond the scope of this research. As a practical option we chose to

6We should, perhaps, add that systems that have low levels of sophistication but are highly
insensitive to change can also cope with a varied environment. However, by the metrics of the cited
article, a system that is simple but is adapted to an environment is still more effectively complex
that a system that is sophisticated but is not adapted to the environment. That is, it makes sense
to measure the complexity of a system with reference to how much of that complexity helps it in
the current environment.
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decrease the variability in our system’s environment. Since the environment for the

optimiser is BMF input code, reducing variability means keeping or making that BMF

code more predictable.

This section describes general techniques used by both the vector and whole-value

optimisers to ensure that the code handled by our rules is predictable. The main

techniques used are:

• Using un-altered translator code.

• Standardising the associativity of code.

• Code compaction.

• Removing surplus identity functions.

The first of these is simply taking advantage of a feature that it already there

(unaltered translator code). The last three are forms of normalisation. These

techniques are described in turn.

Using unaltered translator code The Adl to BMF translator constructs BMF

code using standard templates. The very first stage of the optimiser can be

constructed from a small number of rules that match these templates. These

templates are quite large and they allow rules to make assumptions that they

otherwise wouldn’t.

Unfortunately, the structure of translator code quickly disappears during

optimisation, which puts strict limits on the extent to which this structure can be

exploited. In more concrete terms, only one phase of optimisation, either tuple,

or vector optimisation, can actually exploit the known structure of translator code,

because each phase completely obliterates this structure. When deciding whether

tuple or vector optimisation should take place first we examined which would most

benefit from using translator code. We chose to let vector optimisation run first

because it makes heavy use of information about the origins of indexing values. When

analysing translator-code, this information about origins can be discerned by simple

inspection of addressing functions. However, both optimisation phases obliterate

this simple relationship between origins of data and the format of the functions that

address it. As a consequence, running tuple optimisation first, would mean that

origins of data would have to be established, either, using data-flow analysis, or after
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f2 · f3 ⇒ f ′
3

f1 · f ′
3 ⇒ f ′′

3

(f1 · f2) · f3 ⇒ f ′′
3

(18)

f1 · f2 ⇒ f ′
2

f1 · (f2 · f3)⇒ f ′
2 · f3

(19)

...

Figure 46. Two rules from a rule-set that assumes its input is left-associated and
ensures that its output is right associated.

heavy use of normalisation to force code to re-establish a the relationship between

addressing functions and data-origins. We do not encounter this problem if tuple

optimisation runs last because, unlike vector optimisation, tuple optimisation does

not have a need to track, remote origins of data and can thus be easily run after

vector optimisation has modified the code.

Next, we examine the other techniques we use to keep code predictable. All of

these techniques require the expenditure of effort on the part of the optimiser and

are thus forms of normalisation.

Standardising the associativity of composition We saw, in the last section,

how the ability to define the associativity of function composition helped the cause

of further optimisation by allowing code to be partitioned without changing its

semantics. Rule sets can, and do, help maintain and exploit such partitioning. For

example, a rule-set may assume that its input code is associated to the left and then

systematically associate its output code to the right. This approach makes it trivial

for rules to distinguish between code that has been processed and code that has not.

As an example figure 46 shows two rules from an actual optimiser rule set that

assumes left-associativity in its input and systematically creates right-associativity in

its output. If the rule-set is given a left-associated composed sequence of functions

such as:

(((a · b) · c) · d) · e

then rule 18 will match first with the bindings {f1 7→ ((a ·b) ·c), f2 7→ d, f3 7→ e}. The

top premise of the rule will process d · e to produce an output function e′ that might
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or might not be a composed function. The second premise makes a call to process:

((a · b) · c) · e′

which matches rule 18 again and is processed to produce:

(a · b) · e′′

which matches the same rule again and is processed to produce:

a · e′′′

This code can no longer match rule 18 and, if e′′′ consists of two or more composed

functions, it will match rule 197. Rule 19 terminates the processing by pushing a

into e′′′ to produce e′′′′. This pushing is made more efficient if our rules ensure e′′′ is

associated to the right8.

Note that the rules in figure 46, require input code that is associated to the left

in order process that code completely. The Adl implementation uses a Left associate

rule-set that, given input code of arbitrary associativity, produces output code that

is uniformly left-associated. Left associate is applied to code prior to calling many

rule-sets.

It should also be noted that such pre-processing is not always invoked. Rule-sets

exist that do not rely on pre-processing but, in our experience, such rule-sets require

more discipline in their construction and are more fragile over time.

Code-compaction The archetypal transformation in the optimiser takes the form:

f1 · f2 ⇒ f3

where f3 is more efficient9 than f1 and f2 in combination. Unfortunately some

important transformations take the more complicated form:

f1 · g · f2 ⇒ f3

7If e′′′ is not a composed sequence of functions then at least one additional rule is needed to
capture this case.

8Which, in the absence of confounding rules, is ensured by the structure of rule 18.
9For input data of interest.
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K · f ⇒ K (20)

f1 · g ⇒ f ′
1

...
fn · g ⇒ f ′

n

(f1, . . . , fn)◦ · g ⇒ (f ′
1, . . . , f

′
n)◦

(21)

f1 ⇒ f ′
1

π1 · (f1, . . . , fn)◦ ⇒ f ′
1

...
fn ⇒ f ′

n

πn · (f1, . . . , fn)◦ ⇒ f ′
n

(22)

f · g ⇒ h

f ∗ ·g∗ ⇒ h∗ (23)

Figure 47. Key rules for compaction

where the g is intervening code that is important to the operation of f1
10. Code

compaction is used to normalise g to make it more amenable to necessary analysis

and transformation11.

Code compaction minimises the number of function compositions in the critical

path through a section of code. The key rules used for code compaction are shown

in figure 47. Where rule 20 applies when a constant function K is composed with

a function upstream. The rule eliminates this function, reflecting the fact that the

result of K is unaffected the result of any preceding code12. Rule 21 compacts an

upstream function into an alltup function. The rules listed under number 22 project

a component function out of an upstream alltup function13. Finally, rule 23 lifts the

10A concrete example of such a transformation is: ! ∗ ·((π1, + · (π2, 1)
◦)◦) ∗ ·distl⇒ select · (π1, (+ ·

(id, 1)◦) ∗ ·π2)
◦ where the function the bindings for f1,g and f2 are:

{f1 7→!∗, g 7→ ((π1, + · (π2, 1)
◦)◦)∗, f2 7→ distl}

The function g is vital to the semantics of this program and it has to be properly handled during
subsequent transformation.

11The code for g in the previous footnote does not require compaction though, quite often, code
in this position does.

12Applying this transformation can cause a program that previously did not terminate to
terminate. This is a property that the user of Adl compiler must be aware of.

13The real Adl implementation uses a few rules to systematically decompose alltup functions rather
than having a, potentially, infinite number of rules defining pointwise transformations as above.
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compaction process to composed map functions.

Apart from reducing the length of composition sequences, which has a quantitative

rather than qualitative effect on subsequent optimisation, there are a number of other

advantages to code compaction. Given code of the form:

f1 · g · f2

these advantages of code compaction, listed in increasing order of importance, are:

1. Compaction reduces the variety of functions found in g.

2. Compaction makes all address references in g relative to the output data of f2

rather than some intermediate tuple generated inside g.

3. Compaction ensures that every function in f1 has an un-shared path of

composed functions to the values generated by f2.

Advantage 1 refers to the fact that compaction completely removes composed

sequences of alltup functions from g. This can reduce the number of rules needed

in subsequently applied rule-sets. Advantage 2 is a corollary of advantage 1, there

can be at most one layer of alltup functions between f1 and the data produced by f2

making it much easier to utilise the address references left in the compacted version

of g.

Finally, advantage 3 opens the way for unfettered optimisation by producing

upstream code that can be transformed without an adverse effect on other downstream

functions. In more concrete terms, compaction changes code of the form:

(f ′, f ′′)◦ · g

where any optimisation of g for f ′ may affect f ′′, to:

(f ′ · g, f ′′ · g)◦

where optimisation of each component of the alltup can proceed independently. This

last advantage greatly simplifies the optimisation process.

Removing redundant identity functions An identity function is redundant if

its removal from a program does not affect the semantics of that program. Both

translation and some parts of optimisation produce redundant identity functions,
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usually as sentinel values. These redundant identity functions take up space and,

more importantly, make code more difficult for rules to recognise.

Redundant identity functions can appear in many places and can take many forms.

In the code:

(! · (π1, π2)
◦) ∗ ·distl · (id, iota ·# · id)◦ · id

the underlined functions are redundant identity functions. Their removal greatly

simplifies the code:

(!) ∗ ·(id, iota ·#)◦

Note that not all id functions are surplus to our needs. The remaining id function in

the program above is important to the semantics of the program.

Recognising redundant identity functions The large variety of forms that

an identity function can take confounds efforts to remove all redundant identity

functions from programs. Identity functions on tuples such as:

(π1, π2)
◦

are relatively easily detected. However identity functions can be arbitrarily complex.

The code:

(π2, π1)
◦ · (π2, π1)

◦

is also an identity function14, as is:

(! · (π1, π2)
◦) ∗ ·distl · (id, iota ·#)

Redundant identities of this last form are difficult to eliminate in practice15.

Fortunately, it is possible to detect, and remove, a large proportion of the redundant

identity functions that do arise using a relatively simple set of rules.

The costs and benefits of normalisation We have now outlined the three

main forms of normalisation used in the Adl implementation, left-association, code-

compaction and the removal of identity functions. All three of these operations

14Code compaction converts this form to previous form and thus aids in the detection of identity
functions.

15Part of the reason for this is that the constituent parts of this code are rarely seen as close
together as they are in this example. The various elements are often spread over a larger expanse
of code. Code compaction can help make such code easier to recognise and eliminate.
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exact a cost in terms of the execution time of the optimiser and only the removal

of identity functions directly and consistently contributes to faster target code. The

key benefit of these normalisation steps is the way they constrain the code so that it

can be adequately handled by a tractable number of optimisation rules. In essence

using normalisation is a trade-off between the, significant, compile-time cost of the

normalisation itself and the run-time benefit of an effective optimisation process.

This concludes our discussion of the common elements of optimisation. The next

two sections describe the two phases that employ these elements: vector optimisation

and tuple optimisation.

5.4 Vector optimisation

This section describes the Adl project’s vector optimiser for BMF programs. First, we

outline the basic strategy employed by the vector optimiser. After that, we describe

the details of the vector optimisation process. We postpone any discussion of the

effectiveness of vector optimisation until the end of the chapter when we assess the

optimisation process as a whole.

5.4.1 Strategy for vector optimisation

We showed, in chapter 3, that BMF code is amenable to incremental transformation

using rewrite rules. Both vector optimiser, and the tuple optimiser for that matter,

rely heavily on incremental transformation. This vector optimisation strategy is:

Use incremental code transformations to move data-narrowing functions

on vectors upstream.

This strategy is a specialisation of the, earlier stated, shared strategy of minimising

the data produced upstream so that it more precisely matches the needs of code

downstream. We can see this relationship by considering what a data-narrowing

operation does. A data narrowing operation converts large data items (vectors) into

smaller data items (scalars and vector-elements). If a data narrowing operation can

be moved upstream then the code that it leaves in its wake must be changed to

compensate for the reduced flow of data. This reduction in data flow typically results

in less work being done by the program. This idea is illustrated, in an abstract
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f input dataoutput data

(a)

input dataf ’

downstream upstream

downstream upstream

(b)

output data

Figure 48. The strategy of moving a data narrowing operation f upstream to
reduce the total amount of data movement in the program. Part (a) represents data
flow prior to optimisation and part (b) represents data flow after optimisation. Note
that f and f ′ are not necessarily the same function but their output must always be

the same.

manner, in figure 48. The figure represents the program as a channel, through which

data flows from right-to-left, just as it does in BMF programs16. The channel is a

series of composed functions. The width of the channel represents the amount of

data flowing through the functions in that part of the program. Part (a) represents

a program prior to vector optimisation. The program starts with a small amount of

data but soon the amount of data increases before encountering a function f . The

function f is a data-narrowing operation (on vectors) and its output is very much

smaller than its input. This pattern of data-flow is typical of translator code and it

is, almost always, non-optimal.

Part (b) represents the data flow through the optimised program. The function f

has been moved upstream. In the process, f is transformed into a different function f ′

that takes in a much smaller quantity of data. In most cases, there is little superficial

resemblance between f and f ′ but they are related by the fact that they must produce

the same output given the same initial input to the program.

16with the exception of while loops which allow data to circulate.
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The data narrowing operations There are two data-narrowing operations on

vectors:

• Vector indexing (!)

• and vector length (#)

When the vector optimiser encounters these, it attempts to move them upstream. It

turns out that moving the # function upstream, as far as the point of creation of its

input vector, is usually easy. On the other hand, the index function ! is reliant on

both its input vector and its index value and, as such, its movement is beholden to

the origins of both of these parameters. As a result, ! is usually much more difficult

to move upstream. Consequently, ! is the primary focus of the vector optimiser and

the discussion to follow.

At this point, we know the data-narrowing operations and we are aware of the

vector-optimisation strategy in abstract terms. Next, we add more depth to this

understanding by looking at two, more concrete, examples of the effect of vector

optimisation on code.

First example - minor improvement The vector optimiser converts the

following unoptimised code

+ · (! · (π1, 3)
◦, π2)

◦ · (π1, + · (2, π2)
◦)◦ · (π1, + · (1, π2)

◦)◦ · (π1, + · (4, π2)
◦)◦

to the more efficient:

+ · (! · (π1, 3), + · (2, + · (1, + · (4, π2)
◦)◦)◦)◦

In this case, vector optimisation has the effect of compacting the code. This

compaction has the desired effect of bringing the ! function upstream but, as figure 49

illustrates, the gain in efficiency is slight. Each arc in the figure represents the

transmission of a data value. The input to the program is a tuple, consisting of a scalar

value (black line) and a vector of scalars (grey lines). In this case, the compacted,

vector optimised code, in part (b), causes the, potentially large, input vector to !

to flow through fewer functions than it did in part (a). The transformation is of

material benefit17 and there is little more we could expect a vector optimiser to do.

17There is still a lot of unnecessary transport of data in the upper portion of part (b)’s diagram.
Getting rid of much of this remaining redundant transport is the task of the tuple optimiser, whose
description starts on page 143
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Figure 49. The effect of moving ! upstream in a simple program. The code prior to
moving ! is shown in part (a). Part (b) shows the code after moving !.

However, the gain in efficiency is relatively insubstantial compared to the effect of

vector optimisation on the next example.

Second example - major improvement Vector optimisation has a much

greater effect when there is more redundant data transport defined by the translator

code. A typical example where there is a lot of surplus transport is the program

(! · (π1, π2)
◦) ∗ ·distl · (π1, π2)

◦

which permutes the first input vector according to the indices of a second input vector.

Vector optimisation converts this to the code:
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select · (π1, π2)
◦

The difference this transformation makes can be discerned by comparing the pictures

shown in figure 50. Part (a) shows the data movement implicit in the first version of

the program. The light-grey lines, are the elements of the source vector and the black

lines are elements of the vector of indices. The distl function produces a copy of the

source vector for every element of the index vector. At the end of the program only

one element of each copy of the source vector is used in the result. All of the rest of

the elements are replicated needlessly.

Part (b) of figure 50 shows a much more efficient version of the program. The

costly combination of replication plus indexing has been eliminated and replaced with

the efficient select function.

What is select? select is a function of two vectors. The output of select is a

vector containing the elements of the first vector, the source vector, indexed by the

second vector, the index vector. An example of how select works is:

select [1, 2, 3, 4] [3, 1, 1, 2, 0] = [4, 2, 2, 3, 1]

select cannot be efficiently implemented in terms of the other BMF functions presented

thus far so, in the Adl implementation, select is a primitive function. select executes

in time proportional to the length of the index vector.

Where vector optimisation has most effect The two preceding examples

motivate and illustrate the basic strategy of vector optimisation. The effect of vector

optimisation is greatest when it applies to code that distributes copies of whole vectors

for later indexing. The great majority of such cases are encountered in, and around

map functions. The optimisation of map forms the largest part of the vector optimiser.

A note about some examples to come In the Adl implementation, vector

optimisation is very strongly focused on optimising access to vector elements. The

vector optimiser, for the most part, ignores superfluous references to elements of

tuples, on the grounds that eliminating these is the job of tuple-optimisation. As a

result of this selective focus, code produced by the vector optimiser can be cluttered

and hard-to-read18. Such clutter adds nothing to the Adl examples so we omit it,

18It can also, in some cases, still be inefficient. This is because, although the explicit references
to vector elements have been optimised, the vector as a whole may still be distributed by the code.
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Figure 50. The effect of moving ! upstream into a distl function, causing both
functions to be eliminated and replaced with select
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in some examples to come, by showing the code, much as it would be after running

both vector and tuple optimisation. In no case is this a misrepresentation as, in

all examples in this section, the gains in efficiency are almost entirely due to vector

optimisation. However, the reader should be aware that the examples omit some

messy details.

Summary and preview Thus far we have described the strategy of vector

optimisation and presented two examples to illustrate where vector optimisation has

most impact. The time has come to describe the operation of the vector optimiser in

detail. The next section describes the most challenging part of vector optimisation,

the optimisation of map. After that we will devote a, much shorter, section to

describing vector optimisation of all other functions.

5.4.2 Vector Optimisation of Map

The strategy for optimising map mirrors the vector optimisation strategy shown in

figure 48. The translator code for map behaves in a way that corresponds to part (a)

where the distl function, upstream of the map, is responsible for widening the data

and ! or # functions inside the map are responsible for narrowing it. Optimisation of

map brings these functions together and eliminates them to produce a program with

behaviour corresponding to part (b). Figure 50 gives the archetypal version of the

optimisation process for map. Part (a) shows an inefficient program with both distl

and ! functions present. Part (b) eliminates them both, leaving a select function in

their place. This transformation strategy is simple and, in this case, so is the rule to

implement it.

Given this simple strategy it might seem that the process for vector optimising

map is straightforward. Unfortunately, rules such as the one in figure 50 are, typically,

only applicable after long sequence of transformations to pre-process code to a form

that matches the rule. In general, a map function can contain arbitrarily many

references to one or more elements of one or more vectors. Moreover, map functions

over vectors can be nested, resulting in interactions between levels of indexing that

defy simple characterisation. To cope with this complexity, the rules for performing

vector optimisation on map are the most detailed in the optimiser.

This distribution is often left in place because the tuple optimiser has not had the chance to establish
that the vector, as a whole, does not need distribution.



CHAPTER 5. DATA MOVEMENT OPTIMISATION 113

In the explanations ahead we avoid a strong emphasis on the low-level details of

how map functions are optimised. Instead, the focus will be on the core components of

the optimisation process and on how translator code is processed so these components

can be widely applied. Where possible, we illustrate the effect of this process with

examples.

The structure of this section is as follows. Next, we describe the anatomy of

the translator code produced from map functions in Adl and define the terminology

for the rest of this section. Second, in section 5.4.2.2 we outline the phases of

vector optimisation of map functions. Section 5.4.2.3 describes the core of the

optimisation process for indexing functions. Indexing functions are the key focus

of vector optimisation so more space is devoted to this section than others. Finally,

section 5.4.2.4 outlines how other functions, besides indexing functions, appearing in

map functions are vector optimised.

5.4.2.1 Anatomy of Translated Calls to Map Functions

The translator, described in the previous chapter, converts Adl calls of the form:

map(f, e)

to:

(B) ∗ ·distl · (id, R)◦

Where B is the translation of the right-hand-side of the function f and R is the

translation of the expression e which is responsible for generating the input vector.

The id function captures an environment containing all the global values in the static

scope of f . The distl function distributes this environment across the input vector19

and the ()∗ function, encapsulating B, ensures that B is applied to every element of

the input vector. The whole of this BMF code is called the map-translation and we

19Distribution of a similar nature occurs in the FARM skeleton[42] which is defined:

FARM :: (α→ β → γ)→ α→ [β]→ [γ]
FARM f env xs = map (f env) xs

where the environment env is partially applied to f and implicitly distributed across the array
xs. One difference between the FARM skeleton and the map-translation is that the programmer
has some control over what is contained in env in the FARM skeleton whereas Adl source code
provides no such control. Another difference is that env is destined to be the same for all instances
of the map function inside the FARM skeleton but, in the Adl translation, the explicitly distributed
environment can be, and is, tailored for each invocation of B by the vector optimiser.
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will refer to it by this name in the remainder of this report. We will also use the

terminology map-body to refer to B and the term range-generator to refer to R.

For the purposes of this discussion the most significant feature of the map-

translation is that the map-body is given all of the values in scope just in case they

are needed. This is inefficient and the task of the optimiser is to reduce the size

of this set of values. The task of the vector optimiser is more specific - The vector

optimiser tries to reduce quantity of vector elements flowing into the map body by

moving data-narrowing functions such as vector-indexing and vector-length out of the

map-body. We describe how the vector optimiser approaches this task next.

5.4.2.2 Phases of Map Optimisation

Vector optimisation of map is carried out in three phases:

1. Pre-Processing: normalises the functions in map-translation to allow them to

be captured by the core-processing rules that follow.

2. Core-processing: applies transformations necessary to move indexing and

length functions outside of the map-body.

3. Post-Processing: consolidates the products of core-processing to produce a

cleanly structured map function and a single wish-list for further processing.

We briefly describe each of these phases in turn.

Preprocessing Before the main work of optimisation can take place and before we

can apply the rules for the cases we will consider shortly, the map-translation must be

pre-processed. Pre-processing assumes that all ! and # functions which are amenable

to further processing are already in the wish-list inside the map body. However, these

functions may be buried at some depth in the wish-list, which may obscure the values

that they are referencing. Pre-processing uses code-compaction to compress the code

immediately upstream to make ! and # functions more easily accessible and resolve

the values they are referencing. Figure 51 gives a concrete example of this process.

Part (a) of the figure shows the map-body, with wish-list underlined, prior to pre-

processing. The values being referenced by the # and ! functions are not readily

apparent to the optimiser because of the sequence of composed alltups immediately

upstream of these functions. Pre-processing compacts this upstream code to produce
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(f · (# · π1 · (π2, id)◦, ! · (π1, π1 · π2)
◦ · (π2 · id)◦)◦ · (π2, π1)

◦)∗
(a)

(f · (# · π1 · π1, ! · (π1 · π1, π2)
◦)◦)∗

(b)

Figure 51. The effect of pre-processing on a map body. Part (a) shows a map body
before pre-processing. The wish-list (underlined) is quite long, the # and ! functions
are nested several compositions deep making it impractical to define a simple rule to

access them. Part (b) shows the same code after pre-processing. The # and !
functions are nested less deeply and the positions of the values they reference in the
input tuple are easily resolved. Note that f is a section of previously optimised code.

the code in part (b). The compaction process has removed intermediate layers

of functions that previously obscured the values being referenced in the functions

producing the parameters to ! and #. After compaction these functions, and their

immediate parameters can be accessed, and processed, easily and independently by

the core-processing stage.

Note that, for indexing functions, compaction is not the end of the pre-processing

phase. In certain cases the input vector is re-oriented, and the indexing functions

referencing it are adjusted, to make code more amenable to core processing The

details of this reorientation process will be described later, starting on page 127.

Core-processing Core-processing attempts, by a process of incremental

transformation, to pull index and length functions, now residing in the most upstream

part of the map body, further upstream - out of the map-body entirely. The benefit of

moving these data-narrowing functions out of the map body is that their, potentially

large, input data does not have to be distributed to each instance of the map

body. This, typically, leads to much reduced data-replication costs during program

execution.

In almost all cases, pulling a length function out of the map-body is

straightforward20 and we will not discuss this process further. In contrast pulling

an index function out of map-body is not always a trivial process. The code resulting

20As long as the vector being processed by the length function is not generated inside the map-
body. It is trivially replaced by a reference to the result of an application of the length function to
the same vector upstream of the map-body.
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from this movement also varies in complexity according to the origins of the index

values and the presence or absence of nested index functions. Core processing of

index-functions is described in section 5.4.2.3. Core-processing of other non-index

functions is described in section 5.4.2.4.

Post-processing Core-processing optimises each index and length function

separately producing an alltup of isolated map functions which are consolidated further

downstream using one or more zip functions. Post-processing works to re-unite these

functions and their upstream code in order to improve readability and slightly improve

efficiency. Post-processing also has the effect of producing a single wish-list for use

in further optimisation of upstream code. Post-processing contains non-trivial code

and plays an important house-keeping role in optimisation. We do not provide a

separate description of the post-processing rules for the vector optimisation of map

here but note their effect, where appropriate, in our descriptions of the core vector

optimisation process.

This concludes our brief overview of the stages of vector optimisation of map-

translations. The most novel and challenging aspects of this work relate to the

optimisation of indexing functions, and we describe these next.

5.4.2.3 Core Processing of Indexing Functions

The optimisation steps performed in the core processing of indexing functions in

map-translations are the ultimate source of most of the benefit derived from vector

optimisation. At the centre of this optimisation process lie a few simple index

processing rules. These rules, combined with the correct infrastructure to apply them,

are very effective in reducing data movement in a broad range of indexing functions.

For some nested index functions, the effectiveness of the index processing rules is

further improved with judicious reorientation of input vectors prior to the application

of these rules. Although, it is actually a form of pre-processing we delay any further

discussion of the reorientation process until page 127, after we have described the

index-processing rules. We do this because the description of the index processing

rules makes the motivation for the reorientation process clearer.

The layout of the remainder of this section is as follows. First, we explain the

anatomy of an indexing function, defining terms for its parts. Second, we present the

index-processing rules and describe how each is applied and describe their impact on
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Figure 52. An example of a nested indexing function.

the efficiency of the program. Third, we describe the reorientation process to improve

the impact of the index-processing rules for some indexing functions. Fourth, we

describe how the vector optimiser handles map-translations with multiple indexing

functions. Finally, we describe how map-translations containing conditional functions

with embedded vector indexing functions that are handled.

Anatomy of Vector Indexing Functions Indexing functions have the form:

! · (vector-referencing-function, index-generating-function)◦

The ! symbol is a binary index-operator21. It takes a pair consisting of a vector

argument and an integer index and returns the element of the vector referenced by

the index. The vector referencing function generates the vector argument to the

index-operator and the index generating function generates the index argument to

the index operator.

Figure 52 shows an example of a nested indexing function with labels describing

its various parts. Note that, in this example, the inner indexing functions act as the

vector referencing function for the outer indexing function. This layout is typical of

indexing functions applied to nested vectors.

Now that we have defined the nomenclature for indexing functions we can describe

the index processing rules.

Index processing rules There are three rules for processing vector indexing

functions found in the map-bodies of map-translations. These are described in

figure 53. These rules are derived from the IOpt rule-set of the optimiser definition22

21Occasionally, in other parts of this report the !-symbol is referred to as an index-function as
distinct from an indexing-function which is the index-operator combined with the alltup function
immediately upstream. To avoid confusion, in this section, the !-symbol is called the index-operator.
In other sections the use of index-function is further clarified by its context.
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Set IOpt is b exp ⇒ b exp

Select introduction

Not Member of oexp(b exp1, π2)
Member of oexp(b exp2, π2)

Opt(b exp2 ⇒ b exp′
2)

(! · (b exp1, b exp2)
◦) ∗ ·distl · (V, R)◦ ⇒

select · (b exp1, b exp ′
2)

◦ · (V, R)◦

(24)

Repeat introduction

Not Member of oexp(b exp1, π2)

Not Member of oexp(b exp2, π2)

(! · (b exp1, b exp2)
◦) ∗ ·distl · (V, R)◦ ⇒

repeat · (! · (b exp1, b exp2)
◦, # · π2)

◦ · (V, R)◦

(25)

Catch-all rule
Member of oexp(b exp1, π2)

Opt((b exp1, b exp2)
◦ ⇒ b exp)

(! · (b exp1, b exp2)
◦) ∗ ·distl · (V, R)◦ ⇒

(!) ∗ ·b exp · (V, R)◦

(26)

End IOpt

Figure 53. Index processing rules.

which is a specialised rule-set for handling indexing-functions which resides inside

the larger Opt rule set used for core processing of all functions in map-translations.

Rule 24 applies when there is an immediate opportunity to replace the indexing and

distl function with a much-more efficient select function. Rule 25 applies when the

indexing function produces a value that is invariant across all invocations of the map

body. In this case, the indexing function can be dragged upstream of the map-body

and a copy made, using repeat, in place of each invocation of the original indexing

function. repeat is defined:

22It should be noted that, for clarity of exposition, more context has been added to the rules above
than appears in the actual rules in the optimiser. The actual optimiser rules do not include the distl

and (V, R)◦ functions. This makes it easier to apply the rules in situations where the map-body
contains more than just an indexing function. The rules of the optimiser re-inject the results of its
rules back into context after the it applies the rules from IOpt . None of this affects the validity of
the rules in figure 53.
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repeat (v, n) = [v]++ repeat(v, n− 1), n > 0

repeat (v, 0) = [ ]

That is, repeat takes a pair consisting of a value v and an integer i and produces a

vector [v, . . . , v] containing i copies of v. The last rule (rule 26) applies when there

are no immediate and easily detectable opportunities for further optimisation.

Now, having described the purpose of each rule, we now explain how and why the

premises of each rule determine when it is applied.

Rule choice For a given piece of code, the rule from figure 53 to be applied

depends on the the presence or absence of π2 functions in either the vector-

referencing-function b exp1 or the index-generating-function b exp2. The predicate

Member of oexp is true if its second parameter, in this context: π2, appears as a most

upstream function in its first parameter. The predicate Not Member of oexp is true

if its second parameter, again π2, does not appear as a most upstream function in

its first parameter. The significance of π2 in these rules lies with the fact that, in

the context of a map-body, a π2 function, appearing as a most upstream function,

must always reference the range-generator of the encapsulating map-translation. In

these rules the range-generator is denoted R. Any function that references R can

vary between invocations of the map-body. Conversely, any function that does not

reference R cannot vary between invocations of the map-body. This variance, or lack

thereof, is pivotal in deciding whether it is appropriate to use select (rule 24) or

repeat(rule 25) or not to insert either of these two (rule 26).

Scope for further optimisation The premises of the rules in figure 53 call

the Opt rule-set on every term that might have π2 as a most-upstream function.

Conversely, they neglect to call Opt on any term known not to have π2 as a most

upstream function. The reason for this pattern of calls is that any function without a

most-upstream π2 function can, during post-processing, be moved into the wish-list

for further processing at some later stage. Such functions do not need to be optimised

immediately. In contrast, functions that contain π2 as a most upstream function, by

virtue of the fact that they access a value created in R, the range-generator, cannot

be moved further upstream for processing at a later stage. Such functions must be

processed in-situ, hence the call to Opt on these functions.
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(! · (π1, π2)
◦) ∗ ·distl · (id, iota · 4)◦

Figure 54. A map-translation containing an indexing function amenable to
application of rule 24 (select-introduction)

select · (π1, π2) · (id, iota · 4)◦

(a)

select · (id, iota · 4)◦

(b)

Figure 55. The program shown in figure 54 immediately after application of
rule 24 (select-introduction) (part (a)) and after subsequent cleanup (part (b)).

We have now, briefly described the three rules of IOpt . These rules are referenced

frequently in the following discussion and so, for the sake of clarity, we will sometimes

suffix references to these rules with the corresponding name from figure 53.

Examples applying rule 24: Select Introduction Rule 24 applies whenever

the index-generating-function depends on the range-generator and the vector-

referencing-function does not. A simple example where this condition is true is shown

in figure 54. In this code the index-generating-function, π2, depends on the range-

generator, iota · 4, and the vector-referencing-function, π1 does not. When rule 24 is

applied to this code it is transformed to the code in figure 55(a), which is trivially

cleaned-up in subsequent processing to produce the code in part (b). The code in

figure 55 avoids distribution of its input vector and is thus significantly more efficient

than the code in figure 54.

Figure 56 shows a program containing a nested map-translation containing a

nested indexing function23. The inner map-translation (underlined) is applicable to

rule 24. Figure 57(a) shows the same program after the application of rule 24 to the

inner map-translation. Part (b) shows the same program after subsequent cleanup of

the inner map-translation using simple BMF identities to merge (!·(π1·π1, π2·π1)
◦, π2)

◦

23Though it is not of vital significance, in this context, the program produces a square-shaped
subset of its input vector.
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((! · (! · (π1 · π1, π2 · π1)
◦, π2)

◦) ∗ ·distl · (id, iota ·# · π1)
◦) ∗ ·distl · (id, iota ·# · id)◦

Figure 56. A nested map-translation, amenable to rule 24(select-introduction),
containing a nested indexing function. The inner map-translation is underlined.

(select · (! · (π1 · π1, π2 · π1)
◦, π2)

◦ · (id, iota ·# · π1)
◦) ∗ ·distl · (id, iota ·# · id)◦

(a)

(select · (! · (π1, π2)
◦, iota ·# · π1)

◦) ∗ ·distl · (id, iota ·# · id)◦

(b)

(select · (π1, iota · π2)
◦ · (! · (π1, π2)

◦, # · π1)
◦) ∗ ·distl · (id, iota ·# · id)◦

(c)

Figure 57. The program in figure 56 after application of rule 24
(select-introduction) to the inner map-translation (part (a)), after subsequent

cleanup (part (b)) and after post-processing (part (c)) to extract a new wish-list
(underlined).

and (id, iota · # · id)◦. Part (c) shows the same program with the inner map-

translation further post-processed to have a distinct wish-list (underlined). This wish-

list includes, as one of its most-upstream functions, an indexing function, ! · (π1, π2)
◦,

that can be the subject of further optimisation using rule 24. Figure 58 shows the

program in figure 57 (c) after the application of rule 2424 and subsequent post-

processing. An intuition of the efficiency of this program relative to the unoptimised

version in figure 56 can be had by comparing figure 59 with figure 60. Figure 59

contains a schematic of the the data flows in the unoptimised program of figure 56.

Note that, in this figure, to save space, we use the darker lines to denote entire vectors;

24Note again, that the actual versions of the rules in IOpt remove indexing functions from their
immediate context which makes possible the direct application of rule 24 to map-translations like
the one in figure 57 where indexing functions are mixed in with other functions.

(select · (π1, iota · π2)
◦) ∗ ·distl · (π2, π1)

◦ · (select · (id, iota ·# · id)◦, # · id)◦

Figure 58. The program in figure 57 with both the inner and outer
map-translations optimised.



CHAPTER 5. DATA MOVEMENT OPTIMISATION 122

id

id

π1iota

distl iota #

#π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

distl
π2π1

π1
π2
π1!!

π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

distl
π2π1

π1
π2
π1!!

π2π1
π1

π2
π1!! π1

id
iota #

id

π1iota #π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

distl
π2π1

π1
π2
π1!!

π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

π2π1
π1

π2
π1!!

distl
π2π1

π1
π2
π1!!

π2π1
π1

π2
π1!! π1

id
iota #

( ( ! . π1( . π1 , π2 . π1) π2,! .( ) )* . distl id. ( , iota #. . π1) )* . id( , iota #. . )iddistl .

Figure 59. Data flows in the unoptimised nested map-translation shown in
figure 56. Note that each darker line in this diagram represents an entire vector.

the lighter lines denote individual values. The input vector is nested. The diagram

shows how, even with the small number of actual input values shown, data flow

increases dramatically as the program executes. Downstream parts of the program

are so crowded that most individual arcs cannot be discerned. It is only at the end,

with the application of nested vector indexing operations, that data flow dramatically

decreases.

Figure 60 shows the data flows in the optimised program in figure 58. The

moderate data flows in this program stand in stark contrast to the vast quantities

of data handled by the unoptimised program. The use of select, instead of the

distl/indexing combination, greatly reduces the replication of data. Almost all of this

reduction is attributable to the application of rule 24. Next we look at an application

of rule 25 (repeat-introduction), which also leads to significant gains in efficiency.

Examples applying rule 25: Repeat Introduction Rule 25 applies when

neither the index-generating-function nor the vector-referencing-function depend on

the range-generator. In these cases the result of the indexing function is constant

across all invocations of the map-body and can be replaced by repetition of its result.
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Figure 60. Much improved data flows in the optimised map-translation shown in
figure 58. Note that each darker line in this diagram represents an entire vector.The

programs shown in this figure and figure 59 are semantically equivalent.

(! · (π1, 0)◦) ∗ ·distl · (id, id)◦

Figure 61. A map-translation containing a vector index function with a constant
index parameter.

Figure 61 contains a map-translation to which rule 25 applies. In this program the

index-generator is a constant function, 0. Rule 25 converts this code into the code

shown in figure 62(a). Post-processing further simplifies the code to that shown in

part (b). Note that the versions of the program shown in figure 62 are much more

efficient than the original map-translation in figure 61 because the latter replicates the

entire vector for every invocation of the map-body, using distl, whereas the optimised

program replicates the result of the indexing function, using repeat.

Another example where rule 25 is applicable is shown in figure 63. In this code the

repeat · (! · (π1, 0)◦, # · π2)
◦ · (id, id)◦

(a)

repeat · (! · (id, 0)◦, # · id)◦

(b)

Figure 62. Optimised version of the program shown in figure 61
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(! · (π1 · π1, π2 · π1)
◦) ∗ ·distl · (id, π1)

◦

Figure 63. A map-translation containing an index function with an index
parameter that is constant for each invocation of the map-body

repeat · (! · (π1 · π1, π2 · π1), # · π2)
◦ · (id, π1)

◦

(a)

repeat · (! · (π1, π2)
◦, # · π1)

◦

(b)

Figure 64. Code from figure 63 after the application of rule 25
(repeat-introduction) (part (a)) and after a small amount of post-processing (part

(b)).

input data is a pair (v, x) where v is a vector and x is an integer index. The index-

generator, π2 ·π1 in this code references the input data x and, thus, is invariant across

all invocations of the map-body. The application of rule 25 to the code in figure 63

produces the code in figure 64(a) and, after a small amount of post-processing, then

produces the code in figure 64(b). Again the optimised versions of the program are

very much more efficient than the corresponding translator code because they avoid

distributing copies of the input vector.

We have now seen map translations applicable to rules 24 (select-introduction)

and rule 25 (repeat-introduction). Next we look at the final, Catch-all, rule from

IOpt .

Examples applying rule 26: The Catch-all Rule The final rule for core-

optimisation of indexing-functions in map-translations is rule 26. This rule applies

when π2 can be found as a most-upstream function in the vector-referencing function.

The appearance of π2 in the vector-referencing function is problematic since it is the

vector-referencing function that determines the vector to be indexed. If this function

contains π2 as a most-upstream function it means that the vector being indexed can

change between invocations of the map-body. This situation, of indexing into changing

vectors, cannot easily be characterised by a single function such as repeat or select.

The approach taken by the catch-all rule is to leave the index function where it is,
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((! · (
b exp

1

! · (π1 · π1, π2)◦,

b exp
2

π2 )◦) ∗ ·distl · (
V
id ,

R
iota ·# · π1)

◦) ∗ distl · (id, iota ·#)◦

Figure 65. A map-translation that fills each row in its nested result vector with
elements from the diagonal of its nested input vector. Rule 26 (catch-all) is

applicable to the underlined code. The sections of code corresponding to variables
in rule 26 are labelled.

encapsulated by its surrounding map function, and separately optimise the code that

produces its parameters. Figure 65 shows a nested map translation that is captured

by rule 26.

Given a square-shaped nested vector this program returns a nested vector, of the

same shape, with each row filled with the diagonal elements of the the input vector.

The code to which rule 26 is applicable is underlined. The labels above the line denote

the code corresponding to variables in rule 26. The first premise of rule 26:

Member of oexp(b exp1, π2)

tests for the presence of a π2 function in the most-upstream parts of b exp1:

! · (π1 · π1, π2)
◦. This premise is trivially proved. In the second premise:

Opt((b exp1, b exp2)
◦ ⇒ b exp)

b exp1 is, again, bound to: ! · (π1 ·π1, π2)
◦ and b exp2 is bound to: π2. In this premise,

Opt recursively descends into the constituent functions of the alltup. The code for

b exp1: ! · (π1 · π1, π2)
◦ eventually matches rule 24 (select-introduction) of the IOpt

rule-set, producing the code:

select · (π1 · π1, π2)
◦

the code for b exp2: π2 is mapped, by rules for core processing of non-index functions,

to itself producing:

π2

these two sub-results are combined and put into context by post processing to form

the result:

zip · (select · (π1 · π1, π2)
◦, π2)

◦ · (id, iota ·# · π1)
◦

which corresponds to the b exp at the end of the second premise shown above. When

integrated back into the code from figure 65 the code in figure 66 is produced. The
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((!) ∗ ·zip · (select · (π1 · π1, π2)
◦, π2)

◦ · (id, iota ·# · π1)
◦) ∗ distl · (id, iota ·#)◦

Figure 66. The code from figure 65 after the application of rule 26 (catch-all).
Underlined code corresponds to the underlined code from figure 65.

((! · (! · (π1 · π1, π2)
◦, π2 · π1)

◦) ∗ ·distl · (id, iota ·# · π1)
◦) ∗ ·distl · (id, iota ·#)◦

Figure 67. A program that transposes its input vector. The π2 function in the
inner indexing function is underlined.

underlined code is the new code that has been produced by rule 26. The program

in figure 66 is substantially more efficient than the translator code code in figure 65

because it only performs distribution of the input vector on one level.

Second example: vector transposition Figure 67 shows a nested map-

translation with a nested indexing function. This code transposes any square-shaped

input vector given to it by distributing copies of the input to invocations of a nested

map-body and then using a nested indexing function to extract the appropriate

values. Like other translator code we have seen thus far, this code is not efficient.

Unfortunately, the inner indexing function has a π2 function as one of its most-

upstream functions, which makes the inner map-translation applicable only to rule 26,

the catch-all rule.

Figure 68 shows the code in figure 67 after the application of rule 26 (catch-all).

The function:

select · (π1 · π1, π2)
◦

is generated, as per the previous example, from the inner indexing function:

! · (π1 · π1, π2)
◦

The function:

((!)∗·zip·(select·(π1·π1, π2)
◦, repeat·(π2·π1, #·π2)

◦)◦·(id, iota·#·π1)
◦)∗·distl·(id, iota·#·π1)

◦

Figure 68. Code from figure 67 after optimisation using rule 26 (catch-all).
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repeat · (π2 · π1, # · π2)
◦

is derived from the index-generating-function:

π2 · π1

by core-optimiser rules for non indexing-functions. The overall efficiency of the code

in figure 68 is much improved over its corresponding translator code but it is still

far from optimal. In particular, the code still distributes the entire input vector over

the outer dimension of the input vector. An optimal or near-optimal version of the

program would avoid the cost of this distribution by transposing the input vector

and then selecting out the appropriate elements. We next explain the mechanism by

which the optimiser introduces such transposition.

Reorientation of Vectors The code in figure 67 is close to being a very good

candidate for optimisation by the rules of IOpt . If the indexing function were:

! · (! · (π1 · π1, π2 · π1)
◦, π2)

◦

instead of:

! · (! · (π1 · π1, π2)
◦, π2 · π1)

◦

we would have the same code as that shown in figure 56 which, we know, can be very

effectively optimised without resorting to the, less effective, catch-all rule (rule 26).

This observation points the way to an effective strategy: reorient the vector that

is accessed by the indexing function and simultaneously reorient the nesting of the

indexing functions to compensate. In the example above, this reorientation must take

the form of a transpose function where25:

∀x, ∀y, (tranpose(a)!x)!y = (a!y)!x

Applying this reorientation strategy to our current example produces the following

transformation:

! · (! · (π1 · π1, π2)
◦, π2 · π1)

◦ ⇒! · (! · (transpose · π1 · π1, π2 · π1)
◦, π2)

◦

Figure 69 shows the effect of this transformation on the program given in figure 67.

The index function is now amenable to optimisation by applying the rules of IOpt

used for the program in figure 56. The result of applying these rules to the program
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((! · (! · (transpose ·π1 ·π1, π2 ·π1)
◦, π2)

◦)∗ ·distl · (id, iota ·# ·π1)
◦)∗ ·distl · (id, iota ·#)◦)◦

Figure 69. Program from figure 67 after inserting a function to transform the
input vector and rearranging the index functions to compensate.

(select · (π2, iota · π1)
◦) ∗ ·distl · (# · id, select · (transpose · id, iota ·#)◦)◦

Figure 70. Fully optimised version of the program shown in figure 69.

in figure 69 is the program in figure 70. This program is of the same order of efficiency

as optimised nested maps without transposition. The transpose primitive, if properly

implemented on a sequential machine, is O(n) cost where n is the total number of

elements in the nested input vector.

The insertion of transpose can be used to increase the effectiveness of optimisation

wherever it is possible to increase the degree to which index-generators in a nested

indexing functions are sorted. A precise description of what it means for index-

generators to be sorted is given in appendix C but some insight can be gained

by considering how to use transpose to help optimise more-deeply nested indexing

functions.

Coping with more levels of indexing The reorientation strategy described above

swaps the indices of adjacent levels of nested index functions to achieve an index order

more amenable to further optimisation. This strategy naturally extends to more

deeply nested index functions in the same way that swapping of adjacent elements of

a list can be used to implement a bubble-sort. For example, figure 71 part (a) shows

a triple-nested indexing function prior to reorientation and part (b) shows the same

function after reorientation. The sequence of transpose functions in part (b) performs

the series of re-orientations necessary to swap the indices to a sorted order. Note that

the sorted order has π2 which references the range-generator of the innermost map

translation as the outermost index, followed by π2 · π1 and π2 · π1 · π1. If we define

the following symbolic mapping:

{L2 7→ π2 · π1 · π1, L1 7→ π2 · π1, L0 7→ π2, V 7→ π1 · π1 · π1}
25Note where x and y reference an element outside the bounds of the nested vector ⊥ is returned.
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! · (! · (! · (π1 · π1 · π1, π2)
◦, π2 · π1)

◦, π2 · π1 · π1)
◦

(a)

! · (! · (! · (tranpose · (transpose) ∗ ·transpose · π1 · π1 · π1, π2 · π1 · π1)
◦, π2 · π1)

◦, π2)
◦

(b)

Figure 71. A triple-nested index function (a) that can be reoriented to a form
more amenable to optimisation (b).

! · (! · (! · (V, L0)
◦, L1)

◦, L2)
◦ ⇒

! · (! · (! · (transpose · V, L0)
◦, L2)

◦, L1)
◦ ⇒

! · (! · (! · ((transpose) ∗ ·transpose · V, L2)
◦, L0)

◦, L1)
◦ ⇒

! · (! · (! · (transpose · (transpose) ∗ ·transpose · V, L2)
◦, L1)

◦, L0)
◦

Figure 72. The transformation steps used to reorient the vector accessed by the
function in in figure 71(a) under the mapping

{L2 7→ π2 · π1 · π1, L1 7→ π2 · π1, L0 7→ π2, V 7→ π1 · π1 · π1}.

then a sequence of steps by which we arrive at the code in figure 71(b) is shown in

figure 72. The analogy between the application of the transformations and sorting

is apparent, with each step above corresponding to a swap of dimensions. Note that

the second swap transposes inner dimensions, hence the embedding of transpose in a

map function of its own.

Note that because transpose is limited to swapping adjacent dimensions of a nested

vector we had to use transpose three times to achieve the desired orientation. If

we assume the existence of a more powerful transpose primitive, able to swap a

pair of dimensions an arbitrary distance apart, we can sort the index-generators in

fewer steps. Figure 73 shows the transformation of the nested index function from

figure 71(a) to a sorted format using a transpose primitive parameterised with the

dimensions that need to be swapped. Note that 0 denotes the outermost dimension

and 2 denotes the dimension two levels of nesting down. The order in which these

appear in the subscripted brackets does not affect the semantics of the transpose

operation. Note that this parameterised form of transpose still performs a single

swap. Where more than one swap is required to sort the dimensions of the array then

more than one application of the parameterised transpose is still required.
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! · (! · (! · (π1 · π1 · π1, π2)
◦, π2 · π1)

◦, π2 · π1 · π1)
◦ ⇒

! · (! · (! · (transpose(0,2) · π1 · π1 · π1, π2 · π1 · π1)
◦, π2 · π1)

◦, π2)
◦

Figure 73. A transformation from the code in figure 71(a) to code amenable to
further optimisation using a parameterised transpose primitive.

The implementation of transpose In our discussion to date we have

employed the transpose primitive without regard to the details of its implementation.

This implementation is non-trivial for nested vectors, because sub-vectors may be of

different lengths. The implementation of the parametric version of transpose is even

more complex. While detailed knowledge of how transpose works is not essential for

an understanding of the foregoing, it is important that a plausible schema for its

implementation exists.

In brief, our strategy for implementation recognises that the transpose of irregular

nested vectors can, if not carefully handled, lead to the violation of simple identities

such as:

transpose(01) · transpose(0,1) x = x

The key to maintaining correctness, and thus preserve such identities, is to keep, and

abide by, information relating to the orginal shape of the nested vector.

There are many plausible schemas for preserving shape information26. We have

defined a prototype implementation of parametric transpose where shape information

is kept by ecoding index information along with values and maintaining sentinel

values.

The reader is referred to appendix B for details relating to the semantics of

parametric transpose as applied to nested vectors along with code for the prototype

implementation, written in Scheme.

Limits of re-orientation using transpose It is not always possible to use

transpose to avoid the application of the catch-all rule of IOpt . For example, figure 74

shows a program where, no matter how the index-generating functions are swapped

26Such preservation is central to defining parallel computation across nested data using structure-
flattening. Examples of implementations exploiting such flattening are NESL[22, 23] and, more
recently, Nepal [30, 29]
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((!·(!·(π1 ·π1, +·(π2, π2 ·π1)
◦)◦, +·(π2, π2 ·π1)

◦)◦)∗·distl·(id, iota·4)◦)∗distl ·(id, iota·4)◦

Figure 74. A program with a nested index function where reorientation would be
ineffective in avoiding the application of the catch-all rule in further optimisation.

((! · A, ! · B)◦) ∗ ·distl · (V, R)◦

(a)

zip · (A′, B′)◦ · (V, R)◦

(b)

Figure 75. An archetypal schema for a map-translation with multiple indexing
functions (part (a)) and the same schema after core-optimisation has been applied

(part (b)).

around, a π2 function will always appear as the most-upstream function in an inner-

indexing function. In short, no amount of swapping of index-generators will get all of

the π2 functions to the outside. This property is also is also manifest in the program,

shown earlier, in figure 65. Under these circumstances the optimiser’s rules for re-

orientation will sort index-generators as well as possible but there will still, inevitably,

be some distribution of data remaining in optimised code27.

A precise specification of indexing functions that are sorted or amenable to sorting

is given in appendix C.

Handling Multiple Indexing Functions The following describes work that is

done by the core optimisation process and the post-processor when applied to map-

bodies containing more than one indexing function. We describe core processing first.

Core processing of multiple indexing functions Figure 75(a) shows an

archetypal schema for a map-translation containing multiple indexing functions. Part

(b) shows the same code after the application of core optimisation. The code in A′

27Note that the presence of distribution in the code does not imply that the code is non-optimal.
For some problems the optimal solution will involve distribution.
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((! · (π1, 0)
◦, ! · (π1, 1)

◦)◦) ∗ ·distl · (id, iota ·#id)◦

Figure 76. map-translation containing multiple index functions with constant
indices.

zip · (repeat · (! · (π1, 0)◦, # · π2)
◦, repeat · (! · (π1, 1)◦, # · π2)

◦)◦ · (id, iota ·#id)◦

Figure 77. Optimised map-translation of code from figure 76 prior to
post-processing.

is the code that would result from core optimisation of ! ·A as if it were alone in the

map body. That is A′ is the A′ in:

(! ·A) ∗ ·distl · (V, R)◦
⇒

IOpt A′ · (V, R)◦

Where the
⇒

IOpt transformation denotes the application of the IOpt rule set to the

code to its left. In figure 75 part (b) the pair of equal-length vectors28 produced by

(A′, B′)◦ is combined into a single vector of pairs using zip.

Figure 75 is adequate for explaining how core-optimisation processes map-bodies

containing pairs of indexing functions. In the general case, arbitrarily many index

operations can appear in alltup functions of varying arity. The core-optimisation

rules are written to handle all such cases by inserting the appropriate combinations

of alltup, addressing and zip functions.

Post-processing of multiple indexing functions Sometimes the application

of core-processing leaves scope for further improvement to the code. For example

figure 76 shows a map-translation containing multiple index functions with constant

indices. Figure 77 shows the same code after the application of core processing. The

repeat functions copy their respective arguments the same number of times which

makes them amenable to consolidation. Figure 78 shows the program from figure 77

after the repeat functions have been consolidated by post-processing.

As a further example, figure 79 shows an unoptimised map-translation containing

both constant and non-constant index generators. Core-processing produces the code

shown in figure 80. Post-processing is able to remove the repeat, select and zip

28These vectors are always the same length as the vector produced by the range-generator R.
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repeat · ((! · (π1, 0)◦, ! · (π1, 1)
◦)◦, # · π2)

◦ · (id, iota ·#id)◦

Figure 78. Post-processed version of the optimised code shown in figure 77.

(! · (π1, π2)
◦, ! · (π1, 0)

◦) ∗ ·distl · (id, iota ·#id)◦

Figure 79. Unoptimised map-translation containing an index function with a
non-constant index-generator and an index function with a constant

index-generator.

functions from this code by taking advantage of the fact that the output of both select

and repeat are of the same length so equivalent program semantics can be attained by

distributing the first parameter of repeat over the output of select. Figure 81 shows

the result of applying such post-processing to the current example. The underlined

code is used to bring the tuples in the output vector back into their original order.

This concludes our description of the vector optimisation process for handling

map-bodies with multiple-indexing functions. Next we describe how the processing

of conditional functions containing indexing functions is done.

Handling Indexing Functions in Conditional Functions Often map-bodies

will contain if functions. In turn, these if functions can contain index functions

that might be amenable to optimisation. Figure 82 shows a map-translation that

interleaves the first half of an input vector with its second half. An if function in the

map-body is used to achieve this. This if function can be paraphrased:

if(π2 is even, access first half of π1, access second half of π1)

the function access first half corresponds to a simple select function:

select · (π1, first half of indices)◦

Likewise, the function access second half corresponds to the select function

zip · (select · (π1, π2)
◦, repeat · (! · (π1, 0)

◦, # · π2)
◦)◦ · (id, iota ·#id)◦

Figure 80. Core-optimised version of the code shown in figure 79.
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((π2, π1)
◦)∗ · distl · (! · (π1, 0)

◦, select · (π1, π2)
◦)◦ · (id, iota ·#id)◦

Figure 81. Post-processed version of the code shown in figure 79. The underlined
code brings tuples in the output vector back into their original order.

(if(

π2 is even
︷ ︸︸ ︷

= ·(mod · (π2, 2)
◦, 0)◦,

access first half
︷ ︸︸ ︷

! · (π1,÷ · (π2, 2)◦)◦,
access second half

︷ ︸︸ ︷

! · (π1, + · (÷ · (# · π1, 2)◦,÷ · (π2, 2)
◦)◦)◦)) ∗ ·

distl · (id, iota ·# · id)◦

Figure 82. map-translation containing an if function that interleaves the top and
bottom halves of an input vector. The first, second and third parameters to the

higher-order if functions are marked with over-braces.

select · (π1, second half of indices)◦

Where first half of indices and second half of indices are functions for producing the

first and second half of the range-generator respectively.

These two select functions indicate that there is scope for vector-optimisation,

buried inside the if function. However, a way still needs to be found to model the

way the if function, in the example, alternates between values from the first and

second half of the vector. The vector-optimiser achieves this alternation using two

different functions:

• A primitive function called mask that uses the boolean results of the predicate-

part of the if function to filter out the indices not relevant to each select.

• A primitive function called priffle that interleaves the result of the select’s using

the boolean results of the predicate of the if

Figure 83 shows the optimised version of the map-translation from figure 82 containing

the new primitives. The optimised code, corresponding to the original parameters to

the if function are marked with over-braces. The primes on the labels for this code

indicate that this code has been vector-optimised. The remainder of the code, with the
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priffle·
(π2,

access first half ′

︷ ︸︸ ︷

select · (π1,÷ · (π2, 2)◦)◦ ·(π1 · π1, mask · (π2 · π1, π2)
◦)◦,

access second half ′

︷ ︸︸ ︷

select · (π1, + · (÷ · (# · π1, 2)◦,÷ · (π2, 2)
◦)◦)◦·(π1 · π1, mask · (π2 · π1, (¬) ∗ ·π2)

◦)◦)◦·

(id,

π2 is even ′

︷ ︸︸ ︷

(= ·(mod · (π2, 2)
◦, 0)◦) ∗ ·π2 )◦ · (id, iota ·# · id)◦

Figure 83. Optimised version of the map-translation from figure 82 with the
optimised parameter functions to the original if marked with over-braces. All of the
remaining code, except the most upstream alltup function requires no customisation.

It does not vary from program to program.

exception of the most upstream alltup function, is a standard template for optimising

the if function. This template does not vary from program to program.

The role of the mask and priffle functions are central to the optimised code. The

mask function takes a vector of values and vector of booleans for parameters and

filters out all of the values of the original vector for which the corresponding element

of the boolean vector is false. mask is defined:

mask (([x]++ xs), ([true]++ ys)) = [x]++ mask (xs, ys)

mask (([x]++ xs), ([false]++ ys)) = mask (xs, ys)

mask ([ ], [ ]) = [ ]

In the optimised code, in figure 83 mask uses the vector of boolean values produced by

the π2 is even ′ function to filter out the index values for which the original predicate

function of the if function is false (for the code accessing the first half of the input

vector) or true (for the code accessing the second half of the input vector). The mask

functions, in combination with the select functions, extract the appropriate parts of

the original input vector.

Once the consequent and alternative functions, corresponding to access first half ′

and access second half ′ respectively in the example in figure 83, have produced their

results, we have two vectors whose combined length is the same as the original input

vector. These vectors need to be interleaved so that the order of results produced
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by the original if function is preserved. The interleaving is carried out by the priffle

function.

priffle (the name is a contraction of predicate-riffle29) takes, as input, a vector of

boolean values and two other vectors. priffle selects items from each of its second two

vectors according to whether the next value in the boolean vector is true or false.

In other words priffle is a merging operation with a predicate parameter to guide it.

priffle is defined:

priffle ([true]++xs, [y]++ ys, zs) = [y]++ priffle(xs, ys, zs)

priffle ([false]++xs, ys, [z]++ zs) = [z]++ priffle(xs, ys, zs)

priffle ([ ], [ ], [ ]) = [ ]

Note that the final case assumes that all vectors are exhausted at the same time. The

context in which the mask and priffle are embedded, by the vector optimiser, ensures

that this is the case.

It should be noted that neither priffle or mask or the way in which they are

used here are unique. Blelloch uses similar techniques in the implementation of

NESL[22, 23]. Prins and Palmer[112] describe restrict and combine operations in

the implementation of proteus, corresponding to mask and priffle respectively. Finally,

the role of two mask functions could be replaced by partition from the standard

List library of Haskell30.

This concludes our discussion of the optimisation of if functions in map-bodies

and also our discussion of vector optimisation of indexing-functions in general. Next,

we briefly discuss the optimisation of other functions found in the map-body.

5.4.2.4 Processing Non-Indexing Functions inside Map

Given a map translation:

(bexp) ∗ ·distl · (V, R)◦

The purpose of vector optimisation is to move indexing and length functions inside

bexp as far upstream as possible. The rules we have just described are designed to

fulfill this purpose. However, these rules can rarely work in isolation because, bexp

will, often, contain other functions beside index and length functions. In fact, index

29Riffle is a term borrowed from Ruby [87]. The original meaning describes the way in which two
half-decks of cards can be combined, quickly, by skillfully interleaving cards from the half-decks.

30The replacement of the two mask’s by a single partition is an option well worth exploring in a
future version of this implementation.
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and length functions are commonly embedded in other functions such as alltup. Rules

must be in place to handle these functions to ensure that:

1. the vector-optimised code is left in a consistent state with the same semantics

as the original translation.

2. no opportunities for further vector optimisation are foregone. That is, any code

that is amenable to further optimisation is positioned so that it is exposed to

further optimisation.

These roles are obviously important and the rules that we defined to fulfill these roles

are non-trivial. However, the details of these rules are not central to our discussion of

the vector optimiser and we omit them from this report. At this point it is sufficient

to note that such rules are required and they have the roles enumerated above.

This concludes our description of the vector optimisation of map-translations.

Next we briefly describe the vector optimisation of other functions.

5.4.3 Optimising non-map functions

Even though map functions are the focus of most of the work of the vector optimiser

there is still important work to be done involving other functions.

The remaining part of the vector optimiser carries out two major tasks:

• Constructing, maintaining, and propagating the wish-list.

• Specialised handling for the translation of the Adl reduce and scan functions.

We discuss these tasks in turn.

5.4.3.1 Maintenance of the wish-list

All of the top-level rules for the vector-optimiser produce a composed function of the

form:

C ·W

where C is the code that is already optimised and W is a wish-list.

Together, the top-level rules ensure that:

• Index and length functions are inserted into the wish-list and they stay in the

wish-list until they are either eliminated or can be pushed no further upstream.
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• Any code downstream of any index or length function remains with the

optimised code.

As a consequence of these two rules the wish-list W can take one of two forms. The

first form:

W = id

occurs when there are no index or length functions awaiting further processing. The

second form:

W = bexp where bexp 6= id ∧ (Subterm(bexp, !) ∨ Subterm(bexp, #))

occurs when there are index or length functions awaiting processing (the predicate

Subterm(f, x) is true if x is a sub-term of f).

Each vector optimiser rule described below is responsible for creating and

maintaining wish lists corresponding to one of these two forms. For clarity, in each

of the following rules the output code that corresponds to the new wish-list W is

underlined.

Constant functions, Ordinary operators and singleton address functions

Constant functions require some input to trigger their evaluation but their result is

not dependent on the value of their input. Constant functions are first-order so they

cannot contain any index or length functions, or any other functions for that matter.

The rule for constant functions is

K⇒ K · id

The constant function K is the section containing the already-optimised code. The

rules for non-index, non-length, operators

Op⇒ Op · id (Op 6=! ∧ Op 6= #)

and singleton31 address functions

mπn ⇒m πn · id

are also very similar. In all of these cases an id wish-list is formed.

31A singleton function is a function f is any function that is not a composition. That is
Singleton(f) ⇐⇒ ∀f, g¬Unify(f, b comp(g, h)). Where the predicate Unify(s, t) is true if s can be
structurally unified with t.
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Index and length functions The rules for handling index and length functions

are
bexp ⇒ bexp′ · bexp′′

! · bexp ⇒ id · (! · bexp ′ · bexp ′′)

and
bexp ⇒ bexp′ · bexp′′

# · bexp ⇒ id · (# · bexp′ · bexp ′′)

respectively. The new wish-list contains either an index or length function composed

with bexp′ · bexp ′′ output of the vector optimiser for the code immediately upstream.

The wish-lists produced by these rules will serve as vehicles for transporting the index

and length functions further upstream in case an opportunity to optimise them further

arises.

Composition sequences The top-level rules of the vector optimiser are structured

around code-fragments produced by the translator. As such the treatment of

composed sequences of functions is distributed among specialised rules to handle

these fragments. However, the vector optimiser’s approach to handling composition

sequences can be described by four archetypal rules. These rules are shown in figure 84

Note again that the wish-lists are underlined. Rule 27 handles the cases when the

processing of both the downstream bexp1 and upstream bexp2 functions produces id

wish-lists. These combine to form a new id wish-list. Rule 28 applies when the

upstream function bexp2 produces a non-id wish-list: bexp′′
2 which is also the wish-list

returned in the conclusion of the rule.

Rule 27 applies when the downstream function bexp1 produces a non-identity wish-

list bexp′′
1. This wish-list is then combined with the non-identity part of the result of

processing bexp2 to form the new wish-list:

bexp′′
1 · bexp ′

2

Note that, even though bexp ′
2 contains no index or length functions it must be included

in the wish-list because these functions are contained in the bexp′′
1 and there is no

semantically sound way, without further processing, to push bexp′′
1 through bexp′

2.

This behaviour of upstream functions being co-opted into the wish-list is quite typical.

This behaviour is also necessary because, as we have seen during the optimisation of

map, the upstream code that supplies the arguments of length and index operations

needs to be analysed as part of the optimisation process for these functions.
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Set VecOpt is b exp ⇒ b exp

Both identity wish-lists

bexp1 ⇒ bexp ′
1 · id

bexp2 ⇒ bexp ′
2 · id

bexp1 · bexp2 ⇒ bexp ′
1 · bexp ′

2 · id
(27)

Second wish-list is non-identity

bexp1 ⇒ bexp′
1 · id

bexp2 ⇒ bexp ′
2 · bexp ′′

2

bexp1 · bexp2 ⇒ bexp ′
1 · bexp ′

2 · bexp′′
2

bexp′′
2 6= id (28)

First wish-list is non-identity

bexp1 ⇒ bexp ′
1 · bexp ′′

1

bexp2 ⇒ bexp′
2 · id

bexp1 · bexp2 ⇒ bexp ′
1 · bexp ′′

1 · bexp′
2

bexp′′
1 6= id (29)

Both wish-lists are non-identity

bexp1 ⇒ bexp′
1 · bexp′′

1

bexp2 ⇒ bexp′
2 · bexp′′

2

bexp1 · bexp2 ⇒ id · bexp ′
1 · bexp ′′

1 · bexp′
2 · bexp′′

2

bexp ′′
1 6= id ∧

bexp′′
2 6= id

(30)

Figure 84. Archetypal vector optimiser rules for handling composed functions

The last rule in figure 84 is applied when both sets of wish-lists are non-identity

functions. In this case all code resulting from vector optimisation of bexp1 and bexp2

goes into the wish-list.

Note that the rules in figure 84 are effective in building up the wish-list. The

counterpart to this activity, the destruction of the wish-list, took place inside the the

Process Map rule set described earlier. This completes the description the handling

of composed functions next we consider the handling of alltups.

Alltup functions There are two rules for alltup functions. The first rule:
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bexp1 ⇒ bexp′
1 · id

. . .
bexpn ⇒ bexp′

n · id
(bexp1, . . . , bexpn)◦ ⇒ (bexp′

1, . . . , bexp
′
n)◦ · id

applies when all of the functions inside the alltup produce id wish-lists. In this case

the wish-lists can be consolidated into a single id function.

The second rule:

bexp1 ⇒ bexp′
1 · bexp ′′

1

. . .
bexpn ⇒ bexp ′

n · bexp′′
n

(bexp1, . . . , bexpn)◦ ⇒ (bexp′
1 ·n π1, . . . , bexp

′
n ·n πn)◦ · (bexp′′

1, . . . , bexp
′′
n)◦

bexp′′
1 6= id∨
. . .

bexp ′′
n 6= id

applies when at least one of the functions in the alltup produces a non-id wish-list. In

this case all wish-lists are grouped into an alltup function. Addressing functions link

each function in the downstream alltup function to its corresponding wish-list in the

upstream alltup.

Other functions The examples shown so far, illustrate most of the techniques

employed by the top-level rules of the vector optimiser. The rule for allvec functions

is very similar to the rule for alltup functions.

The rules for if and while are very conservative; if any of the functions they

encapsulate produces a non-identity wish-list then all code goes in the wish-list,

leaving just an id function as optimised code.

The rules for the various types of reduce and scan have similarly conservative

strategies. However, these constructs also require additional, specialised processing

and we discuss this next.

5.4.3.2 Handling reduce and scan translations

As mentioned in the previous chapter, the translation of reduce and scan functions

produces very detailed code. A translation for reduce (a reduce-translation) takes

the form shown in figure 85, where R is the range-generator for the input vector and

Z is the code producing the value that is the left and right identity for the binary

function ⊕. The if function determines if the input vector is empty. If it is empty, all

data except for the input vector is directed to the function Z which then produces

the output for the entire reduce-translation. If the vector is non-empty then the
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if( 6= ·(0, # · π2)
◦, < detailed-code > ⊕ < other-detailed-code > / · distl, Z · π1) · (id, R)◦

Figure 85. The basic form of code produced by the translator for reduce functions.

< detailed-code > ⊕ < other-detailed-code > /Z · distl · (id, R)◦

Figure 86. A reduce-translation specialised with the knowledge that Z is a
constant function.

input vector, produced by R is distributed over the other values in scope. The vector

resulting from this distribution is then given to a reduce function with the binary ⊕
function embedded in detailed code to ensure that ⊕ receives an input tuple that is

wrapped up with all of the global data that it may require.

Almost all of this heavy infrastructure is there to cater for two relatively rare

cases.

1. The function Z being dependent on one of the values in scope.

2. The function ⊕ being dependent on global values; that is values other than its

immediate arguments.

If either of these cases is not true then substantial optimisations can be made.

Addressing the first case, if Z is a constant function, and thus not dependent on

any particular value then the code in figure 85 is simplified to the code in figure 86.

Note that the function:

distl · (id, R)◦

in figure 86 will produce an empty vector whenever R produces an empty vector. An

empty input vector would leave the function Z with no means of accessing any values

in scope. However, because Z is a constant function as we assume in this discussion,

the modified code still works.

Now, addressing the second case - if ⊕ is not dependent on any values in global

scope then the code in figure 86 can be further simplified to the code in figure 87.

This code lacks the distl function of the previous versions and any of the

infrastructure for carting around values in global scope and is very much more efficient
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⊕/Z

Figure 87. A reduce-translation specialised with the knowledge that Z is a
constant function and that ⊕ depends only on its immediate operands.

than the original reduce-translation. In most of our experiments the form shown in

figure 87 is the form ultimately produced by the vector optimiser.

Note that the optimiser must analyse the code in ⊕ in order to determine what

values it depends upon. This analysis requires both vector and tuple optimisation of

⊕ to eliminate spurious dependencies.

In rare cases, vector optimisation of ⊕ produces a wish-list containing an index

and/or length function. Though there is scope to optimise upstream code with respect

to such wish-lists the current implementation makes no attempt to propagate such

wish-lists further upstream.

The translated code for scan functions are vector-optimised in an almost identical

way to the corresponding reduce-translations.

Summary and Preview This concludes our description of vector optimisation.

The vector optimiser, because it analyses data requirements that are dependent on

other runtime data, is quite sophisticated. Most of its complexity resides in the

rules handling map-translations. Next, we describe the, slightly less-complex, task of

tuple-optimisation.

5.5 Tuple optimisation

Tuple optimisation is used to prevent the transmission of surplus elements of tuples

to downstream code32. The strategy employed by the tuple-optimiser is:

Moving data-narrowing operations on upstream.

The data-narrowing operations on tuples are any address function, or composed

sequence of address functions such as π2, π1, and π1 ·π1. The process of pushing these

32Note that tuple optimisation is not strictly limited to tuples. In the rare case where the input to
a function is not a tuple but a single value, and that single value is not needed, tuple-optimisation
will eliminate the code that produces that single value.
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< filter > · < unoptimised code >
(a)

< optimised code > · < filter > · < unoptimised code >
(b)

< optimised code > · < filter >
(c)

Figure 88. A BMF program; at the beginning of tuple-optimisation (part (a)), in
the middle of tuple-optimisation (part (b)), and at the end of tuple-optimisation

(part (c)).

operations upstream involves the periodic creation and destruction of a specialised

type of wish-list called a filter.

5.5.1 The filter expression

Figure 88 gives a conceptual view of role of a filter expression during tuple-

optimisation.

Part (a) of figure 88 shows a program, prior to tuple-optimisation. At this stage the

filter contains an id function to indicate that all of the program’s output is required.

Part (b) shows the program in the middle of tuple optimisation. Often, at this

stage the filter holds an alltup function containing several addressing functions.

Part (c) shows the program at the end of tuple-optimisation. By this stage the

filter will, typically, contain an id function by virtue of the fact that most programs

need all of their input values.

The filter expression assumes a very similar role to the wish-list in vector

optimisation. It acts as a bridge between optimised and unoptimised code.

Like a wish-list, a filter changes constantly to reflect the needs of optimised

downstream code as it moves upstream. Like a wish-list, a filter conveys the data

needs of downstream code.

5.5.1.1 What makes the filter different?

The wish-list consists, entirely, of BMF code. A wish-list is just a function. A

filter, in most cases, just encapsulates BMF code but, under certain conditions it can
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encapsulate a non-BMF value called: null.

The role of null Tuple-optimisation eliminates code producing values that are not

needed by functions downstream. It is guided, in this task, by the contents of the

filter. Any values not referenced in the filter are not needed and any upstream code

producing them is removed. In extreme cases, the downstream code needs no specific

data. For example, consider the tuple optimisation of:

true · f · g

Tuple optimisation starts by placing a filter, containing an id function, to the left of

the program:

filter(id) · true · f · g

Note that this expression is not a valid BMF program, it contains a non-BMF filter

expression. Also note that it could, at this point, be easily converted to a valid BMF

program by replacing the filter expression with its contents.

The next step of tuple-optimisation produces:

true · filter(null) · f · g

which says that the constant function true has no real data requirements, it just needs

data, of some kind, to trigger its evaluation. The null term is used to denote this null

data requirement. null is not a function, it cannot accept input or return a value, it

is just a term that can appear in a filter expression.

The effect of the null filter, on the upstream code, is profound. Because it doesn’t

need to produce any particular value, the upstream code doesn’t need to take any

particular form. Taking advantage of this fact, the tuple-optimiser replaces upstream

functions with id functions:

true · id · id · filter(null)

Because it contains a filter term, the above is still not a program so, as a last step,

the tuple-optimiser converts filter(null) term into an id function:

true · id · id · id

After one final run of the Remove ids rule-set, all of the id functions disappear to

leave the fully optimised program:
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true

Note, that the above is an extreme example of the effect of a null filter. In most

program null filters are quickly subsumed by merging with other filters from other

parts of the program.

Why is null used only by the tuple-optimiser? The wish-list in the vector-

optimiser and the filter-expression in the tuple optimiser are corresponding parts of

different processes and, as a result their needs are different. The vector optimiser’s

wish-list precisely expresses which vector elements are needed but it may also contain

functions accessing redundant tuple elements. If the wish-list does contain such

redundant access it is not the job of the vector optimiser to do anything about it.

Without this obligation, the ordinary functions found in BMF are enough to express

any wish-list the vector-optimiser might require.

The tuple optimiser uses the filter expression to precisely convey the values that

are needed by downstream code. In most cases, the existing set of BMF functions

is enough. However, there is, occasionally, a need to encode the fact that no data,

in particular, is required. There is no convenient BMF function to perform this

encoding. The null term fulfills this role.

5.5.2 The rules of tuple optimisation

The rules of the tuple optimiser are organised differently to the rules for the vector

optimiser. The top-level rules of the vector optimiser capture the various code

aggregates produced from Adl source, such as map-translations. Vector optimisation

obliterates these aggregates so the tuple optimiser works with individual BMF

functions. As a result, tuple-optimisation rules are focused on the elements of BMF

syntax rather than on elements of Adl syntax echoed in BMF, as the vector optimiser

did. We will structure most of our explanation according to these syntax elements.

However, we first have to describe the rule that initiates the tuple-optimisation

process.

5.5.2.1 The top level rule

There is one top-level rule for the tuple optimiser. This rule takes an unoptimised

program
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< unoptimised code >

prepends an identity filter expression to it33

filter(id)· < unoptimised code >

invokes the core rules of tuple optimiser on the combined expression

filter(id)· < unoptimised code >→< optimised code > ·filter(bexp)

and unites the filter with the optimised code to produce the final program:

< optimised code ′ >

Most of the work of tuple optimisation is done by the core rules. These rules all have

conclusions with the following format:

filter(bexp)· < unoptimised code >→< optimised code > ·filter(bexp′)

That is, the rules at the core of tuple optimisation all attempt to push a filter through

unoptimised code in order to create optimised code and a new filter. We describe

these rules next.

5.5.2.2 Core tuple-optimisation rules

We start our description with the rules for the simplest constructs and quickly proceed

to the rules where the optimiser does most of its work. Our approach is informal;

we use rules as a device to help the narrative as opposed to adding formality. We

commence our description with the most generic rule. The rule for null filters.

null filters The rule catering for null filters is:

filter(null) · bexp → id · filter(null)

This rule states that any function upstream of a null filter should be converted to

id and the null filter should be preserved. Where it is applicable, this rule takes

33The tuple-optimiser rules use a comma instead of function composition in the expression
filter(id), < unoptimised code > because the filter expression is not, strictly speaking, BMF code
and as such it cannot be composed with existing BMF code without, first, projecting code from the
filter expression. However, it is conceptually useful to think of the filter and the BMF code as being
composed so we maintain this minor fiction.
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precedence over all other rules, that is, when another rule is also applicable, the

above rule is applied in preference.

We have already seen the effect of the null-filter rule in our earlier explanation of

the null term. Note that this rule is rarely applied. null filter expressions are common

but they are almost always merged with other filter expressions before they get the

chance to be applied to the rule above. We will see an example of this merging process

in our discussion of alltup optimisation on page 149. Next, we examine the rule that

generates null-filters.

Constants The rule for constant functions is:

filter(bexp) · K→ K · filter(null)

That is, any constant function will generate a null-filter. If bexp is not null the constant

function K is preserved.

Addresses Address functions are the only functions that narrow tuples. The rule

for address functions is:

filter(bexp) ·m πn → id · filter(bexp ·m πn)

The rule captures the address function in the filter expression so it can be propagated

upstream until it reaches the corresponding tuple generating alltup function.

There is a strong correspondence between the role played by address functions

in tuple-optimisation and the role played by index and length functions in vector

optimisation.

Function composition The tuple optimiser has an explicit rule for sequences of

composed functions:

filter(bexp1) · bexp2 → bexp ′
2 · filter(bexp ′

1)

filter(bexp ′
1) · bexp3 → bexp′

3 · filter(bexp′′
1)

filter(bexp1) · bexp2 · bexp3 → bexp′
2 · bexp′

3 · filter(bexp′′
1)

The rule works by tuple-optimising the first function to create a result function bexp ′
2

and a new filter filter(bexp′
1) which is then used as part of the tuple-optimisation of

the second function.
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The function composition rule is the mechanism for the propagation of filter

expressions through the program. It also provides, when used in conjunction with

the rule for address functions, a mechanism for refining the focus of address functions

appearing in the filter expression. For example, tuple optimisation of the function

π1 · π1 · π1 proceeds:

filter(id) · π1 · π1 · π1 →
id · filter(π1) · π1 · π1 →
id · id · filter(π1 · π1) · π1 →
id · id · id · filter(π1 · π1 · π1)

At each step above, the filter expression is refined to be more specific about the data

it refers to.

Alltup alltup functions are tuple-constructors. They are responsible for the creation

of most surplus tuple values in unoptimised code. Not surprisingly then, alltup

functions are, typically, the functions most strongly affected by tuple-optimisation.

The rule for tuple optimisation of alltup functions is:

Select items(bexp1 · (bexp(2,1), . . . bexp(2,n))
◦ ⇒ bexp ′

2)

Compact addr space(bexp′
2 ⇒ bexp′′

2 · filter(bexp′
1)

filter(bexp1) · (bexp(2,1), . . . bexp(2,n))
◦ → bexp′′

2 · filter(bexp′
1)

The rule has two premises. The first premise calls the Select items rule-set.

Select items merges the filter with the alltup function to produce a single result

function. Figure 89 illustrates how this merging process takes place. After the

merging process is applied, the result function:

(π2, + · (π2 · π1, π2)
◦)◦

produces only the data required by downstream code. This is all well-and-good.

However, close scrutiny of the function above reveals that the set of address functions

it contains:

{π2 · π1, π2}

does not cover the whole of input address space. In particular, there is no value

referenced by the function π1 · π1.

We eliminate this superfluous input and, simultaneously, create a new filter term

by rewriting (π2, + · (π2 · π1, π2)
◦)◦ to what it would be if it received only the input
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Figure 89. An illustration of how Select items merges a filter expression and an
alltup function to produce a result function.
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Result:
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ο)

New Result: Filter:

Compaction

Access map

gap

Figure 90. The action of Compact addr space on the result of Select items.

it needed and, in addition, generating a new filter term that selects only this input.

In the tuple optimiser, the Compact addr space rule-set performs this task of result-

modification and filter-generation.

Figure 90 shows the effect of Compact addr space on the result function from

figure 89. The left-hand-side of the figure shows that the address functions in the

alltup function are used to form an access map of the input value. If the input value

is a tuple and not all values of the input tuple are accessed, there will be gaps,

indicated in white, in the access map. The right-hand-side of the figure shows that

the result function is modified so there are no gaps in its access map and a new filter

expression is built to specify the data required.
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map The rule for tuple optimisation of map functions is:

filter(bexp1) · bexp2 → bexp ′
2 · filter(bexp ′

1)

filter((bexp1)∗) · (bexp2)∗ → (bexp ′
2) ∗ ·filter((bexp′

1)∗)

The premise of the rule processes the code inside the map function with respect to the

code inside the map function in the filter. The resulting code and filter are re-injected

back into map function in the rule’s conclusion. The appearance of a map function

in a filter indicates that the expected output of the upstream function is a vector34

Allvec allvec functions are morphologically similar to alltup functions. The tuple-

optimiser rule propagates the filter into each of the functions contained in the allvec

function. The individual filters produced by this process are then united to form a

new filter using the Compact addr space rule-set used in the rule for alltup functions.

Distl Even after vector optimisation, there may still be redundant instances of distl

embedded in the code. The tuple-optimiser can safely eliminate a distl function if the

filter expression contains only addresses prefixed with π2. In this case, only elements

of distl’s second parameter are accessed by downstream code and the distl function

can be safely eliminated. The code from the old expression, stripped of its leading π2

functions replaces the distl function. A new filter expression is generated containing

just π2 and positioned just upstream of the new code replacing distl.

If the filter expression contains references other than π2 the distl function is left

intact and the new filter expression contains id.

zip A zip function is redundant if the filter exclusively references one side of each

pair of the vector produced by that zip. If, for example, the filter expression contains

only addresses starting with π1 then the second half of each pair isn’t needed and

the zip function can be replaced by the filter expression stripped of its leading π1

functions. A new filter expression is generated containing just π1.

The above process is mirrored if the filter expression contains only addresses

starting with π2.

34The converse - a vector emanating from an upstream function implies a filter containing a map

function - is not true. A filter downstream of a map can also be an id function. Extra rules are
required to cope with this special case in various parts of the tuple-optimiser. Later versions of the
tuple optimiser are likely to avoid these special cases by more directly exploiting the type information
accompanying the code.
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If the addresses in the filter expression contains references to both π1 and π2 or

contains a leading id then the zip function is kept intact and a new id filter is created.

If The data requirements of an if function is the union of the data requirements

of each of its parts. The data requirements of the consequent and alternative parts

of the if functions are determined by optimising each of them with respect to the

current filter expression. In contrast, the data needed by the predicate is determined

by optimising it with respect to an id filter. The id filter is used for the predicate

because we can safely assume that all of the output of the predicate function, a

boolean value, is required for the program to work properly.

While The current implementation does not tuple-optimise while functions with

respect to the surrounding code. Instead, the inside of while functions are tuple-

optimised with-respect to an id filter. The data needed by the while function is

determined by a combination of the needs of the iterative function and the needs of

the predicate. The iterative function, in particular, can consume its own input so it

must be optimised with respect to its own input requirements. Such optimisation is

future work.

All other functions All functions, other than those already mentioned are

captured by the default rule:

filter(bexp1) · bexp2 → bexp1 · bexp2 · filter(id)

This rule, like the rule for while inserts the code in the filter downstream of the

function and produces a new id filter expression. This catch-all rule attempts no real

optimisation.

Note, that even though this rule applies to all variations of reduce and scan the

tuple optimiser is invoked upon the code embedded in these functions during vector

optimisation. That is, by the time this rule applies to reduce and scan functions the

code in inside these functions has already been tuple-optimised.

Summary This concludes our description of the rules of the tuple optimiser. We

have outlined the top-level rules and canvassed the core issues that arise during tuple

optimisation. Note, that as with vector optimisation, we have omitted many details,

hidden in auxiliary rule sets, whose description is beyond the scope of this report.
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Next we summarise the findings arising directly from our work with the vector

and tuple optimisers. Starting with a review of the performance of the code produced

by the combined optimisers.

5.6 Findings

Our findings for this chapter are divided into

• findings relating to the performance of the optimiser and

• lessons learnt during the construction of our implementation.

Both aspects provide useful information. The first helps to confirm the

effectiveness of our approach. The second describes important features of our

approach.

We describe these aspects in turn.

5.6.1 Performance

There are many ways to view the performance of an implementation but the primary

concern is the efficiency of the target code. Secondary measures of performance

include, the reliability of the optimisation process, the time it takes the optimisation

process to run, and the size and elegance of the code produced by the optimiser. We

examine efficiency of target code first.

5.6.1.1 Efficiency of target code

At the end of the last chapter, we saw that the translation process, though reliable,

often produced inefficient code. Now, at the end of this chapter, we argue that the

optimisation process we have just described greatly enhances the efficiency of that

code. In the following, we extend the examples from the previous chapter to compare

the performance of optimiser code to that of both translator code and idealised

code from the last chapter. We also include new examples for other representative

constructs. The examples we present here are:

map map addconst.Adl a program containing a very simple nested map function.

sum.Adl a very simple reduce.
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main a:vof vof int :=

let

f x :=

let

g y := y + 2

in

map (g,x)

endlet

in

map (f,a)

endlet

Figure 91. map map addconst.Adl, an Adl program that adds a constant to each
element of a nested vector

mss.Adl two map’s and a scan function with a detailed binary-operator.

finite diff.Adl a map containing multiple vector indexing operations.

transpose.Adl a nested map using indexing operations to implement transposition

of nested vectors.

Some of these examples contain code with many details. A deep understanding of the

details is not required in order to read this section. The text points out the salient

properties of the code in each case. Details are included for the sake of completeness.

The reader should note that our examination of the impact of the optimiser

extends beyond this chapter. Further examples, at the end of the next chapter, serve

to demonstrate that the optimiser ultimately improves the performance of parallelised

code.

Adding a constant to each element of a nested vector Figure 91 shows

the source code for map map addconst.Adl, a program we examined at the end of

the last chapter. Figure 92 shows the translator code, efficient hand-crafted code

and optimiser code, respectively, for map map addconst.Adl. The hand-crafted and

optimiser code are identical. The optimiser is often able to produce a good match to

hand-crafted code when presented with simple programs.
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((+ · (π2, 2)◦) ∗ ·distl · (id, π2)
◦ · id) ∗ ·distl · (id, id)◦ · id

(a)

((+ · (id, 2)◦)∗)∗

(b)

((+ · (id, 2)◦)∗)∗

(c)

Figure 92. Translator code (part (a)), hand-crafted code (part (b)), and optimiser
code (part (c)) for map map addconst.Adl

.

Figure 93 shows the relative performance of all three versions when applied to the

data:

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

The curves for the hand-crafted and optimiser code are coincident.

Summing a vector of numbers Figure 94 shows the source code for sum.Adl a

program, introduced in the last chapter, that uses reduce to perform a summation

over a one-dimensional vector. Figure 95 shows the translator code, hand-crafted

code and the optimiser code, respectively, for sum.Adl As can be seen, the hand-

crafted and fully-optimised code are the same and their performance, as shown in

figure 96 is much better than that of the raw translator code. The reason for the

large difference is primarily due to the vector optimiser rules for reduce that recognise

that the binary operator +, in this case, makes no references to values other than its

immediate operands. The optimised code is, essentially, the translator code with all

of the paraphernalia used to transport references to non-operands removed.

Partial Maximum-Segment-Sums An interesting operation that can be

elegantly expressed using the primitives provided by Adl is maximum-segment-sum.
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main a: vof int :=

let

add(x,y) := x + y

in

reduce (add,0,a)

endlet

Figure 94. sum.Adl, a program to sum a vector of integers

if( 6= ·(0, # · π2)
◦, π2 · ((π1 · π1, + · (π1 · π1, (π2 · π1, π2 · π2)

◦)◦)◦)/ · distl, 0 · π1) · (id, id)◦

(a)

+/0

(b)

+/0

(c)

Figure 95. Translator code (a), hand-crafted code (b) and optimiser-code (c) for
sum.Adl
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curves for the hand-crafted and optimiser code are coincident.

This operation calculates the maximum sum of all the contiguous segments of a vector.

So, for example, the maximum-segment-sum of the vector:

[1, 2,−7, 8,−1, 4, 1,−3, 2, 3]

is 14 which is the sum of the segment [8,−1, 4, 1,−3, 3, 2]. A parallel solution to the

maximum-segment-sum problem, framed in terms of map and reduce, is presented by

Murray Cole in [36]. Since we have already examined the optimiser’s treatment of

reduce we present a variation of maximum-segment-sum, based on scan that calculates

the maximum-segment-sum for all of the initial segments of a vector. The output of

this operation, that we shall name partial-maximum-segment-sums, when applied to

the vector [1, 2,−7, 8,−1, 4, 1,−3, 2, 3] is the vector:

[1, 3, 3, 8, 8, 11, 12, 12, 12, 14]

Figure 97 shows Adl source code for partial-maximum-segment-sums. The basic

structure of the program is:

• a map to inject each value of the original vector into a 4-tuple.

• A scan to apply a binary operator oplus to the elements of the vector to produce

a vector of 4-tuples with a result value embedded in each one and

• a map applying the function first to each tuple to project out each element of

the result vector.
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main a: vof int :=

let

plus (x,y) := x + y;

max (x,y) := if (x > y) then x else y endif;

oplus ((mssx,misx,mcsx,tsx),(mssy,misy,mcsy,tsy)) :=

(max(max(mssx,mssy),plus(mcsx,misy)),

max(misx,plus(tsx,misy)),

max(plus(mcsx,tsy),mcsy),tsx+tsy);

f x :=

let

mx0 := max(x,0)

in

(mx0,mx0,mx0,x)

endlet;

first (mss,mis,mcs,ts) := mss

in

map(first,scan(oplus,map(f,a)))

endlet

Figure 97. Source code for mss.Adl, a program that calculates
partial-maximum-segment-sums over an input vector. At the core of this program is

a scan function that contains the binary operation oplus that performs all of the
book keeping required to keep track of the current maximum segment sum.

The oplus operation is central to how maximum-segment-sum works. We leave a

detailed explanation of oplus to Cole’s article. For our purposes, it is enough to

know that partial-maximum-segment-sums provides an interesting working example

that uses both map and scan functions in a non-trivial context.

Figure 98 shows the translator, hand-crafted and optimised BMF code for mss.Adl

The translator code in (part (a)) contains all of the machinery required to transport

any value in scope to each application of the binary operator. The hand-crafted code

(part (b)) and optimised code (part (c)) are streamlined to take advantage of the

fact that the binary operator accesses only its operands. Figure 99 shows the relative

performance of the three BMF versions of mss.Adl. Both the hand-crafted and

optimised code exhibit much better performance than the translator code, primarily

because they avoid transporting all values in scope to every instance of the binary

function. The optimised code is slightly less efficient than the hand-crafted code.

This appears to be due to extra code in the optimised version that flattens the nested
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(4π1 · π2) ∗ ·distl·
(id, if( 6= ·(0, # · π2)

◦,
(π2) ∗ ·(π1 · π1,

(if(> ·(π1 · π2, π2 · π2)
◦, π1 · π2, π2 · π2)·

(id, (if(> ·(π1 · π2, π2 · π2)
◦, π1 · π2, π2 · π2)·

(id, (4π1 · π1 · π2,
4 π1 · π2 · π2)

◦)◦,
+ · (π1 · π2, π2 · π2)

◦ · (id, (4π3 · π1 · π2,
4 π2 · π2 · π2)

◦)◦)◦)◦,
if(> ·(π1 · π2, π2 · π2)

◦, π1 · π2, π2 · π2)·
(id, (4π2 · π1 · π2, + · (π1 · π2, π2 · π2)

◦ · (id, (4π4 · π1 · π2,
4 π2 · π2 · π2)

◦)◦)◦)◦,
if(> ·(π1 · π2, π2 · π2)

◦, π1 · π2, π2 · π2)·
(id, (+ · (π1 · π2, π2 · π2)

◦ · (id, (4π3 · π1 · π2,
4 π4 · π2 · π2)

◦)◦,4 π3 · π2 · π2)
◦)◦,

+ · (4π4 · π1 · π2,
4 π4 · π2 · π2)

◦)◦

·(π1 · π1, (π2 · π1, π2 · π2)
◦)◦)◦// · distl,

(0, 0, 0, 0)◦ · π1)·
(id, ((π2, π2, π2, π2 · π1)

◦ · id·
(id, if(> ·(π1 · π2, π2 · π2)

◦, π1 · π2, π2 · π2) · (id, (π2, 0)
◦)◦)◦) ∗ ·

distl · (id, id)◦)◦)◦ · id
(a)

(4π1) ∗ ·
( if(> ·(π1, π2)

◦, π1, π2)·
(if(> ·(4π1 · π1,

4 π1 · π2)
◦,4 π1 · π1,

4 π1 · π2), + · (4π3 · π1,
4 π2 · π2)

◦)◦

if(> ·(π1, π2)
◦, π1, π2) ·4 π2 · π1, + · (4π4 · π1,

4 π2 · π2)
◦)◦

if(> ·(π1, π2)
◦, π1, π2) · (+ · (4π3 · π1, π4 · π2)

◦,4 π3 · π2)
◦,

+ · (4π4 · π1, π4 · π2)
◦)◦//·

((π1, π1, π1, π2)
◦ · (if(> ·(id, 0)◦, id, 0), id)◦)∗

(b)

(4π1) ∗ ·
( if(> ·(if(> ·(8π1,

8 π2)
◦,8 π1,

8 π2), + · (8π3,
8 π4)

◦)◦,
if(> ·(8π1,

8 π2)
◦,8 π1,

8 π2), + · (8π3,
8 π4)

◦),
if(> ·(8π5, + · (8π6,

8 π4)
◦)◦,8 π5, + · (8π6,

8 π4)
◦),

if(> ·(+ · (8π3,
8 π7)

◦,8 π8)
◦,

+ · (8π3,
8 π7)

◦,8 π8),
+ · (8π6,

8 π7)
◦)◦·

(4π1 · π1,
4 π1 · π2,

4 π3 · π1,
4 π2 · π2,

4 π2 · π1,
4 π4 · π1,

4 π4 · π2,
4 π3 · π2)

◦//·
((π1, π1, π1, π2)

◦ · (if(> ·(id, 0)◦, id, 0), id)◦)∗
(c)

Figure 98. BMF code for mss.Adl. Raw translator code (part(a)).
Hand-crafted-code (part (b)). Fully optimised code (part (c)). The superscript

before some π functions indicates the arity of the tuple being projected from (e.g.
4π2 accesses the second element of a 4-tuple.)
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input tuple to the binary function into an 8-tuple. Such flattening makes downstream

access to tuple elements more efficient35 but incurs a cost itself. In this case the cost

of flattening outweighs the benefits but the overall effect is marginal.

Finite difference This example was featured at the end of chapter 4 and helps to

illustrate the impact of optimisation of vector references inside map functions. The

source code for finite diff.Adl is shown in figure 100. As can be seen from the code,

finite diff.Adl consists of a map whose function parameter contains three vector

references. Figure 101 shows four different BMF renditions of finite diff.Adl.

The code in parts (a), (b) and (c) is directly transcribed from the end of chapter 4.

Parts (a) and (b) are, respectively, the translator code and hand-crafted code, both,

without select. Both of these versions distribute a copy of the entire input vector

to each invocation of the map body. Part (c) is hand-crafted code using select to

distribute only the required elements to each invocation of the map body. Part (d)

is new code, produced by the optimiser from the translator code in part (a). This

35Access to an element of a pair of 4-tuples is a two-step process, specifically, selecting the correct
4-tuple and then selecting the correct element of the chosen 4-tuple. Access to an element of an
un-nested 8-tuple is a one-step process and is thus more efficient.
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main a: vof int :=

let

stencil x := a!x + a!(x-1) + a!(x+1);

addone x := x + 1;

element_index := map(addone,iota ((# a)-2))

in

map (stencil, element_index)

endlet

Figure 100. finite diff.Adl an Adl program to perform a simple
finite-difference computation.

(+ · (+ · (! · (π1 · π1, π2)
◦, ! · (π1 · π1,− · (π2, 1)◦)◦)◦, ! · (π1 · π1, + · (π2, 1)◦)◦)◦) ∗ ·

distl · (id, π2)
◦ · id·

(id, (+ · (π2, 1)
◦) ∗ distl · (id, iota · − · (# · id, 2)◦)◦)◦

(a)

(+ · (+ · (! · (π1, π2)
◦, ! · (π1,− · (π2, 1)

◦)◦)◦, ! · (π1, + · (π2, 1)◦)◦)◦) ∗ ·
distl·
(id, (+ · (id, 1)◦) ∗ ·iota · − · (# · id, 2)◦)◦

(b)

(+ · (π1 · π1, + · (π2 · π1, π2)
◦)◦) ∗ ·

zip · (zip · (π1 · π1, π2 · π1)
◦, π2)

◦·
((select, select · (π1, (+ · (id, 1)◦) ∗ ·π2)

◦)◦, select · (π1, (− · (id, 1)◦) ∗ ·π2)
◦)◦·

(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(c)

(+ · (+ · π1, π2)
◦) ∗ ·zip·

(zip · (select, select · (π1, (−) ∗ ·zip · (id, repeat · (1, #)◦)◦ · π2)
◦)◦,

select · (π1, (+) ∗ ·zip · (id, repeat · (1, #)◦)◦ · π2)
◦)◦·

(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(d)

Figure 101. Four versions of BMF code for finite diff.Adl. Raw translator
code (part (a)). Hand-crafted code without select (part (b)). Hand-crafted code

with select (part (c)). Fully optimised code (part(d)).
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Figure 102. The relative performance of translator-code, hand-crafted code
without select, hand-crafted code with select and optimised code when applied to

the input vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Note the near-identical performance of the
best hand-crafted code and the optimiser code.

code, like part (c), uses select to transport just the required vector elements to each

invocation.

The relative performance of each of these versions, when applied to a small input

vector is shown in figure 102. The performances of the translator code and both

versions of hand-crafted code are the same as they were at the end of chapter 4. The

performance of the optimised code, in part (d), is almost identical to the corresponding

hand-crafted code in part (c). This is undoubtedly a good result for the optimiser.

Transpose Figure 103 shows Adl source code for a a program that transposes

a nested input vector. The code consists of a nested map where the most

deeply embedded function contains a nested vector-indexing expression, with indices

reversed, to produce a transposition of the input vector36.

Figure 104 shows the translator code, hand-crafted code and optimised code for

transpose.Adl. The translator code relies on distributing a copy of the nested

vector to every invocation of the inner map’s body. The hand-crafted code is simply

a transpose operation on the two dimensions of the input vector. The optimiser code

is more detailed than the hand-crafted code. It contains a transpose function that

36Note that the program will only produce a correct transposition if the longest inner-vector is
a!0. If this is not the case then some truncation of rows will occur.
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main a:vof vof int :=

let

f x := let

g y := a!y!x

in

map (g,iota (# a))

endlet

in

map(f,iota (# (a!0)))

endlet

?

Figure 103. transpose.Adl, a program to transpose a nested input vector.

((! · (! · (π1 · π1, π2)
◦, π2 · π1)

◦) ∗ ·distl · (id, iota ·# · π1)
◦ · id) ∗ ·

distl · (id, iota ·#·! · (id, 0)◦)◦ · id
(a)

transpose(0,1)

(b)

(select · (π1, iota · π2)
◦) ∗ ·

zip · (select · (transpose(1,0) ·3 π1,
3 π2)

◦, repeat · (3π3, # ·3 π2)
◦)◦·

(π1, iota ·#·! · (π1, 0)
◦, π2 · π2)

◦ · (id, (id, #)◦)◦

(c)

Figure 104. Three BMF versions of transpose.Adl. The translator-code, shown
in part (a), the hand-crafted program, shown in part (b), and the optimised

program, shown in part (c).
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Figure 105. The relative performance of translator-code, hand-crafted code and
optimised BMF code for transpose.Adl when applied to the nested input vector

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]].

swaps the appropriate dimensions but it also contains code that performs a nested

select on the transposed vector. It turns out that this nested select is semantically

equivalent to a id but the current implementation does not have the capacity to detect

this.

The relative efficiency of the translator code, the hand-crafted code, and the

optimiser code for transpose.Adl is shown in figure 105. The performance of the

optimiser code is a substantial improvement on the performance of the translator

code but there remains a significant gap between the performance of the optimiser

code and that of the hand-crafted code. The good news is that this performance gap

does not grow quickly with the size of the input. Figure 106 shows the performance of

the same programs applied to a 4× 6 vector (twice as many elements as the previous

vector).

As can be seen, the performance gap between translator code and optimised code

has grown substantially more than the performance gap between the optimised code

and hand-crafted code. Optimiser code appears slower than the hand-crafted code

by only a constant factor which augers well for future implementations.

Summary of the performance of target code The examples we have just

presented are a sample of the experiments that we have run. The behaviour of

this sample is representative of the behaviour of target code in other code we have

tested. In all tested programs, the optimiser produced a substantial improvement in
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Figure 106. The relative performance of translator-code, hand-crafted code and
optimised BMF code for transpose.Adl when applied to a larger (4× 6) nested

input vector.

performance. The precise extent of that improvement was dependent, for the most

part, on the amount and efficiency of any redundant code, if any, left behind by the

optimisation process. On balance, the optimisation process, defined so far, is very

effective in many cases but there is scope for further enhancements to eliminate some

of the redundant code remaining in some examples.

5.6.1.2 Other aspects of performance

Reliability Reliability is paramount in language implementation and even

prototypes should exhibit some measure of reliability. Our implementation does,

in the set of small examples we have tested it with, produce the same input to output

mapping over a range of test data and, by close visual inspection, the code appears

equivalent37.

However, the optimiser stage occasionally loops or abnormally terminates on

some more complex examples. As a general observation, loops can be remedied by

making rules more mutually exclusive and/or capturing extra cases or by employing

normalisation to reduce the number of cases. Abnormal termination is usually caused

by the absence of an appropriate catch-all case or a simple error in a rule. Where

37The optimisation process is, in theory, capable of producing an audit trail for verification of its
correctness. However, in our experience from tracing the proof process, such an audit trail is far too
long to inspect manually. There is probably scope to build a tool to filter out the steps, deemed by
the user over time, to be obviously correct to make inspection of such proofs tractable.
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looping or abnormal termination have been encountered, we have, thus far, been able

to remedy them.

Robustness Robustness is a measure of an implementations sensitivity to changes

in its environment. The vector optimisation process and the tuple-optimisation

process have different levels of robustness. The rules of the vector optimiser are

geared precisely to the output produced by the translator. Any substantial changes

to the code produced by the translator will adversely affect vector optimisation. Tuple

optimisation is much more robust. Tuple optimisation makes few assumptions about

code. The tuple optimiser is even able to process its own output38. In subsequent

implementations of the optimiser we intend to employ assertions to codify the input

requirements of the various rule-sets. Carefully constructed assertions will provide

valuable guidance in the design of output from normalising rule-sets (e.g. Remove ids

and in designing rules catering for input to the transformative rule-sets (e.g Opt).

Time taken to compile and optimise programs The optimisation phase is

easily the most computationally intensive part of the compilation process. Our

prototype can run very slowly (in the order of minutes) when presented with

moderately large programs.

There are two primary reasons for this slowness. The first is the amount of

backtracking generated by the underlying Prolog implementation when the rule-

sets are executed. This can be and has been, partially, remedied by re-designing

rule-sets so that large proofs of premises are not undertaken when there is a good

chance of failure in the normal course of compilation. Unfortunately such redesign

appears to detract somewhat from the elegance and declarative style of natural

semantic definitions. In any case future implementations are likely to be built in

languages without backtracking so any performance penalty caused by backtracking

will disappear.

The second and, ultimately, more important contributor to the slowness of the

optimiser is the frequent use of normalisation. Casual observation of the optimiser

in the Centaur debugging environment indicates that the optimiser spends a large

part, if not the majority of its time performing normalisations such as associating

38Moreover, it appears, from the few observations we have made so far, that Tuple optimisation
is an idempotent operation on its own output, converging to a fixed point after one iteration.
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code to the left and removing identity functions. While there may be scope to apply

normalisation more selectively, in some cases, it is unlikely that its role with diminish

significantly in future implementations.

It remains to be seen whether slow compilation and long times spent performing

normalisation is characteristic of implementations that use the transformational

approach supported by BMF. A priori, BMF offers excellent scope for exploiting

computationally intensive transformational strategies at compile time as part of a

trade-off for producing faster target code. Whether such a trade-off is inevitable is

an open question.

5.6.1.3 Elegance of target code

One of BMF’s oft touted strengths is its elegance. It is possible to write quite powerful

programs in a small amount of space using BMF notation39. Though it isn’t of

paramount importance when BMF is used as an intermediate form, elegance in the

target code would seem, a-priori, to be a positive sign of convergence of form towards

efficient handwritten code.

In our experiments to date our optimiser has, on occasion, produced code

comparable in elegance and efficiency to hand-written code. However, the optimiser

has also produced programs that, while reasonably efficient, have not been particularly

elegant. Elegance, and efficiency, at least in our current implementation seem to be

largely unrelated.

5.6.2 Findings related to building the optimiser definition

Centaur and Natural Semantics are a good medium for prototyping Using

the Centaur system, we were able to create a prototype of the the optimiser at

the same time as we defined its formal semantics. Definitions expressed in Natural

Semantics have a clarity and elegance not easily emulated in most programming

languages. Transcription of Natural Semantics definitions into Typol, the semantic

notation underpinning Centaur definitions, was straightforward. The debugging,

editing and display environment provided by Centaur (and shown in figure 107) was

extremely useful for locating errors in our definitions.

39Though, we have tended to find that some of this elegance disappears once programs become
detailed and we take away the option of reverting to other notations when convenient.
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Figure 107. A screen dump of the Centaur system during translation and
optimisation. Code at each stage of the implementation is given a separate window.

Other windows are provided for debugging and viewing code bound to currently
executed rules. Several pretty printers can be defined for source and target

languages for various purposes.
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Our initial prototype ran very slowly on larger programs. This slow performance

was primarily due to a rule-structure oriented toward readability rather than optimal

performance. We refined our definition to be more syntax-directed which greatly

enhanced its performance. The refinement of a definition from one oriented towards

a human reader to one oriented toward execution seems to be quite a natural

development path. Peyton-Jones’ and Meijer’s article describing Henk[110] and

Tullsen’s article defining the Zip-calculus[136] both refine semantic definitions to be

more oriented to an executable process.

Even after refinement, our optimiser rules, at least at the top level, are easily read.

Unfortunately, this readability does not extend to all of the lower-level rules. Low level

rules reflect the compromises taken to make an open-ended process such as program

optimisation tractable. There is, perhaps, a mismatch between the practical concerns

of optimisation and the customary purity of formal semantic definitions. However,

on balance, the discipline, elegance, and clarity provided by a formal definition was

to our advantage.

Incremental definition of optimiser rules is possible BMF is quite a forgiving

medium for optimisation. Most BMF transformations are self-contained and localised.

There are no large “all-or-nothing” transformations. This means that a partial

implementation of an optimiser can selectively ignore parts of program code and

still produce a correct, if not optimal, program.

Gaps in rules are costly Although it is advantageous to be able to work with

partial definitions during construction of the optimiser, the gaps left by partial

definitions can be costly in terms of performance of target code.

One cost is that any unprocessed section of code will have to be catered for

by other parts of the optimiser, whose complexity may have to increase as a result.

Another, more insidious, hazard of not catering for all cases occurs in rule-sets devoted

to the normalisation of code. Missing cases in normalisation rules-sets mean that

problematic code:

1. persists into the next transformative stage which, almost inevitably, will not

have specific rules to handle it and
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2. will probably persist, in perhaps a different guise, through future applications

of the normalising rule-set.

The consequence is often that chunks of unoptimised code persist through to the end

of the optimisation process. In the worst cases, these chunks accrete more code as

optimisation progresses. Not surprisingly, this unoptimised code can severely impact

the cost of the code ultimately produced by the optimiser.

Ultimately, temporary gaps are inevitable during any reasonable process of

incremental development. It is important to be aware, during development, that

their consequences are sometimes disproportionate to their size and, as a corollary, if

at all possible, gaps need to be eliminated from the final implementation. To the best

of our knowledge, all of the gaps that can be easily eliminated40 have been eliminated

from the normalisation rules of our implementation.

Care is needed to avoid infinite loops in the optimisation process Infinite

loops are a potential hazard for transformative systems. Simple loops where an

equality is applied backwards then forwards ad-infinitum, can be avoided by the

simple expedient of applying rules only in one direction[47]. This heuristic can be

thwarted by the creation of cycles between rules. To illustrate, the following two

rules:
(f1 · f2) · f3 ⇒ g
f1 · (f2 · f3)⇒ g

f1 · (f2 · f3)⇒ g
(f1 · f2) · f3 ⇒ g

are mutually recursive and will cause the infinite loop:

f1 · (f2 · f3)⇒
(f1 · f2) · f3 ⇒
f1 · (f2 · f3)⇒
(f1 · f2) · f3 ⇒

· · ·
40Completely ridding all normalisation rule-sets of all gaps is more difficult than it might first

seem. For example, the Remove ids rule set has lacks a rule to detect that select · (id, iota · #)◦ is
equivalent to id and can be eliminated where redundant. This absence is a gap but it is one that is
difficult to eliminate completely, given the infinite number of variations on the theme of this code.
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Ultimately, it is incumbent upon the author of the rules to avoid such cycles41. Some

loops can be avoided by careful ordering of rules though the presence of backtracking

can defeat this in some systems. One safe route is to normalise code so that a rule

that otherwise might form part of a cycle is not needed. As a concrete example, the

Adl optimisation process associates compositions to the left so that subsequent rules

could avoid a cycle by having rules only for left-associated compositions.

Sundry observations on using point-free form The use of point-free BMF as a

medium for automated program development is still an area of research. Observations

relating to what works and, just as importantly, what doesn’t work, are pertinent.

Some observations follow.

Normalisation works In spite of the fact that it makes no direct contribution

to efficiency, normalisation is pivotal to the Adl implementation. Normalisation is

needed to lay the ground so that optimising rule sets can be effective without the

need for complex analysis or clever use of cases. Normalisation creates a simple

environment so that the rules that follow it can also be simple. Simpler rules are

harder to get wrong. Note that this observation is simply an extension of what is

already known about normalisation in other fields. Normalisation is, for example,

used heavily in preparing statements in the propositional and predicate calculus for

proof by resolution[33]. Of course, normalisation, often manually applied, is also

heavily employed in relational databases to make it easier to maintain them in a

consistent state[49].

Action-at-a-distance is difficult One drawback of point-free form is that it

is very difficult to enact simultaneous changes to two spatially remote but related

functions. This is not a trivial issue because optimisations such as common-sub-

expression elimination can require such action-at-a-distance. This difficulty can be

overcome in Natural Semantics by unifying one of the function with a logic variable

than can then be acted upon in conjunction with the other function to be changed42.

A-priori a more robust approach is to compact code in order to bring the parts to be

41Though one might envisage an automated system that could detect some such cycles.
42This technique is used by the vector optimiser during post-processing of map functions to re-

generate addressing functions after tuple optimisation. These rules are some of many omitted from
this chapter.
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changed close enough that a simple re-write rule can be used. This approach, which we

have not yet directly employed, is one that we will explore in future implementations.

Comparing addressing functions is difficult This issue is strongly related

to the last issue. In point-free BMF, two functions addressing the same value can

look different. This problem, where the name of a value is context-sensitive, is due to

the fact that the addressing environment is new for each function. Again, a potential

solution is to compact code to bring addressing functions into the same context if

possible.

Pervasive transformation is easier To optimise any single part of a program

the optimiser must traverse the code from the start or finish of the program to that

point. Optimisation strategies that are able to perform useful work along the way are

at an advantage. Both vector and tuple optimisation incrementally optimise code as

they traverse it.

A better zip is needed Restricting target code to use ordinary binary zip

introduces nested tuples where a flat tuple of larger arity would suffice. The clarity of

code is compromised by such usage. The use of a form such as transpose-tuple from

FP[145] or the generic zip used by Roorda in[121] is a likely refinement.

Binary composition is useful The associativity of function composition

makes it feasible to define it as an operator on lists of functions rather than a

simple binary operator. Though a list-version of the composition operator would

make it easier to read BMF programs it is unlikely to be adopted to future Adl

implementations. This is due to the fact that binary composition has proved to be

such a useful tool in guiding the optimisation process. Binary composition allows the

implementor to change the way that rule’s match without materially affecting the

semantics of the code.

This concludes this chapter’s findings. A summary of work related to the Adl

optimisers follows.
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5.7 Related work

This section is divided into two parts. The first part describes work that achieves

similar ends to the vector and tuple optimisers but in different domains. The second

part puts the transformational method used by the optimiser into some context.

5.7.1 Optimisations related by goal

Research into optimisation of programs dates back to the first compilers [124]

and several optimisation techniques were well established by the early 1970’s[9].

Enumerating the optimisations that currently exist would take too long but Mahlke’s

Masters thesis[97] contains a good survey of classic optimisations.

Data-flow analysis The primary optimisation technique employed by the Adl

optimiser is data-flow analysis[93, 32]. In a broad range of implementations, data-

flow analysis is used to survey data dependencies throughout a program for purposes

including: elimination of redundant code, removing invariant code from loops,

detecting opportunities for parallel execution and even optimising data distribution.

Data flow analysis is usually considered to be a form of global analysis because variable

dependencies can span large parts of a program.

The data-flow analysis performed by the Adl optimisers differs from most because

the code expresses data flows quite directly43, and thus results of local analysis are,

in most cases, integrated immediately into the code. This fine-grained alternation

between analysis and transformation appears to be a natural way to use point-

free BMF. The locality of transformations also gives a spatial dimension to the

optimisation process with moving fronts of optimisation appearing in code and

sweeping through the code. Lastly, in contrast with many implementations, the Adl

optimisers have very small requirements for auxiliary data structures44, changes are

recorded directly in the code rather than in auxiliary structures.

Data movement optimisation In terms of their aims, analogues to data

movement optimisation are likely to be found in domains where there is a significant,

avoidable, cost attached to:

43There are no variables in point-free BMF to provide an implicit link between producers and
consumers of data. Instead producers and consumers are linked directly through composition.

44Some of the structures that we do use may be eliminated in future versions.
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1. Creating large, at least partially redundant, data structures.

2. Keeping such data accessible to later stages of a computational process.

The first point is a significant cost in many domains. The second is only of significance

where data has to be copied or carried around in order to be accessible. Examples of

optimisations tackling the first point include:

• query optimisation in databases by moving selects before joins to avert the

creation of larger-than-necessary intermediate data structures[49](section 10.7).

• definition-propagation to prevent the formation of temporary values.

• Deforestation/Fusion[143, 108] to avoid the creation of large temporary data-

structures.

• The judicious use of scalars in loops to avoid the creation of large temporary

arrays in imperative programs.

There is a broad resemblance between vector optimisation and query optimisation.

In vector optimisation the selection operation is brought into contact with the

distribution operation to reduce the total amount of data created. The code-

compaction carried out during tuple-optimisation is related to definition propagation

insofar as they both reduce the number of intermediate values generated between

a value’s definition and its ultimate use. Loop fusion (a narrow specialisation of

deforestation/fusion) is also a side-effect of code-compaction45. There is currently no

Adl optimisation analogous to using temporary variables in loops as a substitute for

storing whole arrays.

Examples of optimisations addressing point number two, the cost of keeping data

accessible, are mainly to be found in parallel implementations46. In parallel systems

there can be a high communications cost attached to keeping data accessible, and

indirectly, to the creation of data structures with large amounts of redundancy. It

follows that this field provides a source of optimisations to reduce such costs.

45Thus far work has made no direct attempt to employ other forms of fusion/deforestation to
optimise programs further. Integrating existing techniques into this implementation is future work.

46The idealized cost of keeping data accessible throughout a program on a von-Neumann machine
is zero. Of course, there is an actual cost in terms of making efficient use of the memory hierarchy
but this is usually handled by a combination of the low-level parts of the compiler, and, of course,
the hardware.
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Related optimisations in parallel computing The need to explicitly capture

the global environment for referencing is recognised, in a parallel context, by the

designers of Algorithmic Skeletons[42]. In particular, the FARM skeleton can contain

an explicit parameter to pass the referencing environment. This is very similar to the

wrapping up of the environment with the input parameters to our map function in

Adl translator code. Similarly, work in optimising IF1 data flow graphs by Feo and

Cann[55] recognises the need to pass an environment to loop instances. Wu and Kelly

stated the need to filter this global environment in their work on M-Trees [113].

Walinsky and Banerjee, in their implementation of FP*[145], recognise the need

to reduce the data movement and copying costs. Their approach is to translate

FP* code, a point-free form, to an imperative intermediate form, resembling CM-

Fortran. They use definition propagation to track changes to data-structures wrought

by routing functions47. These functions are subsequently eliminated and references

in downstream code are adjusted to compensate. Our approach differs in two major

aspects.

• We aim to retain explicit BMF routing functions at the distributed level to

allow for consolidated communication of data required by nodes ahead-of-time

rather than on-demand. Our strategy introduces the need to anticipate data

needs of downstream code and optimise accordingly. This need is much less

strong in the FP* implementation where data needs are satisfied on-demand48.

• FP* restricts the placement of iota functions and avoids the use of functions as

general as select in order to enhance the effectiveness of definition propagation49.

Our implementation imposes no restrictions of this kind.

There are several other common optimisations used to reduce total

communications costs in a parallel context, many of them work with distributed

Fortran programs. Some of these are[68]:

47A routing function is a function that re-arranges, copies, or projects from, aggregate data without
changing its constituent values.

48In the FP* implementation, the CM-Fortran compiler is responsible for partitioning and
generating communications implicit in random access to implicitly distributed vectors.

49These restrictions might be lifted if some runtime infrastructure for mapping references to their
data, in the fashion of the other stream of the Adl project[53], were provided by the target machine.



CHAPTER 5. DATA MOVEMENT OPTIMISATION 176

Message-Vectorization/Strip-mining: dragging independent statements, that

trigger remote access to same node, outside of their enclosing loop and

consolidating them into a single request for a vector of data.

Rationalising remote access in conditionals: by transmitting data that is used

by both branches of a conditional only once and sharing it.

Moving Communications earlier: to subsume previous communication in order

to consolidate/hide50 latency costs.

The benefits of the message aggregation that message vectorization provided by

the optimisations in the first point strongly motivate this work 51. Under the

parallel model described in the next chapter message aggregation occurs quite

naturally, whether vector optimisation has taken place or not, however, without vector

optimisation the size of these messages is typically much larger. The action of vector

optimisation in pushing indexing functions outside of map functions to form a select

is also strongly related to pushing individual indexing functions outside of a loop to

form a vectorized communication command.

On the second point, there is no action in the vector optimiser corresponding to

rationalising remote access in conditionals. However, the tuple optimiser does merge

accesses to tuple elements in this way.

On the third point, there is no attempt to merge/subsume communications in the

vector optimiser. However, the tuple optimiser trivially subsumes redundant access

to elements of tuples in this way. There are no current plans to exploit latency-hiding

in this thread of the Adl project, though there are no fundamental impediments to

doing so if the need arises.

The vector optimiser’s use of a select to consolidate statically unknowable patterns

of communication is mirrored in von Hanxleden, Kennedy, et al.[141] and, in later

work by on array remapping operations by Dietz, et al.[48]. Hanxleden, Kennedy,

et al.’s paper focused on hoisting piecemeal array access to one-dimensional arrays

out of loops in Fortran-D into equivalent gather52 and scatter operations. This

50Latency hiding is implemented by issuing a non-blocking receive before the data is actually
needed. The corresponding send has time to occur and then, when the data is actually needed, it
may already have arrived, if it hasn’t the process can wait until it does.

51These benefits are widely known[14] and are well exploited by models such as BSP[76]
52Gather has almost identical semantics to the parallelised code for select, which is described on

page 209 in chapter 6.
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process is complicated by the imperative semantics of Fortran and the approach

is, necessarily, conservative. The paper by Dietz, et al. focuses on optimisation

of remapping constructs that specify gather and scatter operations over regular

distributed multi-dimensional arrays in the language ZPL[107]. Their work exploits

shape and distribution information found in region specifiers associated with values,

which helps support aggressive optimisation of the implementations scatter and

gather operations. Note that, in ZPL, the programmer is responsible for expressing

consolidated communications operations through remapping constructs, whereas in

Adl it is the job of the optimiser to do this.

Related optimisations for re-oriented vector access The problems caused

by a mismatch in the order of loop index variables relative to the indexing functions

embedded in these loops are well understood[45]. Adl vector optimisation solves this

problem using transpose to re-orient the nested vector to better match the indices

generated for the surrounding map functions, thus making it possible, in most cases,

to move indexing functions outward and consolidate them into selects. This contrasts

with established loop-transformation techniques which leave the vector as-is and swap

the nesting of loops to achieve the same (or similar) ends. The use of transpose rather

than loop-swapping, by the vector optimiser, is partly motivated by desire to keep

transformations local. However, with the appropriate normalisation, loop-swapping

transformations might be made local, and these could be an attractive alternative to

using transpose.

Finally, it is important to mention that some other implementations reduce

communications costs by accessing distributed data on demand. Several

implementations including Id[115], SISAL[55], Lucid[11], and the multi-threading,

thread of Adl project[54] use demand-driven data-access, among other techniques,

to minimise the volume of communication. The trade-off is increased overhead from

many small messages53.

This concludes the summary of optimisations related by goal. Next, the

transformative techniques used by both Adl optimisers are put into some context.

53Note that it is still possible to aggregate some requests for data in demand-driven system as long
as the mechanism for aggregation precludes deadlock. The potential advantages of such a system
warrant further exploration in the context of the Adl project.
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5.7.2 Optimisations related by technique

There is a large body of work on optimisation of functional programs via program

transformation. Early work includes the fold-unfold transformations developed by

Burstall and Darlington (citations from this part can be found in [123]). Other types

of mechanisable or partially mechanisable transformation include[108, 78]:

• tupling to consolidate multiple recursive calls into one.

• diffusion turning recursive definitions into non-recursive BMF.

• fusion/deforestation merging composed functions and, more generally,

eliminating intermediate data structures[143].

• flattening avoiding possible load imbalance due to nesting of higher-order BMF

functions.

• partial-evaluation to specialise calls to some functions with respect to static

knowledge of their input values[104].

Our current implementation does not exploit any of the transformations above though

there are no impediments to exploitation of these in future Adl implementations54

A complicating factor in any process of automatic transformation is the presence

of recursive definitions which can render the composition of otherwise correct

transformation steps unsound[123]55. Bird[18] circumvents these problems by using

a calculus (BMF) of composed functions, similar in style to Backus’ FP[13] but

with a strongly typed foundation based in category theory[131], as a medium for

transformation. In BMF, recursive definitions are typically not exposed at the level

at which transformation takes place so the hazards of composing rewrites do not

occur. Later work in this field (see [15, 63, 38] for a sample) has shown that such

an approach can indeed lead to efficient programs and, perhaps more importantly, to

valuable insights into some problems.

There are a broad spectrum of possibilities for harnessing programming

transformation techniques as a compilation tool. Table 2 summarises the possibilities.

Each row of the table represents a type of optimisation. The meanings of the columns

54A lifting of the current embargo against recursive definitions in Adl would open the way for full
exploitation of existing diffusion techniques.

55This article provides an excellent characterisation of these problems as well as techniques for
circumventing them.
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Optimisation Prob
domain

Purpose Extent Rule-
choice

Rule-set Granularity

Ideal arbitrary general global automatic self-
extensible

fine

User-assisted arbitrary general global assisted extensible fine
Annotated arbitrary general local

function
limited
auto-
matic

user
extends

fine

Vector/Tuple
optimisation

non-
recursive

specific global static static fine

Local opts varied specific local static/
arbitrary

static fine

Global opts varied specific broad static static typically coarse

Table 2. A characterisation of different types of optimisation according to a range
of criteria.

are:

Prob domain The nature of the programs this type of optimisation can be applied

to. For the purposes of exposition, we assume that all optimisations are

restricted to functional programs56. Ranges down from “arbitrary” where any

functional definition can be optimised to various kinds of restrictions.

Purpose The purpose of the optimisation. All other things being equal, general

purpose optimisation is harder to do than specific-purpose optimisation.

Extent The spatial extent of the optimisation. Ranges down from “global” to

“local”.

Rule-choice How the rules of the optimiser are applied. Ranges down from

“automatic”, where the optimiser decides which rules to apply dynamically,

to “static” where the author of the optimisation decides which rules to apply.

Rule-set How the rule-sets that govern the optimisation process are composed.

Ranges from “self-extensible” where the optimiser extends its own rule-set to

“static” where the author of the optimisation determines the rule-set.

Granularity The granularity of transformation. Ranges from “fine” to “coarse”.

Fine-grained changes are incremental. Coarse-grained changes are large, often

56Some optimisation techniques are also applicable to imperative programs.
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opaque, all-or-nothing transformations. All other things being equal, a fine

granularity is preferred for its greater transparency.

The first three rows of the table contain general-purpose optimisations. The first

row characterises an ideal optimisation, able to choose and generate rules needed to

decrease execution costs for arbitrary programs and apply these rules in a fine-grained

and transparent manner. Such systems do not yet exist. An ideal optimisation is

unlikely to be effective without extra information as to how the program is going

to be used57. The second row describes optimisations where the user-assists in the

optimisation process. Martin and Nipkow[98] described this type of optimisation for

BMF code by assisting a theorem prover. The third row describes optimisations that

are guided by programmer annotations. The MAG system developed by de Moor

and Sittamaparam[47] uses a simple heuristic to choose from rules, provided by the

programmer, for each candidate function definition, to effect optimisation.

The last three rows describe optimisations directed to a specific purpose. The

fourth row describes the vector and tuple optimisation phases of the Adl compiler.

Both of these phases have a specific purpose and, indeed, they consists of even more

specialised sub-phases. The impact of each optimisation is global and pervasive58.

The choice of rule is statically determined by the implementors. The rule-set is also

static, but perhaps more easily extensible than the rules defining more conventional

approaches. The transformational granularity is fine59. Mottl’s system for partial

evaluation of definitions in a strict functional language might also be said to fall into

this category. Rule choice is governed by the structure of code which is annotated so

as to apply only to rules that will preserve this structure. Through these code-

annotations, rules can be applied in an order which leads to termination of the

57Extra information like this is not to be underrated. Extra information about the shape of data
can greatly contribute to efficiency [86]. Systematic observations of actual program performance
have been successfully applied in incremental compilation[94]. Observations of actual program
performance while it is running lead to very effective ‘hotspot’ optimisations in Java Virtual-
Machines[102]. Notably, the extra information takes away a lot of the analytical burden from the
optimiser. Less information has to be deduced if you already have it to hand.

58As mentioned previously, the nature of point-free form seems to make it easier to define rules to
perform pervasive transformations than to define rules that simultaneously act on spatially separate
sections of code.

59One could argue, because the Adl optimisers compose transformations into groups, and because
there are no choice-points based on cost functions, that the granularity is actually coarse. However,
the transparency of the Adl optimisers, the lack of large steps, and the fact that they can be stopped
at almost any point and the result is still a correct program, all work in favour of calling them fine-
grained.
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transformation process. The rules of the Adl optimisers use function composition in

a similar way. Adl optimiser rules often change the associativity of composition in a

monotonic way so that, at some point, only a “finishing rule” of a rule-set will apply

which, effectively, returns the result of the transformation. Another optimisation

with a similar flavour is Onoue et al’s [108] system to automatically perform fusion

in recursive functions in Gofer[88].

The last two rows capture most common forms of optimisation. Local

optimisations are fine-grained transformations that effect improvement at a local

level. Local optimisations are not assumed to be coordinated with each other and it

is this that distinguishes them from the previous four rows60. An example of a local

transformation might be the rule:

f ∗ ·g∗ ⇒ (f.g)∗

which fuses two maps. A large number of local transformation rules have been

developed for BMF. Some transformations have been usefully applied in a distributed

parallel context[62, 63, 79].

Global optimisations are those which require some sort of non-localised analysis

such as data-flow-analysis. Global optimisations tend to be coarse grained and

opaque. Often, they employ an abstraction outside of the language such as a

data-flow graph or a polytope[45] and, if successful, they apply the optimisation

in a wholesale manner. This contrasts strongly with the Adl optimisers which

incrementally approach the point where cost-reducing transformations can be

applied61. Compilers often employ a battery of global optimisations to cover different

aspects of performance.

Fine-grained vs Coarse-grained As a final note, it is worth briefly comparing

fine-grained and coarse-grained approaches to optimisation. As mentioned previously,

all other things being equal, fine-grained optimisation is to be preferred due to its

60The distinction can be very fine. Philip Wadler’s set of rules for concatenate elimination[142]
can, individually, be viewed as local transformations but together they form a system where the
rules are applied to a program, until they can be applied no more. There is nothing in Wadler’s
rules that dictates an order of application, the system is robust enough to cope with an arbitrary
order of application (it is confluent). So we have a system but it is very loosely coordinated.

61Note that the use of localised rewrite rules does not prevent effective global optimisations from
being achieved. Visser’s excellent survey of applications of rewriting strategies[140] aptly illustrates
this point.
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transparency and potential flexibility. However, not all things are equal. For example,

if fine-grained transformations are applied in a way that monotonically reduces cost

at each step, a local minimum can be reached. Coarse-grained transformations avoid

this problem by leaping past local minima in a single step. To be effective, fine-

grained transformation systems must sometimes make programs worse before making

them better62. The statically defined rules of the Adl optimisers achieve this by

normalising code, without immediate regard to efficiency, to a point where significant

cost-saving transformations can be applied63. Non-static systems must employ some

other technique that take account of global costs in order to avoid local minima.

Skillicorn et. al[129] describes a technique that utilises global costings to effectively

optimise BSP style programs.

This concludes our summary of related work. A brief summary of the chapter and

proposals for future work are given next.

5.8 Summary and Future Work

This chapter described the optimisation process applied to the translator code of the

previous chapter. The process consists of two phases: vector optimisation, to reduce

the transport of individual elements contained in vectors, and tuple optimisation

to reduce the transport of individual elements contained in tuples. Both phases

of optimisation work by a process of incremental transformation that maintains the

correctness of the program during optimisation. The optimisation process takes place

with very limited resort to any auxiliary data structures.

Both phases of optimisation place a heavy reliance on normalisation to reduce the

number of cases that subsequent rule-sets need to cater for. The most challenging

part of the optimisation process is catering for arbitrary combinations of vector

references inside of map functions. Optimisation rule sets are amenable to incremental

construction though it was observed that the omission of specific rules to handle each

function in normalising rule-sets were costly in terms of performance of target code.

62Elliot, Finne and de Moor[52] found that the freedom to make things worse before making them
better paved the way for some very useful optimisations in the implementation of their domain-
specific language PAN.

63In an intuitive sense this can be likened to climbing up to, and going over, the edge of a very
large cliff in the cost-space.
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Finally, it was shown that the optimisation process is highly effective when applied

to a range of programs, in some cases, producing code of comparable performance to

hand-written BMF.

5.8.1 Future work

There are a number of directions for future work on the optimiser definition. A good

first step would be to rewrite the optimiser in a way that avoids the overheads of

backtracking. It is likely that, as part of this process the optimiser definition will

be ported to a new platform64. In addition, a new version of the optimiser could be

instrumented to produce a trace of a proof as it applies its rules. A cost model could

be used to annotate the intermediate code produced by the process.

There is scope for more use of normalisation and more concrete definitions of the

input interfaces for non-normalising rule-sets and output interfaces for normalising

rule-sets. Interfaces of this kind have been usefully employed in rewriting-based

implementations in Stratego[46, 138].

Though vector and tuple optimisation warrant separate consideration, the idea

of interleaving these phases within a single pass to produce cleaner wish-lists bears

investigation.

There is some scope to apply further transformations to increase the efficiency of

code based on techniques related to deforestation[143] (to fuse composed operations)

and tupling[80] (to avoid multiple traversals of a data structure).

Currently, we limit the, non-normalising transformations used, to those that

invariably increase the efficiency of code. A cost model could be used to guide the

application of transformations whose benefit is dependent on certain conditions65.

The eventual goal is to incrementally improve the optimisation process with

the addition of passes to implement various optimisation techniques as they are

discovered.

The optimiser has succeeded in increasing the efficiency of BMF programs

produced by the translator. The next chapter presents a process by which these

programs can be efficiently mapped to distributed-memory architectures.

64Most likely to be Haskell[81] or Stratego[139].
65Some characterisation of the input data will be required to decide whether or not to apply some

such transformations.



Chapter 6

Parallelisation and Targetting

To this point, this report has shown how a simple functional language can be converted

to point-free BMF code 1 and then shown how the efficiency of that code can be

dramatically improved through the automated application of a series of normalisation

and optimisation steps. This chapter describes a process for parallelising sequential

BMF, describes how this parallel BMF might then be mapped to a distributed

computer and then explores performance issues that can arise.

The work we describe here corresponds to the last two stages of the implementation

shown in figure 108. Prototypes for these stages are in the early stages of

development[146, 111]. The techniques described here form the basis of these

prototypes.

Structure of this chapter A brief preview of our approach to parallelisation and

code generation is presented next. After this, we present the parallelisation process

applied to a few important constructs followed by an overview of the code-generation

process and the issues that it raises. At the end of this chapter we present performance

results for a series of simple applications run under various conditions on a simulator

and, finally, related literature is reviewed.

6.1 Preview

Parallelisation and code generation present major design choices.

1As with other chapters we will henceforth, in this chapter use the term BMF to mean point-free
BMF code.

184
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Lexical Analysis
and Parsing

Adl source
code

Adl Syntax 
Tree

Type-annotated
Adl Syntax Tree

Type Checker Translator

BMF

Data Movement
Optimiser

ParalleliserCode Generator

Target
Machine

Optimised BMFParallel BMF

Target Code

Figure 108. The Adl project with the parallelisation and code-generation marked
in black.

• For parallelisation, these choices revolve around how explicit to make the

parallelism in the code.

• For code generation, we must choose the extent to which we rely on a run-time

system to manage the efficient execution of applications.

We now briefly discuss the choices we have made for these two stages.

6.1.1 Design choices for parallelisation

There is a spectrum of design choices for the parallelisation process. The two extremes

of this spectrum are:

Fully implicit: Use a sophisticated run-time system to exploit the parallelism

implicit in unmodified BMF code.

Fully explicit: Define a stage of compilation to embed most aspects of parallelism

in target code.

We briefly discuss these extremes and our design choice next.
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Figure 109. Graph of data paths for: +/0 · (× · (id, id)◦ [1, 2, 3, 4, 5, 6, 7, 8]

Implicit parallelism Once we know the dimensions of its input data a BMF

program is easily unrolled into a data-flow graph. For example, the graph for the

expression:

+/0 · (× · (id, id)◦) ∗ [1, 2, 3, 4, 5, 6, 7, 8]

is represented in figure 109. With a run-time system able to dynamically allocate

virtual-processors there is much parallelism that can be exploited both at the level of

vector functions such as map and within alltup functions. There a two main drawbacks

to such a system:

1. The overheads of the run-time system including the maintenance of the mapping

between virtual processors and real processors.

2. Performance penalties from carte-blanche application of parallel algorithms on

virtual processors.

The second point is very significant. For some operations such as scan the optimal

parallel implementation requires the use of an efficient sequential algorithm on each

node followed by the application of a different parallel algorithm between nodes. The

use of virtual processors hides the boundaries between real nodes which prevents

the use of such hybrid algorithms. In summary optimal performance requires that
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asymptotically optimal algorithms can be expressed in the target code and it is a fact

that some of these optimal algorithms have distinct parallel and sequential parts.

Explicit parallelism Explicitly defined parallelism avoids many of the run-time

overheads of implicit parallelism and provides scope to define algorithms optimised

for the chosen partitioning scheme. The costs of explicit parallelism are:

1. The need for an additional stage in the compiler to inject parallel constructs

into optimiser code.

2. A potential lack of responsiveness to varied input and/or varied runtime

conditions.

The first cost is just the trade-off between increased compilation time and better

runtime efficiency of applications. The second cost arises because, with explicit

parallelism, at least some decisions affecting performance are made at compile-time.

Such decisions are, necessarily, based on incomplete information which can lead to

sub-optimal performance if run-time conditions are not those expected by the writer

of the compiler.

Our design choice for parallelisation In our implementation, we have chosen

to use an automated process to embed explicitly parallel constructs in optimiser

code. The parallelisation phase of the compiler is given the optimised BMF program

and an integer denoting the number of processing nodes on which to map the

program. The paralleliser then statically embeds the decomposition of data, mapping

of computations and data to processing nodes and most aspects of communication in

the target program it generates. The routing of messages generated by the parallelised

select function is handled at run-time.

Next, we briefly examine possible design choices for code generation.

6.1.2 Design choices for code generation

Design choices for code generation are determined by issues such as:

1. The amount of information available at compile time.

2. The amount of work we expend writing the code-generation module.
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Addressing the first point, our implementation assumes that code emanating from

the parallelisation process provides enough information to produce code that requires

minimal interpretation at runtime. In particular, we assume that little or no type

information has to be carried around at runtime. Using static type information the

Adl implementation monomorphically instantiates calls to polymorphic functions (

such as map2) for the sake of efficiency.

Addressing the second point, the code generation phase, could be very simple or

quite complex. Unsurprisingly, as a first implementation, we use a simple approach

to code generation. There is scope to improve efficiency using further analysis3. We

revisit the topic of code-generation in more detail in section 6.2.

6.1.3 Summary of our design choices

In both parallelisation and code generation we have opted to make as many decisions

at compile-time as possible. Parallelisation embeds nearly all aspects of parallelism

either implicitly or explicitly in the code. Code generation embeds this information

directly in the target form. Now, we examine these two processes in turn - starting

with parallelisation.

6.2 Parallelisation

Parallelisation is the process of converting a sequential BMF program into a

semantically equivalent parallel BMF program. Details of how this is done for each

construct are given later, but first we provide an overview by means of an example.

6.2.1 Overview of the parallelisation process

A short example Given the the program to calculate the sum of squares in

figure 110, the paralleliser produces the code in figure 111. The functions with the

superscript: || have the same meaning as the ordinary function with the same name

but with parallel semantics. For example, f∗|| is an application of the map function

2Kuchen [95] took the approach of defining polymorphic library functions for such constructs.
This allows applications to exploit improvements in these constructs’ implementation without
recompilation.

3The cost of memory management, in particular, can be addressed by deeper analysis at this
point.
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+/ · (× · (id, id)◦)∗

Figure 110. Simple BMF program to calculate the sum of squares of an input
vector.

+/|| · (+/) ∗|| ·((× · (id, id)◦)∗) ∗|| ·splitp

Figure 111. Parallelised sum of squares program.

with simultaneous invocations of the function f on distinct processing nodes. The

current implementation parallelises vector operations. The splitp function has a special

role. Its purpose is to convert a vector into a distributed vector of vectors4. The

number of sub-vectors is determined by the subscript p which, at this stage, is assumed

to be a parameter supplied by the user of the compiler. splitp also attaches a closure

for a partitioning function5 to the descriptor of its output array. The partitioning

function accepts a single integer, representing an index to a value into the original

input vector of split, and returns a pair of integers which represent the indices of the

corresponding value in the nested output vector of split6. The partitioning function

is attached to the type of the distributed vector and resides on the parent-node. The

parent-node is the processing node from which the split function was invoked. The

means by which a partitioning function can be extracted and applied are described

later in this chapter.

Now the components of the example program have been introduced. Figure 112

4The unfold function, described by Gibbons[60] has split as a special case.
5This function fulfils a similar role to the partitioning function used in other aspects of the

Adl project[54]. SCL (Structured Coordination Language) [43] also uses a partitioning function
but this is explicitly provided by the user. Currently Adl avoids such an explicit function because
it provides scope for non-contiguous partitionings that can compromise the use of associative but
non-commutative functions in reduce and scan.

6For example, if:
split3 [1, 2, 3, 4, 5, 6, 7]

produces the nested vector:
[[1, 2, 3], [4, 5, 6], [7]]

The partitioning function pf for this vector could be represented as:

pf x = (⌊x/3⌋, xmod3)

.
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+/|| · (+/) ∗|| ·((× · (id, id)◦)∗) ∗|| ·split3 [1, 2, 3, 4, 5, 6, 7] ⇒
+/|| · (+/) ∗|| ·((× · (id, id)◦)∗) ∗|| [[1, 2, 3], [4, 5, 6], [7]] ⇒
+/|| · (+/) ∗|| [[1, 4, 9], [16, 25, 36], [49]] ⇒
+/|| [14, 77, 49] ⇒
140

Figure 112. Evaluation of parallel sums of squares applied to [1, 2, 3, 4, 5, 6, 7]

shows steps in the parallel evaluation of the program in figure 111 with p = 3 and

with input [1, 2, 3, 4, 5, 6, 7]. The result of this evaluation is exactly the same as if it

had been carried out sequentially but computations at the outer level of the nested

vector are carried out in parallel.

The new distributed semantics Thus far, we have shown how the input-output

mapping of a program can be preserved during parallelisation. Now we examine

how the execution of the parallelised program has changed. The original sequential

program operates within the confines of a single processing node. In contrast, each

parallelised function has a distributed semantics.

Figure 113 shows how the distributed computation evolves during the execution

of the parallel program from figure 111. Step 0 shows the program, data and machine

prior to execution. The box on the right represents a single node (node 0) with the

data on it. Step 1 shows the state of the program, its data and the machine after

the execution of split3. The sub-vectors reside on the child-nodes 0.0, 0.1, and 0.2.

Step 2 shows the state after the parallel application of the inner map. Step 3 shows

the state after the parallel application of the inner reduce. Step 4 shows the finishing

state after the application of the parallel reduce.

Note that the split and parallel reduce functions trigger communication. The split

is a special case of a scatter where contiguous blocks of a vector are distributed across

a set of processing nodes. The reduce is responsible for gathering the results back

on to a single node, aggregating intermediate results using the (+) function. The

intervening map operations cause no communication.

Nodes are numbered in a hierarchical manner. Child node numbers are suffixed

with their parent node number. The hierarchy can be extended to describe a nested

distribution. Note that nested parallelism is not the prime focus of this work but it is
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( *+ x/ )o
*) ||)id,id( .(.*) ||(+/ .|| [[1,2,3],[4,5,6],[7]]

0 [   ,    ,    ]

0.0 [1,2,3] 0.0 [4,5,6] 0.0 [7]

0 [   ,    ,    ]

0.0 [1,4,9] 0.0 [16,25,36] 0.0 [49]

+/ *) ||(+/ .|| [[1,4,9],[16,25,36],[49]]

0 [   ,    ,    ]

0.0 14 0.0 77 0.0 49

+/
|| [14,77,49]

split
3

.( *+ x/ )o
*) ||)id,id( .(.*) ||(+/ .|| [1,2,3,4,5,6,7]

0 [1,2,3,4,5,6,7]

140
0 140

step 0

step 1

step 2

step 3

step 4

Figure 113. Sequence of steps in evaluating parallel sum-of-squares applied to the
vector [1, 2, 3, 4, 5, 6, 7]
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beneficial to allow scope for the expression of regular or irregular nested parallelism

in future. A preliminary discussion of nested parallelism is in appendix E.

Now we have seen a specific example of the parallelisation process and its execution

model. A general overview of the parallelisation process follows.

General overview of the parallelisation process In keeping with the approach

to compilation we have described thus far, parallelisation occurs by applying a series

of incremental, localised, semantics-preserving, transformations. Essentially, given a

block of sequential BMF code consisting of a sequence of composed functions with

each producing a vector:

h · g · f · e

the parallelisation process inserts, downstream of the code, a special identity function

on vectors. The function is defined as ++ /|| · splitp. The ++ / in this identity function

is a parallel reduce with concatenate. This function flattens a distributed list back

onto the parent node. The code with the special identity function in place is now:

++ /|| · splitp · h · g · f · e

The splitp function is then pushed up upstream by a process of transformation:

++ /|| · splitp · h · g · f · e =

++ /|| · h′ · splitp · g · f · e =

++ /|| · h′ · g′ · splitp · f · e =

++ /|| · h′ · g′ · f ′ · splitp · e =

++ /|| · h′ · g′ · f ′ · e′ · splitp

where, depending on their structure, h′, g′, f ′, and e′ may be modified at deeper

levels. An intuitive reading of the process is that, because splitp distributes a vector

p ways and ++ /||(or any other instance of parallel reduce) gathers it, any operation

sandwiched between the two is distributed and, of course, distributed operations may

execute in parallel. The parallelisation process proceeds from the downstream rather

than the upstream side to make it easier to ensure matching distributions for vectors

with a common destiny. Figures 114, and 115 help illustrate this point. Figure 114

abstractly illustrates the problem caused by parallelising from the wrong, upstream,

side of the program. The two converging lines represent two vectors that are destined

to be zipped together at some later point in the program. If parallelisation proceeds
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zip

Direction of parallelisation

Conflict here
(cannot be resolved locally)

x

split 3

2split

++/  .||

++/  .||

Figure 114. Two vectors, distributed in different ways at an earlier point of the
parallelisation process can come into conflict when they are joined by a function

such as zip. Resolving the conflict will require at least one of the instances of split to
be changed.

from the upstream side then it is possible to distribute the two vectors differently.

Later on in the parallelisation process the zip, which requires matching distributions

on its inputs, is encountered. It is awkward at this stage to go back and change one

of the split functions so that it matches the other.

Figure 115 shows how parallelising from the downstream side avoids this problem.

Part (a) shows the state of the program just prior to the parallelisation of zip. At this

point there is only one vector so there can only be one distribution. In part (b) the

zip function has been parallelised and each of its two input vectors have been given

the same distribution. Here, there is no conflict to resolve.

Parallelising from the downstream side avoids conflict where two vectors share

the same destiny but what about the converse case where two vectors share the same

origin? Figure 116 shows how parallelisation from the downstream direction copes

with this case. Part (a) shows how two vectors, initially given different distributions,

are found to have the same origin. Part (b) shows how this conflict is resolved by

choosing one of the two distributions. Note that there is no requirement to change

already-parallelised code as there was in figure 1147.

For the few examples shown to date, all functions in the program have vector

inputs and results. What happens if functions have non-vector input or output types?

These cases must be handled with various rules that allow parallelisation to permeate

7This asymmetry of requirements for changing stems from an asymmetry between splitp and

++ /‖. A splitp must be changed if the required distribution of its output changes. In contrast, there

is no need to change ++ /‖ if its input distribution changes.
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zip

Direction of parallelisation

split 3

3split

||.(zip)*  .||++/  .||

. zip. split3++/  .||

(a)

(b)

Figure 115. Conflicting distributions caused by common destination can be
avoided by parallelising from the downstream side. Two vectors that are destined to

meet (part (a)) will share a single distribution (part (b)).

down to any vector components in these data types. It must be noted that not every

function of every program is amenable to parallelisation. Where a segment of code

cannot be parallelised it is left unaltered and the parallelisation process recommences

immediately upstream. It should also be noted that not every amenable function is

worth parallelising under all circumstances. The current process is quite eager and

will parallelise even when the pay-offs are small or non-existent. Future versions could

avoid this by using a cost model such as that described by Skillicorn and Cai[128] to

evaluate the benefits of each step of parallelisation.
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2split

split 3

alltup

Direction of parallelisation

++/

++/

||

||

Conflict here

X

alltup

++/

++/

||

|| Resolved locally

split 3

(a)

(b)

Figure 116. Parallelisation from the downstream side can result in conflicting
distributions when two vectors share a common origin (part (a)). The conflict is

easily resolved by a local decision at the common point of origin (part (b)).

6.2.2 The rules of parallelisation

This section lists parallelisation rules for most8 of the BMF syntax produced by the

optimiser. In all cases, rules are expressed in terms of moving splitp through the

function from the downstream side. Where it might be helpful, the meaning of a

function is briefly recapitulated just prior to the rule. New parallel functions are

briefly described as they are introduced. The discussion surrounding each is kept as

informal as possible.

A note on types As with previous stages of compilation, rules must preserve and

maintain type information. It is assumed that every function is annotated with a

8If a function is not explicitly handled a default rule applies. This rule, given on page 215, skips
the next function and resumes parallelisation upstream of that function. This helps keep the process
correct and robust.
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Associate Right(prog · sentinel⇒ fα→β · prog ′)

Gen Suffix (β ⇒ s1 · s2)

Parallelise(s2 · f · prog ′ ⇒ prog ′′ · sentinel)

prog → s1 · prog′′

Figure 117. The top level rule for the parallelisation process

monomorphic description of its type. As with data-movement-optimisation, many

parallelisation rules are not dependent on explicit type information. To keep the

discussions brief, types are only shown when the operation of parallelisation rule

depends on them.

Now to the rules. There is one rule defining the top level of the paralleliser and

this is described first. The rules for the primary rule-sets invoked by this rule follow.

6.2.2.1 Top rule

The top level rule for parallelisation is shown in figure 117: The first premise composes

a sentinel function to the front of the program and then associates all occurrences of

function composition in the resulting program to the right9. The function f is the

most downstream function in the right-associated program. The sentinel function

exists to ensure that there is at least one function from which to create prog ′. The

sentinel will never appear in the target program so its semantics are unimportant.

However its type can affect the second premise of this rule so, for consistency, we

set the output type of the sentinel function to be the same as the input type of the

program.

The call to Gen Suffix in the second premise generates a suffix function for the

program based on the output type of f . For example, if the output type of the

9The use of Associate Right is yet another application of normalisation. Again the the immediate
aim is not to achieve efficiency but predictability for the sake of subsequent transformations.
Associate Right converts an expression with arbitrary associativity of function compositions such
as:

(f1 · (f2 · f3)) · (f4 · f5)

to an equivalent expression with composition operators uniformly associated to the right:

f1 · (f2 · (f3 · (f4 · f5)))

As with Associate Left the transformation applies recursively to all sub-expressions containing
composed functions.
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function f is a vector then Gen Suffix will generate the function ++ / · splitp. The

suffix function always consists of two components:

1. the upstream function, s2, which uses splitp functions to distribute any vector

data in the output of f . In the explanations to follow call s2 the distributor .

2. the downstream function, s1, which uses ++ / functions to re-coalesce any

distributed vector data it receives as input. In the explanations to follow we

call s1 the gatherer .

Composed together, the two components of the suffix functions form an identity

function on whatever input type they are given. The role of the suffix function is

to serve as a launch-pad for the parallelisation process invoked in the third premise.

This parallelisation process takes the distributor, s2, and pushes it as far upstream

through f · prog ′ as possible, leaving distributed code in its wake.

The conclusion of the rule composes prog ′, the code produced by the parallelisation

process, with the gatherer function s1 to form the final result of the program.

The Gen Suffix and, of course, the Parallelise rule-sets warrant further discussion

and we introduce these in turn.

6.2.2.2 Generating the suffix

Figure 118 shows the rules for Gen Suffix . The rules all take a type and generate a

suffix function from which to start the parallelisation process. The syntax for types

was given on page 50, in chapter 4. We show the more concrete version, used in

figure 118, in figure 11910.

Each of these rules generates an appropriate suffix function for a given type.

Rules 31, 32, and 33 handle functions of scalar type which present no immediate

opportunities for parallelisation. The suffix produced by these rules consists of paired

identity functions: id · id.

Rule 34 is key, it creates the suffix ++ / · splitp to serve as a base for parallelisation

of vector functions upstream.

10Note that the phyla B TYPE contains no functional type. This is because, in the programs
produced by our implementations, functions cannot be treated as values. This restriction is relaxed
very slightly with the introduction of partitioning functions on page 203 but not in a way that affects
the workings of the paralleliser.
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Set Gen Suffix is B TY PE ⇒ B EXP

Integers
integer⇒ idinteger→integer · idinteger→integer (31)

Reals
real⇒ idreal→real · idreal→real (32)

Booleans
boolean⇒ idboolean→boolean · idboolean→boolean (33)

Vectors
[β]⇒ ++ /

||
[[β]]→[β] · splitp ([β]→[[β]]) (34)

Tuples
β1 ⇒ (f11)γ1→β1

· (f12)β1→γ1

Prefix Addr(f11,
n π1 ⇒ f ′

11)

Prefix Addr(f12,
n π1 ⇒ f ′

12). . .
βn ⇒ (fn1)γn→βn

· (fn2)βn→γn

Distribute Addr(fn1,
n πn ⇒ f ′

n1)

Distribute Addr(fn2,
n πn ⇒ f ′

n2)

(β1, . . . βn)⇒ (f ′
11, . . . , f

′
n1)

◦ · (f ′
12, . . . , f

′
n2)

(35)

End Gen Suffix

Figure 118. Rules for generating a suffix function.

B FTYPE ::= B TYPE → B TYPE
B TYPE ::= integer | real | boolean |

B TVAR | [ B TYPE ] | (B TYPE ,. . . , B TYPE )
B TVAR ::= α | β | γ | . . .

Figure 119. Syntax of BMF types
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Rule 35 handles tuple types. It is the most complex rule in Gen Prefix and

warrants a deeper description. Tuples may contain a mixture of scalar, vector and

tuple types and the suffix function produced by this rule must accommodate all of

these. As an example of how this rule works, given the type:

(integer, [integer])

it generates the suffix function:

(id · π1, ++ / · π2)
◦ · (id · π1, splitp · π2)

◦

The two id functions apply to the integer value in the first element of the input

tuple. The ++ / and splitp function access the vector forming the second element of

the input value. In the example above, the π1 functions ensure that the scalar data is

routed through the id functions and the π2 functions ensure that vector data is routed

through the splitp and ++ / functions.

As a second example, given the type:

((integer, [integer]), real)

the tuple rule generates the suffix function:

((id · π1 · π1, ++ / · π2 · π1)
◦, id · π2)

◦ · ((id · π1 · π1, splitp · π2 · π1)
◦, id · π2)

◦·

Again, the π1 and π2 functions are used to route values from the input through the

appropriate parts of the distributor and gatherer functions. Note that where the

generated alltup functions are nested more than one addressing function is required

in the prefix.

Looking at the tuple rule in detail, we see that the premises recursively invoke

Gen Suffix on each element i of the tuple type to produce a suffix function of the

form:

fi1 · fi2

In the conclusion of the rule each of these functions must be embedded in separate

alltup functions and data must be routed appropriately from fi2, the distributor

function, to fi1, the gatherer function, and also from code upstream to fi2. This

routing is achieved by prefixing appropriate address functions to both of these

functions. This prefixing is carried out by the Prefix Addr rule-set, defined in
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Set Prefix Addr is B EXP, B EXP ⇒ B EXP

Alltup functions
f1,

m πi ⇒ f ′
1. . .

fn,
m πi ⇒ f ′

n

(f1, . . . , fn)◦,m πi ⇒ (f ′
1, . . . , f

′
n)◦

(36)

Other functions
f,m πi ⇒ f ·m πi (f 6= (fi, . . . , fn)

◦) (37)

End Prefix Addr

Figure 120. Rules for prefixing addressing functions components of a suffix
function.

figure 120. The effect of Prefix Addr is to propagate the address function into the

most deeply nested parts of the alltup function downstream.

Rule 36 handles alltup functions by recursively calling Prefix Addr on each

component function of the alltup. Rule 37 applies to all non-alltup functions. This

rule simply composes the function with the required addressing function.

This completes our description of Gen Suffix and Prefix Addr . We now describe

the Parallelise rule set, which defines the core of the parallelisation process.

6.2.2.3 The Parallelise rule-set

The Parallelise rule-set is responsible for replacing all sequential code acting on non-

distributed vectors in its input program with parallel code acting on distributed

vectors in its output program. As with the stages of optimisation seen in the previous

chapter, this process is carried out by propagating the required transformations from

the most downstream parts of the program to the most upstream parts. Descriptions

of the rules for the Parallelise rule-set follow.

The sentinel function Figure 121 shows the rule that applies to code composed

with a sentinel function. A sentinel function marks the most-upstream part of the

program, which is the point at which the parallelisation process stops. The rule

returns its input values unchanged.
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Set Parallelise is B EXP ⇒ B EXP

The sentinel function
f · sentinel⇒ f · sentinel (38)

Figure 121. Parallelisation rule for handling the sentinel function.

Function Composition
s · f ⇒ f ′ · s′
s′ · g ⇒ g′ · s′′

s · (f · g)⇒ f ′ · g′ · s′′ (39)

Figure 122. Paralleliser rule for handling function composition

Function Composition All sequences of composed functions have already been

associated to the right by the first premise top level rule in figure 117. The pre-

processing performed by this premise allows all sequences of composed functions to

be processed by the single rule defined in figure 122. The first premise recursively

applies the parallelisation process to the function f with respect to s, the distributor

function. The result is the transformed code f ′ and the distributor function s′. The

second premise applies the same process to the remainder of the composition sequence:

g. The final version of the distributor function s′′ is integrated into the composition

sequence in the rule’s conclusion11.

Alltup alltup functions apply each of their constituent functions to the input value

producing a tuple of corresponding result values. The paralleliser rules for alltup

functions is given in figure 123. Rule 40 applies when the distributor function is an

alltup function. The rule parallelises f with respect to each of the components of the

distributor function producing a composed pair of alltup functions as a result. These

result functions may contain common sub-expressions and it is future work to define

rules to eliminate these.

Rule 41 applies when the function to be parallelised:

(f1, . . . , fn)◦

11The one exception to this statement is if f · g is the outermost composition sequence in the
program. In this case s′′ will be a sentinel function rather a distributor function as a result of the
application of rule 38.
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Alltup distributor

s1 · f ⇒ f ′
1 · s′1. . .

sn · f ⇒ f ′
n · s′n

(s1, . . . , sn)◦ · f ⇒ (f ′
1 ·n πn, . . . , f ′

n ·n πn)◦ · (s′1, . . . , s′n)◦
(40)

Alltup target
s · fi ⇒ f ′

i · s′
s ·n πi · (f1, . . . , fn)◦ ⇒ f ′

i · s′
(41)

Figure 123. Paralleliser rules for handling alltup functions

Addressing functions
s ·n πi ⇒ id · (s ·n πi) (42)

Figure 124. Paralleliser rule for handling addressing functions

is an alltup function. The rule’s premise selects and transforms fi, the addressed

function, with respect to s, the downstream part of the distributor function. This

rule assumes that the distributor function has some address function, nπi, as its

most upstream function. The validity of this assumption is maintained, initially, by

Gen Suffix and, later, by other the rules of Parallelise including the previous rule

(rule 40) and a rule for addressing functions, described next12.

Addressing functions Figure 124 shows the rule for tuple-addressing functions.

This rule simply sweeps the addressing function into the distributor function leaving

an id function behind. Very often, the addressing function will be eliminated later by

rule 41, the second rule for alltup functions13.

Allvec functions An allvec function applies an input value to each of its constituent

functions, producing, a vector of results. Figure 125 contains the rule for allvec

functions. The current version of the rule does not allow the suffix function s to pass

12The previous rule maintains the validity of the assumption by stripping away any surrounding
alltup function in the distributor to, eventually, reveal any leading address functions. The next rule
allows distributor functions to assimilate address functions from upstream code

13The exceptions occur when the input type of the program is a tuple and the addressing function
is accessing a part of that tuple. In these cases the elimination will not occur and the address
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Allvec functions

Gen Suffix (f1 ⇒ s11 · s12)

. . .
Gen Suffix(fn ⇒ sn1 · · ·n2)

s12 · f1 ⇒ f ′
1 · s′1. . .

sn2 · fn ⇒ f ′
n · s′n

s · [f1, . . . , fn]◦ ⇒ (s · [s11 · f ′
1 · π1, . . . , s1n · f ′

n · πn]◦) · (s′1, . . . , s′n)◦
(43)

Figure 125. Paralleliser rule for handling allvec functions

Vector-indexing functions

id·!⇒! · (!‖ · (π1, π1 ·π2)
◦, π2 ·π2)

◦ · (π1, app · (pf ·π1, π2)
◦)◦ · (splitp ·π1, π2)

◦ (44)

Figure 126. Paralleliser rule for handling vector indexing functions

through the allvec function14. The first premises of the rule generate a new suffix

function for every function in the allvec. In the second set of premises, the distributor

component of these suffix functions are pushed through each of the component allvec

functions to produce new transformed functions f ′
i and new suffix functions s′i. These

two sets of components are combined in allvec and alltup functions respectively, in the

rule’s conclusion.

Vector indexing function The vector indexing function takes a pair, consisting

of a vector and an integer, and produces the value from the vector found at the index

represented by the integer. The rule for indexing functions is shown in figure 126. The

code produced by this rule rule relies upon the application of a partitioning function

to the original index value. The pf function takes a distributed vector as input and

produces the closure of the partitioning function as output. The type of pf is:

[[α]]→ (integer→ (integer, integer))

functions will remain in the final code.
14This is an exception to the convention that all vector functions are parallelised. This exception

is made because of the typically small vector size produced by a allvec function and the likelihood
of a processing imbalance generated by the heterogeneous functions it contains.
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Length functions

idinteger→integer ·#⇒ +/|| · (#) ∗|| ·splitp (45)

Figure 127. Paralleliser rule for handling length functions

Map functions
splitp · f∗ ⇒ f ∗ ∗|| · splitp (46)

Figure 128. Paralleliser rule for handling map functions

which makes it the only function in this implementation that returns a function as

a result. The app function takes a partitioning function and an integer and applies

the integer to the partitioning function to produce a pair of integers representing the

two indices used to access the appropriate element of the distributed vector. Note

the innermost index function on the right-hand side of the rule has a ‖ superscript to

indicate that it operates on distributed data.

Length The length function takes a vector and returns an integer representing the

length of that vector. The rule for the length function is shown in figure 127. The

code produced which is, effectively, a statement that the length of the original vector

is the sum of the lengths of all of the sub-vectors of the distributed vector. Note that,

by itself, length is rarely worth parallelising. However, often it does make sense to

apply this rule if the parallelised length function is at the end of a long sequence of

other parallel code15.

Note that the rules for both index and length create a new distributor function:

splitp.

Map The rule for map shown in figure 128. This rule adds a layer of nesting to the

original map function to account for the distribution of its input vector. The outer

map is parallel. This rule is a well-established identity in BMF[131].

Reduce The rule for reduce functions is shown in figure 129. This rule converts a

15In his report on the prototype implementation of the paralleliser, Windows’ [146] noted that
such an assessment is probably best made during an additional pass through the code.
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Reduce functions
idα→α · ⊕/⇒ ⊕/|| · (⊕/) ∗|| ·splitp (47)

Figure 129. Paralleliser rule for handling reduce functions

Scan functions

splitp · ⊕//⇒ g · (⊕//‖ · init · last∗||, id)◦ · (⊕//) ∗‖ ·splitp (48)

Figure 130. Paralleliser rule for handling scan functions

flat reduction, with a binary operator ⊕, over a flat vector into a nested reduction,

with a binary operator ⊕, over a nested vector. This rule is another well-established

BMF identity.

Scan There are several options for parallelising scan. The rule we use, producing an

efficient parallel scan, is shown in figure 130. The parallel code on the right-hand-side

of the rule was derived by Roe[120], for MIMD architectures. Where:

last = ! · (id,− · (#, 1)◦)◦

init = select‖ · (id, iota · − · (#, 1)◦)◦

g = ++ ‖ · (split1·! · (π2, 0)
◦, (⊙) ∗‖ ·zip‖ · (π1, tail · π2)

◦)◦

tail = select‖ · (id, (+ · (1, id)◦) ∗ ·iota · − · (# · id, 1)◦)◦

⊙ = (⊕) ∗ ·distl · (π1, π2)
◦

The definitions of init and last are reasonably straightforward. The workings of the

rest of the parallelised code can be illustrated by example. Given the input vector:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

and ⊕ = + and p = 4 the parallelised scan code upstream of g produces:

([6, 21, 45], [[1, 3, 6], [4, 9, 15], [7, 15, 24], [10, 21]])

where the second element of the tuple is a vector of scanned vectors. The first element

[6, 21, 45] is the result of applying parallel scan to the vector of initial last elements
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[6, 15, 24]. The function g pairs the first vector with the tail of the second vector to

produce:

[(6, [4, 9, 15]), (21, [7, 15, 24]), (45, [10, 21])]

the first elements of these pairs are distributed over the second elements:

[[(6, 4), (6, 9), (6, 15)], [(21, 7), (21, 15), (21, 24)], [(45, 10), (45, 21)]]

and added pairwise:

[[10, 15, 21], [28, 36, 45], [55, 66]]

by (⊙)∗||. Finally, this result is concatenated with the initial sub-vector to produce:

[[1, 3, 6], [10, 15, 21], [28, 36, 45], [55, 66]]

note that the concatenate function ++ ‖ is a distributed communication primitive to

append one distributed vector to another16. Figure 131 gives a pictorial representation

of the workings of the function g.

Distl distl takes a pair of the form (v, [x0, . . . , xn−1]) and produces a vector

[(v, x0), . . . , (v, xn−1)]. The rule for distl is shown in figure 132. The new parallel

distl‖ function distributes a value from the parent processor over a distributed vector

on the child processors.

Zip The rule for zip is shown in figure 133. The most upstream code, the new

distributor function: (splitp · π1, splitp · π2)
◦, produces a pair of distributed vectors.

The pair exists at the level of the parent node but the sub-vectors exist in the child

nodes. zip‖ pairs these sub-vectors at the level of the child nodes, as illustrated in

figure 134. The most downstream function: (zip)∗‖ pairs the values within each of

the sub-vectors.

Repeat Repeat takes a pair (v, n) and produces a vector of the form [v, v, . . . , v]

of length n. The paralleliser rule for repeat is shown in figure 135. This rule creates

a non-distributed vector of the required length using iota and distributes it, using

split. The value to be repeated can then be distributed over this vector using the

16This function, like splitp has the ability to allocate more processing nodes. However, in this

example, this ability is not required, the length of the result of ++ ‖ is the same as the length of the
distributed input vector for which nodes have already been allocated.
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Extract last elements of initial
subvectors
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++

++

Figure 131. Using the scanned last values of sub-vectors (step 3) to propagate a
summation of sub-vectors (step 4).

Distl functions

splitp · distl⇒ (distl) ∗‖ ·distl‖ · (π1, splitp · π2)
◦ (49)

Figure 132. Paralleliser rule for handling distl functions

Zip functions

splitp · zip⇒ (zip) ∗‖ ·zip‖ · (splitp · π1, splitp · π2)
◦ (50)

Figure 133. Paralleliser rule for handling zip functions
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0        [  ,   ,   ]

(1,2)0.0 (3,4)0.1 (5,6)0.2

0  ([  ,   ,   ,   ],

10.0 30.1 50.2

||  [  ,   ,   ])

70.32 4 6

zip

Figure 134. The effect of a zip operation over corresponding elements of
distributed vectors.

Repeat functions

splitp · repeat⇒ (π1) ∗ ∗‖ · (distl) ∗‖ ·distl · (π1, splitp · iota · π2)
◦ (51)

Figure 135. Paralleliser rule for handling repeat functions

parallelised code for distl. Finally, the (π1) ∗ ∗‖ function projects the required value

out of the nested vector of pairs produced by the earlier code.

This code is not optimal, partly because of this final projection, but mostly because

split needlessly consumes bandwidth by distributing an array, which is the length of

the final result. If the final result is large compared to the number of processing

nodes17 a much less bandwidth-intensive solution is simply to distribute one copy of

the value to each node and then to repeat the value within each node. The problem

here is to achieve the desired partitioning. This can be done if the rule introduces a

new primitive:

splitp · repeat⇒ distrepeat(α,integer)→[[α]]

distrepeat that produces a nested vector along with its partitioning function. Our

17A very likely scenario.
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Select functions

splitp · select⇒
distselect · (π1, (app) ∗ ∗‖ · (distl) ∗‖ ·distl‖ · (pf · π1, π2)

◦)◦·
(splitp · π1, splitq · π2)

◦

(52)

Figure 136. Paralleliser rule for handling select functions

initial implementation uses the first rule (rule 51). Later refinements will use the

second.

Select select takes a pair consisting of a source vector s and a target vector of

integers: [t0, . . . , tn−1] and produces a result vector, [s!t0, . . . , s!tn−1] consisting of the

elements of the source vector indexed by the target vector. A simple rule for the

parallelisation of select is:

splitp · select⇒ (select) ∗‖ ·distl · (π1, splitp · π2)
◦

which produces code that sends the entire source vector for select to each node for

selection according to the distributed target vector. This code is not scalable to many

nodes, so a rule is needed that distributes only the required source data to each node.

A better rule is shown in figure 136. The new distselect (distributed-select)

function takes a pair of distributed vectors of the form:

(s, t)

where:

s = [[s(0,0), . . . , s(0,n0−1)], [s(1,0), . . . , s(1,n1−1)], . . . , [s(0,m), . . . , s(0,nm−1−1)]]

and where:

t = [[t(0,0), . . . , t(0,k0−1)], [t(1,0), . . . , t(1,k1−1)], . . . , [t(0,m), . . . , t(0,kl−1−1)]]

Given this pair, distselect returns a distributed vector:

[[s!t(0,0), . . . , s!t(0,k0−1)], [s!t(1,0), . . . , s!t(1,k1−1)], . . . [s!t(0,m), . . . , s!t(0,kl−1−1)]]

Note that each t(i,j) is a pair of values and each application s!t(i,j) of an indexing

function above, is implicitly nested.



CHAPTER 6. PARALLELISATION AND TARGETTING 210

distselect works in two phases. The first phase requests the values indexed by

the target vector. The second phase sends the requested values to their destinations.

Figure 137 shows the two phases of the execution of:

distselect ( [[a, b, c], [d, e], [f, g], [h, i]],

[[(0, 2), (3, 1), (0, 2)], [(1, 1), (2, 0), (2, 1)], [(0, 1), (0, 0)]])

which generates the distributed vector [[c, i, c], [e, f, g], [b, a]].

The parallelised code upstream of distselect in figure 136:

(π1, (app) ∗ ∗‖ · (distl) ∗‖ ·distl‖ · (pf · π1, π2)
◦)◦ · (splitp · π1splitq · π2)

◦

is responsible for distributing the source and target vector using:

(splitp · π1, splitq · π2)
◦

extracting the closure of the partitioning function of the source vector using:

pf · π1

Distributing this closure of the partitioning function over the target array using:

(distl) ∗‖ ·distl‖

and, finally, applying the partitioning function to each index of the target vector to

produce the required distributed vector of pairs using:

(app) ∗ ∗‖

distselect embeds a non-uniform, personalised, many-to-many communications

pattern[90]. This is the most general of communications patterns, and is not simple

to implement efficiently. We have found it simpler, in an initial implementation,

to embed distselect in an all-to-all or total exchange primitive of the sort found in

BSP[76]18.

18BSPLib[75] provides much of the functionality required by distselect through its direct memory
access primitive: get.
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[a,b,c]

[(0,2),(3,1),(0,2)]

[d,e]

[(1,1),(2,0),(2,1)]

[f,g] [h,i]

[(0,1),(0,0)]

[a,b,c]

[(0,2),(3,1),(0,2)]

[d,e]

[(1,1),(2,0),(2,1)]

[f,g] [h,i]

[(0,1),(0,0)]

[c,i,c] [e,f,g]

[b,a]

Phase 1 - request values

Phase 2 - return values

Figure 137. The operation of distselect. In the first phase requests are generated
from the target vector and sent, along with a return address. In the second phase,
copies of the requested values are copied from the source vector, generating a new

array distributed in the same way as the target vector.
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If functions

idα→boolean · pred ⇒ pred ′ · s′
s · consq ⇒ consq · s′′

s · alt ⇒ alt ′ · s′′′
s · if(pred , consq , alt)⇒ if(pred ′ ·3 π1, consq ·3 π2, alt ·3 π3) · (s′, s′′, s′′′)◦

(53)

Figure 138. Paralleliser rule for handling if functions

Specialisations of select Where there is some static knowledge of the pattern of

communication created by an instance of select. More specialised primitives can be

used in its place19. For example:

select · (id, (mod · (+ · (π2, 1)◦, π1)
◦) ∗ distl · (#, iota ·#)◦)◦

is the same as:

cshift · (id, 1)◦

irrespective of the input value of this code. The use of such specialisations is future

work20.

If functions Figure 138 shows the parallelisation rule for if functions. The premises

of this rule parallelise the predicate (pred), consequent (consq), and alternative (alt)

functions of the if function. Note that pred is parallelised with respect to an id

distributor function rather than with respect to s because the boolean output of pred

is consumed by the if function rather than functions downstream. consq and alt are

parallelised with respect to s.

The conclusion of the rule embeds all three distributor functions generated by the

premises into an alltup function, (s′, s′′, s′′′)◦ and inserts addressing functions upstream

of each of pred ′, consq ′, and alt .

Note, that this rule is designed to cater for the worst-case scenario where the new

distributor functions, s′, s′′ and s′′′ are all distinct. This can happen, for example,

when each component of the if function accesses different parts of an input tuple.

19There is much work on establishing and exploiting statically knowable patterns of reference.
Von Hanxleden et al. [141] recognise varying levels of static knowledge in code in their work aimed
at identifying and aggregating overlapping communications. The worst case code allows analysis at
the portion-level and the best case allows analysis at the reference-level.

20Such specialisations are, essentially, strength-reductions on the distselect operator.
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While functions

si→o · f ⇒ f ′
i′→o′ · s′

id · p⇒ p′
i′′→boolean · s′′

Reconcile types(i′, o⇒ r)

Reconcile types(i′′, o⇒ r′)

si→o · while(f, p)⇒ while(f ′ · r, p′ · r′) · si→o

(54)

Figure 139. Paralleliser rule for handling while functions

If there is any overlap between s′, s′′ and s′′′ then there is scope for introducing

substantial efficiency gain through common-sub-expression elimination21.

While With the while function, the output value of one iteration is usually the

input value to the next iteration. As a consequence, the input and output types of a

while must be the same and, moreover, the parallelisation process must preserve this

property by ensuring that data that is distributed in the input to the while function

is also distributed in its output.

Figure 139 shows the parallelisation rule for while functions. The basic strategy

of the rule is:

1. Move the distributor function s from the downstream side of the while function

to the upstream side.

2. parallelise the code in the loop-body f and the predicate function p to

compensate.

The first step in the strategy is trivial and is done in the conclusion of the rule. The

second step is non-trivial and is carried out in the premises of the rule.

The first premise parallelises f with respect to the distributor function s producing

f ′. The second premise parallelises the predicate function p with respect to id22. Note

that there is the potential for a mis-match in the distribution of output produced by

s and the distribution of input expected by f ′ and p′. To be more precise, s may

21Alternatively, we could, at little cost, introduce more rules for to capture the special cases where
two or more of the new distributor functions are the same.

22As with the predicate in the if function, the id function is needed because all of the boolean
output is consumed, internally, by the while function.
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Set Reconcile Types is TY PE, TY PE ⇒ B EXP

Identical types
α, α⇒ idα→α (55)

Distributed input expected, non distributed given

[[α]], [α]⇒ splitp [α]→[[α]] (56)

Non-distributed input expected, distributed given

[α], [[α]]⇒ ++ /[[α]]→[α] (57)

Alltup types
α1, β1 ⇒ f1

. . .

αn, βn ⇒ fn

(α1, . . . , αn), (β1, . . . , βn)⇒ (f1 · π1, . . . , fn · πn)◦
(58)

End Reconcile Types

Figure 140. Rules for generating a type reconciliation function

produce a value containing a distributed vector where f ′ and/or p′ expects a non-

distributed vector, or vice-versa. This potential conflict is circumvented by the calls

to Reconcile types in the last two premises. These calls compare the distribution of

vector values in the input types of f ′ and p′ with that of corresponding vectors in

the output type of s, and interpose the appropriate distributor/gatherer function if

required23. Figure 140 shows the rules of Reconcile types . Rule 55 applies when the

two types are identical. No transformation is needed to reconcile the types so an id

function is produced.

Rule 56 applies when distributed input is expected but the distributor function

produces a non-distributed value. In this case, a splitp function is inserted to deliver

the distributed value.

Rule 57 applies when non-distributed input is expected but the distributor

function produces a distributed value. In this case, a ++ / function is produced

23Because the current set of rules aggressively parallelises most vector values the potential for a
clash between distributed and non-distributed vector values is small. However, we envisage that
in future implementations parallelisation will not be so aggressively pursued and the potential for
conflict will thus increase.
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Transpose functions

a > 0

b > 0
splitp · transposea,b ⇒ ++ /‖ · ((transposea−1,b−1)∗) ∗‖ ·splitp

(59)

Figure 141. Paralleliser rule for handling transpose functions on the non-outer
dimensions of vectors.

Default rule
Gen Suffix (α⇒ s′ · s′′)

s · fβ→α ⇒ s · fβ→α · s′ · s′′
(60)

End Parallelise

Figure 142. Default parallelisation rule

to flatten the data.

Finally, rule 58 applies this rule-set recursively in tuples.

transpose Figure 141 shows a rule for transpose on non-outer dimensions of a nested

vector. A rule for instances of transpose involving the outer dimension of nested

vectors is future work.

Default rule The final rule of Parallelise is shown in figure 142. This rule captures

any code not caught by the preceding rules. It simply leaves the old distributor

function s in place and builds a new suffix function s′ · s′′ upstream of f for further

processing.

This rule works well for scalar functions, including most binary and unary

operators24. However, this rule also currently applies to functions such as iota and

priffle where there is still potential parallelism to be exploited. Devising specific rules

for other, potentially, parallel functions remains future work.

This concludes our description of the parallelisation process. The rules here

were applied, by hand25, to generate the parallel BMF code directly executed by

24The rule, temporarily, introduces redundant identity functions into programs but these are easily
eliminated by a final call to the Remove ids rule set.

25A prototype automated paralleliser based, in part, on an earlier version of these rules is described
in [146].
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the simulator, described in section 6.4.2, in the experiments in section 6.4.3.

In order for these experiments to provide realistic results it is important to, first,

consider how the code generated from parallelised BMF will perform on a target

architecture. We briefly explore the performance of generated code next.

6.3 Code generation

The parallelisation process produces BMF code suitable for targeting to an abstract

architecture. The job of code generation is to map this code onto a concrete

architecture.

6.3.1 Preliminary implementation

A preliminary implementation of a code generator from parallel BMF to C with

calls to MPI has been constructed by Dean Philp [111]. This implementation used a

reasonably direct mapping of BMF constructs to C-MPI.

Code for each BMF construct is generated using simple rules that map each

function to a block of C code. The monomorphic type specifications that accompany

each BMF function are used to guide storage allocation, message construction and

message decomposition. Minor issues arise from the need to separate declarations

and statements in some versions of C but these are easily dealt with.

The code generation phase can be divided into two major aspects. The first is the

generation of code for distributed parallel functions and the second is the generation

of code for the sequential, on-node, functions.

6.3.1.1 Distributed functions

Distributed functions are mapped to their closest analogue in MPI26. For example

a map is converted to a simple parallel code-block. Function composition between

26Early experiments with the platform used by our implementation[101] indicate that in, at least
in some cases, there is little to be gained by writing custom operators in terms of send and receive.
Much, depends of course, on the underlying MPI implementation. Grove [66] has done much work in
sampling the behaviour of various constructs in various implementations. The quality of these vary
greatly. It is also possible, once we have established what the precise needs of our implementation
are, to write more specialised and efficient library functions than the robust, general-purpose calls
offered by MPI which may also make a sensible platform for our implementation.
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distributed functions is converted to a barrier-synchronisation27. reduce is converted

to MPI Reduce and scan is converted to MPI Scan.

Messages are sent as generic blocks of data and efficient code is produced to

compose and decompose messages. The allocation of space for incoming and outgoing

messages is handled on as-needed basis with deallocation occurring as soon as the need

for the storage lapses. This memory management scheme, though not optimal, is a

reasonable one for message passing operations, which are heavyweight and expensive

enough to dominate their message allocation/deallocation costs.

6.3.1.2 On-node functions

Functions that execute on a single node are converted, using mostly simple rules,

directly to C code. Most vector operations such as map, reduce, scan, iota, select,

distl, distl, zip are represented as a loop.

In the current implementation, space is allocated for every function’s output

value prior to its execution and the space allocated to its input is deallocated

after its execution. Addressing functions are converted into references into this

allocated space, cast to the appropriate type. This pattern of frequent allocation

and deallocation leads to high memory management costs. We explore this problem,

and how it might be ameliorated, next.

6.3.2 Memory Management Costs

The memory-management scheme, described above, has the advantage of being simple

and robust, with straightforward semantics and a simple garbage-collection scheme.

However, the frequent calls to malloc and free that this scheme generates will incur

very significant run-time overheads.

To help quantify these overheads we ran a series of small experiments, described

in Appendix F, to estimate the average costs of allocation and deallocation relative

to the cost of executing a single instruction. From these experiments we derived

estimates of 100 instructions for each call to malloc and 70 instructions for each call

to free. Details are covered in the Appendix but it is worth noting that there is

much variation in these costs, with some calls taking much longer. In any case, the

27The cost of barrier-synchronisation is a good reason for fusing distributed operations[62]. All
other things being equal, the fewer barrier synchronisations the better. This type of optimisation is
a strong candidate for inclusion in future versions of the Adl implementation.
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costs involved with each call are such that they can significantly diminish performance

unless properly managed.

It should also be noted that, along with the raw cost of calls to malloc and free

our simple memory management scheme also further increases overhead in copying

structures into newly allocated memory, especially when large data structures are

involved.

Similarly large memory management costs have been encountered in other

domains. Perhaps the most relevant example comes from performance figures

collected from executing APL interpreters in Bernecky’s description of the APEX

compiler [16].

The costs of memory management are typically near 20% of the total cost of

program execution in an interpreter. If we take this cost and transfer it into an

environment where a program is compiled, where we can expect other overheads to

be much smaller, this relative cost would rise dramatically. The interpreters tested

by Bernecky use a very similar memory management scheme to ours28. Clearly, this

is an issue that needs to be addressed in future versions of our implementation.

6.3.2.1 Overcoming Memory Management Costs

High on-node memory management costs come from a strict adherence to the

functional semantics of BMF where values are not updated but created anew. These

costs are compounded in point-free form where no value can survive outside of a

function. Essentially, there is a mis-match between the programming model which

eschews the recycling of variables using update and the architectural model which

thrives on such recycling. Code generation must bridge this gap in the most efficient

way possible.

Fortunately, there is successful work to draw on in this area. The SISAL

compiler [55, 56] uses copy-elimination, reference count elimination and other forms

of update-in-place analysis to convert IF1, a functional form, into IF2, an imperative

form. These transformations are crucial to the efficiency of the, very effective,

Optimising SISAL Compiler (OSC).

Bernecky’s APL compiler, mentioned earlier, produced SISAL target code partly

in an attempt to leverage the successful memory management of OSC. Interestingly,

28Bernecky, reduced these costs, in part, by exploiting the Optimising sisal Compiler, which has
sophisticated strategies for reducing memory management costs.
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it was found that a mismatch in the primitive types of SISAL and APL meant that

substantial analysis had to be carried out by the APL compiler as well.

Walinsky and Banerjee’s FP* compiler used a routing-function elimination

phase to generate efficient imperative code from an FP* program. All of these

implementations have made considerable gains in efficiency.

It must be noted that memory management issues have not been solved in

general for functional implementations and applications[72]. However, even with

these constraints in mind, there is reason to be optimistic of the prospect of very

significant improvements in memory management costs in our implementation before

problems needing a more advanced treatment become an issue. In short, the problem

of memory management in functional languages is non-trivial but work with SISAL

and APL has shown it can be tackled effectively for a large range of programs.

This completes the summary of the nascent code-generation process. We use the

information we have gathered from these investigations to form a realistic basis for

our simulator. Next we step back to review the performance of parallelised BMF code

on a simulated architecture.

6.4 Results

Thus far in this chapter we have described preliminary work on parallelisation and

code generation. In this section we use a detailed simulator to gain some insight into

how effective the parallelisation process is. This section:

• describes the experimental methodology including a brief description of the

simulator

• compares the performance of parallelised translator and optimiser code;

• characterises the impact of different memory-management costs;

• demonstrates that this process generates speedup and points to where it can be

found.

The results of the simulation are accompanied by static analysis where appropriate.

We describe the simulation process next.
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6.4.1 Methodology

Our results for each program are obtained through the following process.

• Manual parallelisation of code, followed by

• Execution of the parallelised code on a detailed simulator.

The manual parallelisation step is carried out according to the parallelisation rules

from the earlier part of this chapter. The simulator warrants a more detailed

discussion at this point.

6.4.2 The simulator

The simulator is based on a detailed model of a distributed architecture built by Paul

Martinaitis[99]. The following parameters are configurable:

• The number of nodes.

• The topology of the interconnect linking nodes.

• The latency and bandwidth associated with each link in the interconnect.

• Message startup costs.

• The on-node cost of each primitive instruction.

The simulator interprets parallel and sequential BMF instructions directly, mapping

them onto an underlying virtual distributed-memory machine. The costs of allocation

and deallocation form part of the total cost of executing each instruction. Routing of

messages between nodes is statically determined according to minimum cost functions.

The parameter values used for the experiments in this chapter are:

Interconnect: A 32-node cross-bar, and in one case, a 8x4 store-and-forward

mesh29.

Latency: 5µs (5000ns) per-link including message startup costs30

29We used two configurations test the simulator on more than one type of network.
30This is figure is quite low but some interconnects such as Quadrics’ QS-1[96] better it, and

Myrinet[83] approaches it.
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Bandwidth: a peak bandwidth of 3ns/byte is assumed. The effective bandwidth

measured by the simulator can, of course, be much worse when messages

are small. We assume that the maximum packet-size for the interconnect is

arbitrarily large, so effective bandwidth asymptotically approaches its maximum

as message size increases.

Instruction costs: one time unit for each primitive instruction plus allocation,

deallocation and copying costs. We have high and low settings for memory

management costs. Under the high setting we have a cost of 100 time units for

allocation, irrespective of block-size and 70 time units for deallocation. Under

the low setting we have a cost of two time units for allocation and one time unit

for deallocation. The high cost setting simulates the performance of code with

no optimisation of memory management costs, while the low setting simulates

the performance after optimisation of memory costs31.

The cost of copying data remains the same under both the high and low cost

models. When a distributed vector is copied, it is, reasonably, assumed that the

copying of elements takes place in parallel. Ideally, the low-cost model would

minimise copying costs as well as allocation and deallocation costs but such

minimisation requires further analysis to simulate in a sensible manner32.

The simulator also provides a detailed execution and communications trace

suitable for display in Paragraph[73] and is also able, to a limited extent, simulate

congestion on network links. We see some traces later in this chapter. The ability to

simulate congestion is not exploited here.

6.4.3 Experiments

We describe the outcomes of experiments on parallelised BMF code produced by the

following programs:

31The low-cost memory management setting is a compromise. The substantial costs of copying
data are still counted under the low-cost model. However this is somewhat compensated for by
the assumption that all allocation costs are reduced under the low-cost model which is, a-priori,
somewhat optimistic.

32It should be noted that the simulator is written to avoid a reasonable amount of gratuitous
copying. The copying that does remain will probably require some contextual analysis for it to be
reduced.
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map map addconst.Adl a simple nested map, parallelised in the outer dimension.

We also run a small experiment with map map atan.Adl which has identical

structure but a more expensive operator.

sum.Adl a simple reduction. We also run an experiment with mss reduce.Adl, a

reduction with a moderately costly binary operator.

mss.Adl equivalent to mss reduce.Adl but performing a parallel scan instead of

reduce.

finite diff.Adl a one-dimensional stencil algorithm containing a while loop.

remote.Adl a simple convolution.

For each of these programs we compare the performance of translator and optimiser

code under both high-cost and low-cost memory management regimes. The data-sizes

used for experiments involving translator code are, by necessity, small due to the large

data structures created by translator code and some limitations of the simulator.

Additional experiments, involving only optimised code, are run, under both high

and low-cost memory management regimes, often for a variety of, somewhat larger,

data-sizes. Static analysis is provided where it helps the interpretation of the results.

It should be noted that, in terms of performance, experiments fall into three

groups.

1. map map addconst.Adl and sum.Adl: these applications are very simple and

have low computation to communication ratios for all sizes of input data. These

applications are not expected to generate speedup on most distributed memory

machines. These examples help validate the cost model and help set up the

descriptive context.

2. map map atan.Adl, mss reduce.Adl and mss.Adl: These applications have

higher computation to communication ratios that stay relatively constant as

input data grows. These applications will generate modest speedup on fast

distributed memory machines. Interestingly, if we extrapolate the performance

of processors and networks it can be expected that this modest speedup will

disappear over time as computing power continues to increase relative to

network bandwith.
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++ /|| · ((+ · (π2, 2)
◦) ∗ ·distl · (id, π2)

◦ · id) ∗ ∗|| · (distl) ∗|| ·distl|| · (id, splitp · id)◦ · id

(a)

++ /|| · (+ · (id, 2)◦) ∗ ∗ ∗|| ·splitp

(b)

Figure 143. Parallelised translator code (part (a)) and optimiser code (part (b))
for map map addconst.Adl

3. finite diff.Adl and remote.Adl: these applications have a computation

to communication ratio that grows as input data size grows. Given enough

data, these applications can generate substantial speedup on most distributed

platforms.

Measures for speedup are made relative to the speed of the same application

running on a single processor. So, for example, to calculate the speedup of parallelised

translator code running on a number of processors it is compared to the speed of

that same parallelised translator code running on a single processor33. Likewise,

parallelised optimised code is compared with itself on different numbers of processors.

The experiments are presented in rough order of complexity starting with:

map map addconst.Adl.

6.4.4 Experiment 1: map map addconst.Adl

This program adds a constant to each element of a nested input vector. The structure

of the program is a simple, nested map.

Figure 143 shows the parallelised translator and optimiser code for

map map addconst.Adl. The parallelised translator code splits the outer dimension

of one copy of the input vector into p segments, then distributes copies of the input

vector over those segments and then performs a parallel map over those segments.

The last stage concatenates the distributed vector back on to a single node.

33We use this measure for convenience. A slightly more accurate measure is obtained by comparing
the speed of the best sequential program against the parallel versions of the code. However, in the
experiments presented in this chapter, the difference between this ideal measure and the measure
we actually use is small.
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Figure 144. Run-times of parallel translator and optimiser code for
map map addconst.Adl on between 1 and 32 nodes of a crossbar-connected machine
with 32x32 input values under a high-cost regime (solid lines) and low cost regime

(dash lines).

The parallelised optimiser code splits the outer dimension of the vector into p

segments, performs a parallel map over those segments and then concatenates the

distributed vector back on to a single node.

In our first experiment, translator and optimiser code were run against a nested 32

by 32 value input vector utilising between 1 to 32 nodes under the high-cost and low-

cost memory management regimes. Figure 144 shows the run-times of translator and

optimiser code, on a logarithmic scale, under these regimes. Times for the high-cost

regime are plotted with a solid line and times for the low-cost regime are plotted using

dashed lines. At all points, optimiser code is several times faster than translator code,

due to the larger data structures allocated by the translator code and the consequent

costs of transmitting these structures in the distributed case. Moreover, the sizes of

intermediate structures in unoptimised code grow faster with respect to input data

size than corresponding structures in optimised code. That is, we can expect this gap

to grow with the size of input data.

Predictably, there is also a significant performance gap between programs running

under the high-cost and low-cost memory allocation regimes. This gap closes as the

number of nodes increases and communication costs start to dominate over memory

allocation costs. Most interestingly, the optimised code under the high-cost regime
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Figure 145. Speedup for optimised code for map map addconst.Adl applied to a
128 by 128 element input vector on between 1 and 32 nodes of a crossbar-connected

machine under both high-cost (solid line) and low-cost (dashed-line) memory
management regimes.

gives some speedup and the optimised code under the low-cost regime does not.

At it turns out, this is due to the poor ratio of computation to communication in

map map addconst.Adl. To verify this, when we increase the amount of computation

per-node by increasing the input data size to the optimised program by a factor of 16

we get the performance profile shown in figure 145. Even with this larger input data

there is still no evidence of speedup under the low-cost regime. Closer analysis of the

costs of the parts of the optimised code reveals why this is so. The computation done

by the body of the innermost map:

+ · (id, 2)◦

takes 8ns to run. This code is fuelled by one word of data that, solely in terms of

bandwidth, takes 24ns to transmit. With such a gap between marginal computation

and communication costs, increasing the total amount of computation per-node will

result in a loss rather than a gain in performance due to parallelism34.

34Note that such bandwidth bottlenecks are well understood and have also been well studied in
a single-processor context. Using the terminology of Ding and Kennedy [50] the 8ns(8 instruction)
figure represents program balance and the 24ns(24 instruction) figure represents machine balance. In
a distributed context, the difference is the minimum marginal loss from distributing that computation
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++ /|| · (atan) ∗ ∗ ∗|| ·splitp

Figure 146. Optimised code for map map addconst.Adl with atan substituted for
the original map body.

The unoptimised program, though less efficient in absolute terms, carries out a lot

more (redundant) computation per-word of transmitted data and, thus, can deliver

quite respectable speedup. Likewise, the high memory management cost regime can

also, to a large extent, hide the imbalance. This slightly perverse outcome is well

understood, as noted by Rüde[122]:

For successful parallel computing it is helpful to parallelise the worst

sequential program one can find.

Speedup can only be attained for the optimised version of map map addconst.Adl by

modifying our estimates of architectural parameters to increase either bandwidth or

average instruction costs 35.

If speedup is not easily attainable, under the low-cost regime, for the optimised

map map addconst.Adl could speedup be expected from a similar program? The

answer is yes. If we modify the optimised code so that instead of an addition operation

the inner loop contains an approximating function such as atan to produce the code

in figure 146 we can attain some speedup as shown in figure 147. In this experiment

we assume that the cost of an atan operation is 64ns. This cost estimate, which will

vary from machine to machine, is comparable to the cost for atan on the Itanium

processor (circa 2001[65]).

Only a small amount of speedup is manifest in figure 147. As with the original

map map addconst.Adl, bandwidth is the bottleneck. To see why this is the case we

generalise for all programs whose basic structure, like that of map map addconst.Adl,

consists of a single split followed by a fixed-sized sequential computation on each node,

followed by a reduce with concatenate.

(16ns). In both a single-processor and distributed context, careful program design can ameliorate
but not eliminate the problem.

35Architectures with greater bandwidths than our model do exist. For example, the IBM Regatta-
H cluster has a bandwidth of over 2GB/Sec [67] between its closely connected nodes which translates
into a marginal cost of less than 0.5ns/byte , over six times better than our model. Unfortunately,
such good performance is relatively rare and expensive. Increasing estimates of average instruction
costs also seems unrealistic, though we haven’t considered any cache effects that might increase
average instruction costs as the problem size increases.
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Figure 147. Execution time for program from figure 146 on between 1 and 32
crossbar-connected nodes on a 128x128 element input vector. The cost of an atan

operation is assumed to be 64ns.

The relative execution time of any parallel code: Tp relative to its sequential

counterpart: T1 is Tp

T1

. For any parallel application where communication and

computation are not allowed to overlap the following (specialised from[10]) holds:

Tp

T1

= A +
(1− A)

p
+

tcomms

tcomp

(61)

Where:

• A is the Amdahl fraction of the program, the inherently sequential portion,

• p is the number of processors,

• tcomms is the time taken to perform communications.

• tcomp is the time taken to perform computations. It is the time taken to run the

parallel program on one processor. Most work, including this work, assumes

tcomp = T1.
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In many parallel applications A is either small or shrinks rapidly as the problem size

grows. For these applications, which includes all of those in the experiments in this

chapter, the following approximation serves well:

Tp

T1
≈ 1

p
+

tcomms

tcomp

(62)

tcomp for the program in figure 146 is defined:

tcomp = tinstrcatann (63)

where tinstr is the time it takes to execute one primitive instruction, catan is the number

of instructions executed by atan (64) and n is the number of elements of input data.

In the previous experiment we assumed amounts of 1ns, 64 and 128 × 128 = 16384

for these, respectively. tcomms is defined:

tcomms = tlatency + tbandwidth (64)

where, for the program in figure 146, running on a crossbar,

tlatency = (2 log p)tlink latency (65)

and

tbandwidth = (2− 2

p
)nβ (66)

where tlink latency is the link latency (5000ns in our model) and β is the amount of

time it takes to transmit an extra word on a link (24ns in our model).

If we substitute eqns (64,63,65, 66) into eqn (62) we get:

Tp

T1

≈ 1

p
+

(2 log p)tlink latency + (2− 2
p
)nβ

tinstrcatann
(67)

As both p and n grow the terms 1
p

and (2 log p)tlink latency become insignificant, and

(2− 2
p
) approaches 2, leaving:

Tp

T1
≈ 2nβ

tinstrcatann
=

2β

tinstrcatan

which in our experiment is: 48/64 giving a maximum speedup of: 1.33 which is in

line with the results in figure 147. In both cases the amount of speedup extracted is

small and asymptotically limited to a constant. It should be noted that this small

speedup is not an inherent property of parallel computation using map. If the amount

of computation inside the map body can be scaled up to swamp the initial costs of

distribution the benefits of parallelism can be substantial. This point is illustrated

soon in the discussion of the performance of finite diff.Adl.
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if( 6= ·(0, # · π2)
◦,

π2 · ((π1 · π1, + · (π1 · π1, (π2 · π1, π2 · π2)
◦)◦)◦)/||·

(·((π1 · π1, + · (π1 · π1, (π2 · π1, π2 · π2)
◦)◦)◦)/) ∗|| ·(distl) ∗|| ·distl||,

0 · π1)
·(id, splitp · id)◦

(a)

+/
||
0 · (+/0) ∗|| ·splitp

(b)

Figure 148. Parallelised translator code (a) and optimiser-code (b) for sum.Adl

6.4.5 Experiment 2: simple reductions

Chapter 5 used the program sum.Adl to show the effect of the optimiser on

simple reductions. The parallelised translator and optimiser code for sum.Adl is

shown in figure 148. The execution time of these programs when applied to 512

data items for different numbers of processors is shown in figure 149. As with

map map addconst.Adl the performance of optimised code is substantially better than

that of non-optimised code under both the high and low-cost memory management

regimes. Again, there is better absolute performance under the low-cost memory

allocation regime (the dashed line) but the speedup under this regime for optimised

code is poor.

This poor speedup persists as input data size increases. Figure 150 shows the

speedup of optimised code for sum.Adl under both the high-cost (solid line) and low-

cost (dashed line) memory management regimes for a input vector with 4096 values.

Some speedup is evident under the high-cost memory management regime but there

is very poor speedup under the low-cost regime.

Again, this lack of speedup is due to program balance. The equation for the

runtime on p nodes relative to the runtime on one node for parallelised programs

with the structure of sum.Adl is:

Tp

T1
≈ 1

p
+

(2 log p)tlink latency + ((1− 1
p
)nβ + (1− 1

p
)β

tinstrcplus(n− 1)
(68)

as n and p become large the 1
p
,(2 log p)tlink latency, and (1 − 1

p
)β terms become less
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Figure 149. Relative performance of translator versus optimiser code for sum.Adl
applied to 512 input values on 1 to 32 crossbar-connected nodes under the high-cost

(solid-line) and low-cost (dashed-line) model of memory management.
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Figure 150. Speedup for optimised code for sum.Adl on 1 to 32 crossbar-connected
nodes under the high-cost (solid-line) and low-cost (dashed-line) model of memory

management with an input vector of 4096 words.
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significant leaving the approximation:

Tp

T1

≈ nβ

tinstrcplusn
=

β

tinstrcplus

Substituting tinstrcplus = 3ns and β = 24ns we get 24ns/3ns which gives an

asymptotic speedup of 0.125, clearly the small size of the binary operation + precludes

any speedup for optimised sum.Adl on our model. Next we examine the performance

of reduce with a larger binary operator.

reduce with maximum-segment-sum The key factor contributing to poor

performance in the previous example is the small cost of the operation + compared

to the cost of distributing its data. The imbalance in the costs of computation and

communication can be improved, by improving the computation to communication

ratio. Such a situation arises when a slightly more computationally expensive binary

operation is used, such ⊕ in the Maximum-segment-sum algorithm in figure 151.

Maximum-segment-sum calculates the maximum sum of any contiguous sub-sequence

of a list of numbers. The possible presence of negative numbers makes this operation

non-trivial. Computationally, the structure of maximum-segment-sum is a reduce

with a binary operator ⊕ over tuples, followed by a projection on the final tuple.

The source code for maximum-segment-sum with reduce is shown in figure 151,

while figure 152 shows parallelised optimised BMF code for mss reduce.Adl.

The performance of this program, when run on varying numbers of processors,

with varying quantities of input data, under the low-cost model, on a crossbar-

connected machine, is shown in figure 153.

No point in the graph shows more than moderate speedup and this speedup does

not appear to be growing strongly with data-size. This observation is in line the

statically derived limit for this program running on a crossbar-connected machine,

given by substituting c⊕ = 190 into equation 68:

Tp

T1
≈ 1

p
+

(2 log p)tlink latency + ((1− 1
p
)nβ + (1− 1

p
)β

190tinstr(n− 1)

With large p and n the above can be approximated:

Tp

T1
≈ nβ

190tinstrn
=

β

190tinstr

which for our architectural model is equal to 24ns/190ns, giving a maximum speedup

of 7.9, in line with the performance measures shown in figure 153. Note that a cross-

bar is an ideal interconnect for a distributed memory parallel platform. If we move
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main a: vof int :=

let

plus (x,y) := x + y;

max (x,y) := if (x > y) then x else y endif;

oplus ((mssx,misx,mcsx,tsx),(mssy,misy,mcsy,tsy)) :=

(max(max(mssx,mssy),plus(mcsx,misy)),

max(misx,plus(tsx,misy)),

max(plus(mcsx,tsy),mcsy),tsx+tsy);

f x :=

let

mx0 := max(x,0)

in

(mx0,mx0,mx0,x)

endlet;

first (mss,mis,mcs,ts) := mss

in

first(reduce(oplus,(0,0,0,0),map(f,a)))

endlet

Figure 151. Source code for mss reduce.Adl a program that calculates
partial-maximum-segment-sums over an input vector. The binary operator used is

oplus

4π1·
⊕/

||

(0,0,0,0)◦
·

⊕/(0,0,0,0)◦) ∗|| ·
((π1, π1, π1, π2)

◦ · (if(> ·(id, 0)◦, id, 0), id)◦) ∗ ∗|| · splitp
where

⊕ = if(> ·(if(> ·(8π1,
8 π2)

◦,8 π1,
8 π2), + · (8π3,

8 π4)
◦)◦,

if(> ·(8π1,
8 π2)

◦,8 π1,
8 π2), + · (8π3,

8 π4)
◦),

if(> ·(8π5, + · (8π6,
8 π4)

◦)◦,8 π5, + · (8π6,
8 π4)

◦),
if(> ·(+ · (8π3,

8 π7)
◦,8 π8)

◦,
+ · (8π3,

8 π7)
◦,8 π8),

+ · (8π6,
8 π7)

◦)◦·
(4π1 · π1,

4 π1 · π2,
4 π3 · π1,

4 π2 · π2,
4 π2 · π1,

4 π4 · π1,
4 π4 · π2,

4 π3 · π2)
◦

Figure 152. Parallel optimised version of mss reduce.Adl
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Figure 153. Speedup for optimised mss reduce.Adl with various numbers of
nodes and data sizes on a 64 node cross-bar connected machine under the low-cost

memory management model.

to a more scalable interconnect, such as a mesh, we attain the performance shown in

figure 154. This performance, affected by longer latencies in a mesh interconnect.

It should be stressed that the above results do not preclude applications that use

reduce from exhibiting good speedup. Programs that:

1. have a long stage of parallel computation prior to a reduction or,

2. generate, as part of the parallel computation, most the data to be reduced on

each node.

can usefully exploit large amounts of parallelism. Experiments 4

(finite diff iter.Adl) and 5 (remote.Adl), described shortly, fit these respective

categories.
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Figure 154. Speedup for optimised mss reduce.Adl with various numbers of
nodes and data sizes on a 64 node mesh-connected machine.

6.4.5.1 Experiment 3: Scan with maximum-segment-sum

For any given operator, scan is more communications-intensive than reduce. Here,

we use the best parallelisation scheme for scan (described on page 205) to parallelise

both translator and optimiser code for mss.Adl (shown in figure 98 on page 159).

The parallelised version of the optimiser code for mss.Adl is shown in figure 155 (the

parallelised translator code is substantially longer).

Figure 156 shows the execution times for translator and optimiser code under both

the high-cost (solid line) and low-cost (dashed line) models of memory management

on between 1 and 32 crossbar-connected nodes. As with previous experiments,

the optimiser code is substantially faster than the translator code running on

the corresponding memory management model. However, the cost of memory

management weighs more heavily in this example than in previous ones. In fact,

the cost of the optimised code for mss.Adl on a single node, under the high-cost

memory model, exceeds that of the corresponding unoptimised code under the low-

cost memory model. This is probably due, in large part, to the amount of local
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++ /‖ · ((4π1)∗) ∗‖ ·g·
(⊕//‖ · init · (last)∗‖, id)◦ · (⊕//) ∗‖ ·
(((2π1,

2 π1,
2 π1,

2 π2)
◦ · (if(> ·(id, 0)◦, id, 0), id)◦)∗) ∗‖ ·split32

where

⊕ = from previous example
g = ++ ‖ · (split1·! · (2π2, 0)

◦, (⊙) ∗‖ ·zip‖ · (2π1, tail ·2 π2)
◦)◦

⊙ = (⊕) ∗ ·distl · (2π1,
2 π2)

◦

tail = select‖ · (id, (+ · (1, id)◦) ∗ ·iota · − · (# · id, 1)◦)◦

init = select‖ · (id, iota · − · (#, 1)◦)◦

last = ! · (id,− · (#, 1)◦)◦

Figure 155. parallelised optimiser code for mss.Adl
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Figure 156. Execution times for translator and optimiser code for mss.Adl under
both the high-cost (solid line) and (low-cost) models of memory management. The
execution times for translator code are the two upper lines and for optimiser code

the two lower lines.
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Figure 157. Speedups for optimised code for mss.Adl, running under the high
(upper curve) and low-cost (lower curve), memory model when applied to a 4096

element input vector.

copying generated by the detailed code in the parallelised version36 of mss.Adl in

both optimised and non-optimised code. The high-cost memory management model

magnifies this copying cost. Note that the relative cost of the optimised code drops

as more nodes are used and the low communication costs of the optimised version

become an important factor.

Reasonable speedups are attained under all regimes, except the optimised code

under the low-cost model (bottom line), which shows negligible speedup.

Figure 157 shows the speedups for optimised code, running under the high and low-

cost, memory model when applied to a 4096 element input vector. Speedup under the

high-cost memory management model is moderately good. Speedup under the low-

cost model is still quite poor. The speedup evident in the higher curve is attributable

to the extra computation costs imposed by the high-cost memory management regime,

which will be significantly reduced when memory management costs are optimised.

Figure 158 takes the low-cost curve from figure 157 and compares it with

corresponding costs for input data vectors between 256 and 8192 elements long. As

with mss reduce.Adl the speedup does grow with data-size but not at a particularly

36In this case the parallelised version running on a single node.
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Figure 158. Speedup of the optimiser code for mss.Adl when run on between 1
and 32 crossbar-connected nodes and between 256 and 8192 element input vectors.

fast rate. Worthwhile speedups are not going to be attained under the low-cost model

by simply increasing the data-size.

The modest speedup is, again due to the relatively high cost of inter-node

bandwidth, caused by the low ratio of computation to communication in this problem.

If we compare figure 153 to figure 158 we see the performance of the second is slightly

worse. This is due to scan, even when implemented using a good strategy, generating

more communication than reduce. The modest difference between these graphs is

testimony to effectiveness of the strategy for scan37

The fundamental problem with mss.Adl and the other programs we have described

in our experiments, thus far, is that the ratio of computation to communication is

37This indirectly highlights a weakness in the use of virtual processors. With virtual processors,
partitions are all of size one, so the strategy of transmitting only the upper value of each partition
to the neighbouring partition is of no benefit.
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main a: vof int :=

let

addone x := x + 1;

first (x,y) := x;

ia := iota (#a);

f (xs,y) :=

let

lxs := #xs;

stencil x := xs!x + xs!((x-1) mod lxs) +

xs!((x+1) mod lxs);

nxs := map(stencil,ia);

ny := addone y

in

(nxs,ny)

endlet;

p(xs,y) := y < 20

in

first(while(f,p,(a ,0)))

endlet

Figure 159. finite diff.Adl an Adl program to perform a simple
finite-difference computation.

a constant, irrespective of grain-size. Computations in this category are bandwidth-

limited in their parallel performance.

6.4.6 Experiment 4: finite diff iter.Adl

In this experiment, and the next, we test programs where the ratio of communications

to computation improves with increasing problem size.

One way to achieve a healthy computation to communications ratio is to iterate

over pre-distributed data, performing computations on, mostly, local data during each

iteration. Figure 159 shows the source-code of finite diff iter.Adl, a program

that fits this desirable pattern of computation38. The loop body is a simple one-

dimensional stencil operation, with each element performing a simple calculation

based on its own value and its left and right neighbours.

38This program is a modified version of finite diff.Adl shown in figure 100 in chapter 5. The
important difference is the stencil operation is embedded in a while loop. The body of the while

loop avoids the use of iota to allocate a new vector finite diff.Adl as this would be a moderately
expensive operation in a distributed context.
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π1 · π2

( id,
π2 · while( ( π1,

(π2 · π1, π2)
◦ · id · (id, + · (π2, 1)

◦ · (id, π2 · π2 · π1 · π1)
◦)◦·

(id, ++ /‖·
((+ · ( + · ( ! · (π1 · π2 · π1 · π1, π2)

◦,
! · (π1 · π2 · π1 · π1, mod · (− · (π2, 1)◦, π2 · π1)

◦)◦)◦,
! · (π1 · π2 · π1 · π1, mod · (+ · (π2, 1)◦, π2 · π1)

◦)◦)◦)∗) ∗‖ ·
(distl) ∗‖ ·distl‖ · (id, π2 · π1 · π1)

◦)◦ · (id, # · π1 · π2)
◦)◦

< ·(π2 · π2, 20)◦)·
(id, (π1, 0)

◦)◦)◦ · id · (id, splitp · iota ·# · id)◦

(a)

++ /‖ · π1

while( ( 3π1,
(((+ · (+ · π1, π2)

◦)∗) ∗‖ ·
(zip) ∗‖ ·zip‖ · ((zip) ∗‖ ·zip‖ · (3π1, rshift)

◦, lshift)◦·
(3π2, π2 ·3 π1, # ·3 π2)

◦,
+ · (π1 ·3 π3, 1)

◦)◦)◦·
(π1, π1 · π2, (π2, id)◦ · π2)

◦,
< ·(π2, 20)◦ · π2)

(id, (π1, 0)
◦)◦ · (splitp · id, splitp · iota ·#)◦

(b)

Figure 160. Parallelised translator code (part (a)) and optimiser code (part (b))
for finite diff iter.Adl.

Figure 160 shows parallelised translator code (part (a)) and optimiser code (part

(b)) for finite diff iter.Adl. The translator code relies on indexing functions (!)

to extract the desired vector elements for each stencil operation. A parallelised distl

operation is used to transport copies of vectors required by these operations. The

main index vector, generated by the iota function, remains distributed throughout

the loop. Aside from the myriad of addressing functions the translator code is quite

straightforward but the distl operations exact a cost in terms of efficiency.

The optimiser code, in part (b) of the figure, splits both the index vector and the

input vector. The select functions that resided in the loop body have been replaced

by code for lshift and rshift . These functions contain detailed hand-generated BMF

code implementing a parallel circular-shift39. In future, these functions are likely be

39At the time of writing, distrselect is not implemented on the simulator.
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Figure 161. Parallel translator and optimiser code for 20 iterations of
finite diff iter.Adl under both the fast and slow memory-management regimes

on between 1 and 8 crossbar connected nodes with 256 input values

replaced by specialised primitives.

A-priori we would expect the optimiser code to run faster because it performs less

communication inside the loop. This is borne out by figure 161. Due to the time

taken by the simulator to run translator code, the number of processors was limited

to eight and the size of input data was limited to 256. The number of iterations

of the while loop was fixed at 20. The top curve, is the performance of translator

code under the high-cost memory management regime. As with previous examples,

speedup is good, again due to a high computation to communication ratio. The

second-from-top curve shows the performance of translator code under the low-cost

memory management regime. The third curve is the performance of optimiser code

under the high-cost memory-management regime. This code shows a substantial,

though not overwhelming improvement over the corresponding parallel translator

code. It may be that the data-size is too small to open up a substantial performance

gap. The bottom curve is the performance of the optimiser code under the low-cost

memory management model. This code is, by far, the most efficient but it also exhibits

the lowest speedup. As with previous examples the low speedup is attributable to

the low computation to communication ratio in this program at this small data-size.



CHAPTER 6. PARALLELISATION AND TARGETTING 241

5
10

15
20

25
30

1000
1500

2000
2500

3000
3500

4000

0

5

10

15

speedup 

datasize 
nodes 

Figure 162. Speedup for finite diff iter.Adl executing with 20 loop iterations
for 1, 2, 3, 4, 8, 16 and 32 crossbar-connected nodes on different data-sizes.

Fortunately, in the case of finite diff iter.Adl, this ratio improves substantially

with data-size.

Figure 162 shows the speedup for finite diff iter.Adl running under the fast

model of memory management for a range of data sizes. The cost of running

the simulator made it impractical to collect as many data-points as in previous

experiments, but a trend is still discernible. The curve is much steeper, and the

absolute speedups are much greater, than for the previous examples in this chapter.

Note that the curve slowly levels off both in the direction of increasing nodes and

of increasing data-size. This levelling-off is explained by the fact, that even for very

large data, for a fixed number of iterations, there is a limit to speedup attainable for

finite diff.Adl.

The existence of this limit could be demonstrated through static analysis, as

with previous examples, but a strong intuitive understanding is gained by comparing

traces for different input data sizes. Figure 163 contains two space-time traces for

parallel optimised finite diff iter.Adl, running on 32 crossbar-connected nodes,
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(a)

(b)

Figure 163. Space-time traces for parallel optimiser code for
finite diff iter.Adl running on 32 nodes of a crossbar-connected machine under
the low-cost memory management regime. Part (a) is the trace for a 512 element
input value. Part (b) is the corresponding, scaled-down, trace for a 1024 element

input value. Note that as the size of the input value increases the relative
significance of the loop (the central part of the trace) decreases.
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collected by the simulator. Time is on the horizontal scale and node numbers are on

the vertical scale. Inter-node communication is represented by angled lines. In both

diagrams there is substantial communication at the start and the end of the trace

as the initial array is distributed40 and re-coalesced. There are smaller amounts of

communication in the loop as single values are sent between adjacent nodes in an

end-around pattern by the lshift and rshift functions. The horizontal lines in the

traces represent receive-overhead and computation. Part (a) is the trace generated

for an input array of 512 elements. Part (b) is the trace generated for an input array

of 1024 elements. The length of the second trace was scaled down by a factor of more

than two for the sake of comparison. Ideally, with increasing data-size, the cost of

computation, relative to the cost of communication, should increase. Unfortunately,

this is only the case for the code executing inside the central loop. Outside of the

loop the relative cost of communication is slightly more for part (b) than part (a). In

fact, the relative significance of the loop in the program has decreased in line with the

decreased relative cost of communications inside the loop. This change in the relative

significance of communications inside and outside of the loop can be clearly seen in

the processor-utilisation charts in figure 164. These charts are derived from the same

traces as the charts in figure 163. The bright green areas represent compute-time41.

The vertical green bars represent the useful computation that takes place between

invocations of lshift and rshift inside the loop. These bars are much thicker in part

(b) than part (a). With large data, computation-time dominates the loop. Outside

the loop, the relative size of the red and yellow areas are not at all diminished by

increasing data-size. They grow and shrink stubbornly in tandem with the input data.

However, they are fixed with respect to the number of iterations in the loop. If the

central loop had 1000 iterations, rather than five, then red areas at either end would

be dwarfed by the mostly-green area in the middle. In summary, utilisation inside

the loop increases with the size of input data, and the relative significance of the loop

grows with the number of iterations. Taken together, these two observations mean

that very good speedup can be attained for finite diff iter.Adl by a combination

of large data and a large number of iterations.

40In fact, two arrays are distributed. One corresponding to each instance of split in figure 160.
There is scope for piggybacking of these communications; something which future versions of the
paralleliser can address.

41With perfect speedup the whole graph would be green.
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(a)

(b)

Figure 164. Processor-utilisation (Gantt) charts for parallel optimiser code for
finite diff iter.Adl running on 32 nodes of a crossbar-connected machine under
the low-cost memory management regime. Part (a) is the trace for a 512 element
input value. Part (b) is the corresponding, scaled-down, trace for a 1024 element

input value. Red areas represent idle processor time, yellow areas represent
receive-overhead, green areas represent actual compute-time.
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main a: vof int :=

let

f x :=

let

add(x ,y) := x+y;

abs x := if x<0 then -x else x endif;

dist y := abs(x-y)

in

reduce(add, 0, map(dist, a))

endlet

in

map(f, a)

endlet

Figure 165. Source code for remote.Adl.

6.4.7 Experiment 5: remote.Adl

This, final, example describes an application performing a convolution where every

value in an input vector must interact with every other input value. Intuitively, there

are two things that we might expect to see from such an application

• Relatively good performance of translator code due to a match between the

distribution performed in the application and the distribution performed by

translator.

• Good speedup, given a large enough grain size, because one copy of an array

sent to each node is enough to fuel a large amount of local distribution and

computation.

Figure 165 shows the source code for remote.Adl, a program that calculates the sum

of the absolute difference between each value and every other value in an input vector.

As an example, if remote.Adl is given the input vector [1, 2, 3, 4, 5] its output will be

[10, 7, 6, 7, 10].

Figure 166 shows the parallelised translator and optimiser code for remote.Adl.

The translator code (in part (a)), as with all translator code, distributes all values

in scope to each function. This leads to unnecessarily detailed code and inefficient

execution. The optimiser code (in part (b)), still performs some distribution, albeit of

smaller values, using either a combination of repeat and zip or distl. This distribution

is required by the problem being solved, a convolution.
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++ /‖ · (reduce exp · (id, (abs · (id,minus)◦) ∗ ·distl · (id, π1)
◦)◦ · id) ∗ ∗‖·

(distl) ∗‖ ·distl‖ · (id, splitp · id)◦

where

reduce exp = if( 6= ·(0, # · π2)
◦,⊕/ · distl, 0 · π1)

⊕ = + · (π1 · π2, π2 · π2)
◦ · (π1 · π1, (π2 · π1, π2 · π2)

◦)◦)◦

abs = if(< ·(π2, 0)
◦, u − ·π2, π2)

u− = primitive operation (unary minus)
minus = − · (π2 · π1, π2)

◦

(a)

++ /||·
(+/0 · (if(< ·(−, 0)◦, u − ·−,−)) ∗ ·distl) ∗ ∗||·
(zip) ∗|| ·((π1, repeat · (π2, # · π1)

◦)◦) ∗|| ·
zip|| · (π1, repeat|| · (π2, # · π1)

◦)◦ · (splitp, id)◦

(b)

Figure 166. Parallelised translator code (part(a)) and optimiser code (part (b)) for
remote.Adl.

Figure 167 shows the relative performance of translator and optimiser code for

remote.Adl. Both translator and optimiser code was applied to an input vector of 320

elements under both the fast and slow memory management models on between one

and eight crossbar-connected nodes. In contrast with previous examples, reasonable

speedup is attained under all four combinations of conditions. This may be due to

the relatively large input vector42 and/or the parallelism inherent in the application.

The top two curves represent the performance of translator code under the slow

memory management regime (solid line) and the fast memory management regime

(dashed-line). The bottom two lines represent the performance of optimiser code. The

gap between the optimiser and translator code under the slow memory management

regime is significant but not extreme. This is consistent with our intuition that a

certain amount of distribution is inherent in this application and not liable to be

optimised away.

It remains to be determined if the good speedups exhibited by optimiser code

persist when more nodes are utilised. Figure 168 shows the speedup gained by

running the optimised version of remote.Adl on between one and 32 nodes of a

crossbar-connected machine under both the fast and the slow memory management

42320 elements is large for this problem because of the way the vector is copied in remote.Adl.
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Figure 167. The performance of remote.Adl running on between one and eight
crossbar-connected nodes with 320 input values. The top two lines represent the
performance of the translator code under the high cost (solid line) and low cost

(dashed line) memory management models. The bottom two lines shows the
corresponding performance of the optimiser code under the high and low cost

memory management models.

model with an input vector of 320 elements. Under the high-cost model speedup

is very close to linear for the whole range of processors. The low cost model has

near linear speedup for small numbers of processors but levels off for larger numbers.

This levelling-off appears characteristic of the impact of a slightly low and decreasing

computation to communication ratio. For remote.Adl this ratio can be improved by

increasing the data size. We would expect to see better speedup at higher numbers

of nodes for input with larger data.

To test this relationship we ran a series of experiments with various data sizes to

plot the surface seen in figure 169. For 32 processors, speedup grows quite rapidly

with data-size. For smaller numbers of processors this growth tails off as the speedup

gets closer to the maximum potential for that number of processors43. This data

indicates that good speedup is achievable, for a given number of nodes, if enough

input data used.

This completes the presentation of our experimental results. The next section

reviews related work and, after that, the findings of this chapter and future work are

43Because the model does not take into account on-node cache performance, and virtual memory
performance there is no scope for achieving speedup beyond linear speedup as there is on some real
machines.
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Figure 168. Speedup for remote.Adl running on between 1 and 32 nodes of a
crossbar-connected machine. The upper curve shows the speedup under the

high-cost memory management regime. The lower curve shows the speedup under
the low cost regime. The input vector was 320 elements long.
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Figure 169. Speedup for remote.Adl running on between 1 and 32 nodes with
input data between 64 elements and 448 elements.
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presented.

6.5 Related work

Related work can be, very roughly, divided into work related by the use of

transformations and work related by the use of parallel skeletons. There is substantial

overlap, so some work mentioned below straddles both categories.

Related transformational work The use of equational transformation as a

means of developing efficient parallel functional programs is not a new concept.

Backus[13] cited amenability to parallel execution and algebraic transformation as two

strengths of functional programming. Proponents of functional programming models

such as Algorithmic Skeletons[42], Divacon[28], MOA[70] and Scan-Vector[92] have

emphasised the desirability of equational transformation as a tool for programming

and program optimisation.

The use of equational transformation for parallel programming in BMF is

relatively common. A number of authors[126, 58, 35, 103] have highlighted the

usefulness and generality of BMF as a medium for parallel programming. Gorlatch

et. al.[64, 63] and Hu[78](summary) have explored mechanisable formal methods for

improving the performance of BMF programs with implicit parallel semantics.

A smaller amount of literature is devoted to the problem of algebraically

propagating explicit parallel functions into an extant BMF program. Skillicorn[127,

125] outlined a technique where parallel operations can be progressively added to a

BMF program with no net change to its semantics. The parallel operations have two

interpretations:

• A functional interpretation (input to output mapping) which allows the

operations to appear in the mathematical equalities used to algebraically

transform programs.

• A separate parallel interpretation which describes the affect of the operation on

a distributed architecture.

A similar method of derivation was also developed by Roe[120] to help target programs

to both SIMD and MIMD architecture types. Partitionings can be generalised to

arbitrary complexity and arbitrary datatypes. Pepper et. al[109] describe general
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schema’s for partitioning. Jay[86] allows quite general decompositions of matrices in

his proposal for the GoldFISh parallel programming language. The parallelisation

process defined in this work is strongly influenced by the above work of Skillicorn and

Roe.

In other, related, work Skillicorn and Cai[128] refined the derivation process by

adding cost annotations to identities involving parallel operations. The annotations

form part of a static cost model for making estimations of the efficiency of code

while the parallel program is derived. Currently, the parallelisation process for the

Adl project does not make use of a cost model, though the simulator used in our

experiments provides a detailed dynamic model that a developer can use to tune the

parallelised program.

Related skeletons work The idea of using algorithmic skeletons for the expression

of parallelism was proposed by Murray Cole[34]. The Adl implementation exploits

skeletal parallelism. The following contrasts the Adl implementation with three extant

Skeleton implementations, SCL, the Anacleto compiler (P3L), and the more recent

FAN Skeleton framework.

SCL (Structured Coordination Language)[43] focuses on the use of functional

skeletons to coordinate communications between program components written in

other language. Much emphasis is put on ensuring that data is aligned and

transported to its required location. Parallelism and communications are more

explicit in SCL than Adl meaning that more has to be specified by the programmer.

On the other hand, there is more flexibility in the partitioning and alignment of data

in SCL than Adl.

Anacleto[31], the prototype implementation of P3L[41] supports task and control

as well as stream and data-parallel skeletons. P3L has a more explicit constrained

indexing scheme for access to vectors inside the map skeleton than Adl44. Anacleto

uses compile-time performance-analysis of code to drive aspects of the partitioning

process45. P3L supports static arrays of fixed dimensionality and size. Adl supports

44In the main, it is the responsibility of the programmer to give the compiler a description of
the values required within each invocation of a data-parallel construct, through parameter lists
and annotations specifying the scattering, broadcast and multi-cast of array values. In Adl, the
programmer is able to reference any value in scope at will. It is the compiler’s task to rationalise
the transport of these values.

45This amounts to a well-defined and constrained, iterative transformation process. More detailed
transformation strategies were also explored using P3L as a medium[4].
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dynamic nested one-dimensional arrays (vectors). Another significant difference is

that P3L is built around an imperative core of C-code. Programmers are able to

recycle variables so storage management issues that arise with the Adl project do not

arise so readily in P3L.

The FAN skeleton framework[5] provides a source notation and an extensible

library of transformations for the development of skeletal parallel programs. The

source notation is more explicit in its depiction of data dependencies and of parallelism

than Adl and has a richer type system. The FAN transformational system is

interactive which gives it broader scope, along with more exacting requirements

including the need for a cost model46, than an automated parallelisation system of

the type found in the Adl project.

6.6 Conclusions and Future work

This chapter described methods for the parallelisation of point-free BMF code

and discussed issues that arise when targetting parallel code to a real distributed

architecture.

The effectiveness of the parallelisation process was demonstrated through a

detailed simulation of the performance of a number of parallelised example programs.

It was shown that a good level of performance is attainable through the application

of the parallelisation process.

Early prototype implementations of the paralleliser and code-generator have thus

far borne-out the findings of this chapter.

There is scope for incremental improvement of the Adl paralleliser and code-

generator. First steps will involve the completing and refining early prototypes for

these stages. Other useful developments are in rough order of priority are:

1. Improved memory-management for generated imperative code.

2. The use of a cost-model to assist with some parallelisation decisions.

46an interesting observation is that under the FAN cost model, most of the transformation rules
presented improve programs under all circumstances. Such unconditionally beneficial rules might all
be applied automatically prior to the application of conditional rules but, because the transformation
system is not confluent, such an approach may preclude the finding of an optimal version for each
program.
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3. A new fine-tuning stage to incrementally improve parallelised code using

conditional transformations coupled with a cost model.

4. The introduction of parallelism within alltup functions.

5. The introduction of nested parallelisation.

6. Facilities for tracing the parallelisation process and the efficiency of code during

its development.

7. Allowing more general block-decomposition of nested vector data47.

The first of these changes has the most potential to immediately improve performance

and, thus, has the highest priority. The second and third changes add a fine-tuning

stage to the parallelisation process. The fourth change exploits parallelism on the

second aggregate data type. The fifth change extends the existing parallelisation

process to deeper levels. The sixth change introduces facilities for debugging. The

last change may involve the introduction of new datatypes to the source language.

This concludes our discussion on the parallelisation process and the details of the

Adl implementation in general. The next chapter summarises and puts into context

the findings of this work and points the way to future endeavours within the context

of the Adl project.

47Perhaps through the agency of a new type for multi-dimensional arrays but possibly through
nested parallelism combined with judicious mapping of abstract nodes to hardware nodes.



Chapter 7

Conclusions and Future work

This report described a compilation process which maps a simple functional language,

through point-free BMF to distributed parallel code. The first three chapters

provided, respectively, an overview of the process, a description of the source

language, Adl, and a definition of the point-free BMF dialect used as an intermediate

form. The fourth chapter defined a translator from Adl to point-free BMF. The

fifth chapter described an effective global optimisation process working via the

systematic application of local re-write rules. Finally, the sixth chapter described

a parallelisation process and analysed the performance of parallelised code under

different assumptions.

The findings relating to this work have been described in these earlier chapters.

We provide a summary here.

7.1 Primary findings

It has been shown that the compilation process is effective in rationalising data

movement in a number of programs and producing programs exhibiting good speedup

on a simulated distributed architecture with reasonable performance parameters1.

This finding is a proof of concept of the utility of point-free BMF notation and

transformations as a medium for optimisation and parallelization.

Another observation, reinforced by this work, is that it is too costly, in a

distributed context, to copy every value in scope of a distributed function to each

1Early work on a prototype code generator to C-MPI on a cluster[111] indicates that good speedup
is achievable on real architectures.

253



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 254

node executing that function. This is widely understood and there are a range of

strategies employed by different implementations to rationalise the amount of copying.

For example, complementary studies within the Adl project [54] copied only scalar

values unconditionally and allowed random access to remote vector elements at run-

time, thus transporting only the vector elements actually referenced. Copying can

also be reduced by prohibiting references to free variables in functions embedded

in skeletons, as is done in EL*[117], or by having the programmer express data

distribution requirements in some explicit manner, a strategy used by P3L[31] (among

others). Our work reduces the overhead of copying by performing a novel kind

of dataflow analysis where a wave of generated code expressing the precise data

needs of downstream code is propagated backwards through the program. When

analysing references to vector elements it is often impossible to statically determine

which elements might need to be copied. In our implementation, such references

are integrated into a distributed-select operation that performs the random access

specified by indexing operations in a consolidated fashion at runtime.

Another contribution of this work is the definition of an automatic process to

convert implicitly parallel BMF to explicitly parallel BMF via the propagation of

a split construct upstream through the code. At this stage, a preliminary prototype

implementing this process[146] has been successfully applied to a number of programs.

7.2 Secondary findings

Several secondary observations arise from our work on this implementation.

7.2.1 Incremental transformation offers advantages

The first of these observations is that the methodology of incremental transformation

does appear to make semantics preservation simple in practice by:

1. allowing semantics-preserving rules to be added, and tested, incrementally and

2. making errors in transformation rules relatively easy to track down, in part due

to the above point, but also because the transformation process consists of small

transparent steps2 rather than large opaque ones.

2that can be traced in the debugging environment provided by Centaur.
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7.2.2 Catch-all rules, if overused can lead to poor

performance

A second observation concerns trade-offs occurring through the use of catch-all rules

to provide default behaviour for code yet to be handled, during the construction of

the optimiser. The primary advantage of catch-all rules is that they allow a partially

complete rule-set to be tested on programs containing code not yet explicitly handled

by that rule-set. The main drawback is that the lack of processing that a catch-

all rule entails creates a potential performance bottleneck from the code it fails to

process. If the catch-all rule in question happens to be in a normalising rule-set

then the impact of the bottleneck can be amplified by the subsequent application of

other rule-sets which, typically, fail to properly optimise the code that has not been

properly prepared by the normalising rule-set.

As a general observation, catch-all rules are a valuable mechanism for allowing

rule-sets to be constructed and tested incrementally, but the bottlenecks that catch-

all introduce can obscure the performance benefits that the other rules in the set

might introduce. Said another way, rules can be introduced and tested incrementally

but we should not expect to observe most of the improved performance they generate

until explicit rules, to handle all code of interest, are in place.

7.2.3 The importance of normalisation

A third observation is the importance of normalisation during the compilation

process. The diversity of source-code, coupled with the changes wrought over time

by incremental transformations, can result in an unmanageable case explosion. To

avoid this problem, we developed rule-sets with the sole purpose of making code

more predictable. The normalisation process is assisted by BMF’s amenability to

transformation. Rule sets that performed normalisation were employed to remove

superfluous identity functions, to associate binary function compositions to highlight

functions of interest, and to reduce the length of sequences of composed functions

(compaction). Armed with the assumptions enforced by normalisation, the task

of subsequent rule-sets is much easier. It should be noted that to be effective,

normalisation must be applied frequently, at the cost of extra compilation time.

For most scientific applications, we believe, that the trade-off between effective

optimisation and extra compilation time is worthwhile.
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7.2.4 Complex transformation rules are best avoided

A fourth observation, strongly related to the above, is that complex rules, designed

to handle diverse code, are best avoided. Complex rules are more difficult to verify

and maintain than simple ones. We found that it is, generally, much easier to use

normalisation to reduce the diversity of code and thus reduce the need for complex

rules to handle that code3.

7.2.5 Observations relating to Centaur

Our prototype implementation is one of the larger scale applications of the

Centaur system[24]. The Centaur system is an integrated prototyping environment

specialised for defining language processing components using Natural semantics.

Very substantial support is also provided for parsing, debugging and pretty printing.

We used Centaur very heavily, using it to implement the parser, several pretty-

printers, the translator and the optimiser for our prototype. In early stages of the

project we also used Centaur to implement a simple typechecker and interpreter.

We have gained considerable experience in using this system and some observations

follow.

Natural Semantics is a good medium for describing compilation Natural

semantics allows a process to be described using sets of inference rules working over

objects of defined type. Such rules provided a good substrate for expressing our

processes quickly and succinctly. Once ideas are expressed in these rules Centaur,

with little extra effort, can turn them into a working prototype.

Some compromise is required to produce an efficient prototype The

simplest way to express ideas in Natural Semantics, and in almost any other

programming medium for that matter, is to write rules in a purely declarative manner

with little regard for efficiency. Unfortunately, we quickly found that overheads

from backtracking were such that little useful computation could be done without

compromising the structure of the rules for the sake of efficiency. Our final prototype

is tolerably efficient but some of the original elegance of the rules is gone.

3The application of this principle of: change the code not the rules is made easier to implement
by the innate transformability of BMF code.
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Centaur can take a very long time to fail The logic engine underpinning

Centaur’s implementation of Natural Semantics is Prolog. As with any Prolog

implementation this engine is relentless in pursuit of potential solutions even when

no solution exists. Small bugs in source code or in rule-sets often lead to the system

spending large amounts of time engaged in backtracking. To avoid this problem

we introduced more guards into our rules to prevent them being spuriously applied

and occasionally employed a non-logical construct Once to prevent backtracking by

allowing only one attempt at the proof goal forming its argument.

The Centaur environment is very useful The infrastructure provided by

Centaur was very useful in this project. In particular, we used the semantic debugger

very heavily. We also made heavy use of the pretty-printing facilities for both

viewing programs on-screen and for dumping concrete syntax to files for further

processing/analysis.

7.3 Future work

There is much scope for future work. Of the highest priority is the development of a

phase of code generation to optimise memory management. Such a phase will, where

possible, utilise existing techniques to avoid allocation and copying such as those used

in the sisal[56, 55] and FP*[144, 145] compilers.

New features can be added to the Adl language to including the introduction

of true multi-dimensional arrays to provide more flexibility in partitioning data and

some support for recursion can be added to provide a greater level of expressive power.

On the implementation side, there is scope to provide support for nested

parallelism. There is also potential to add instrumentation to the optimisation

and parallelisation processes to provide a trace of its progress. Such a trace can

be combined with a static cost model to measure the impact of optimisation and

parallelisation at various stages.

There is also scope to explore the targetting of point-free code to alternative

platforms. In this work, our focus was on tightly coupled distributed memory

architectures. Emerging on-chip parallel platforms such as Explicit Data Graph

Execution (EDGE) architectures[26, 133], a-priori, offer opportunity for exploiting

parallelism in point-free notation at a fine-grained level.
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Finally, the compilation methodology used in this work offers great potential. The

systematic use of local rewrite rules to propagate changes of global scope provides

advantages in terms of flexibility and transparency. The use of normalisation is key

to the effectiveness of this process. There is scope for improving and extending the

definitions of our compilation process. First, by the reuse of rules can be enhanced

by the separation of rewrite rules from the strategies for their application. Systems

such as Stratego[139] support such separation. Second, by the use of more formally

defined syntactic interfaces between transformation components, in a similar manner

to[138]. The use of interfaces in particular offers the prospect of enhancing a compiler

by simplifying the incremental addition of new modules.

In summary, the implementation described in this work has demonstrated good

performance in its application domain. We have only just started to explore the

potential of point-free form as a medium for compilation, and to develop the

techniques necessary to exploit this potential. There remains much interesting work

to be done.



Appendix A

Glossary

This report defined a number of new terms and used, in a specialised context, a

number of existing terms. This appendix lists new terms and puts others into context.

All terms are listed in alphabetical order.

address function: Any BMF function that references an element of a tuple. All

address functions are written mπn where m is the arity of the input tuple and

n is the element of the tuple being referenced.

aggregate function: Any function over an aggregate type or returning an aggregate

type. map is an example.

aggregate type: A vector or a tuple type.

alltuple: A second order function that applies a tuple of functions to copies of an

input value, returning a tuple of results. Sometimes called alltup or written

(. . .)◦.

allvec: A second order function that applies a vector of functions to copies of an

input value, returning a vector of results. Usually written [. . .]◦.

array: See vector.

associative: Property of a binary function. A binary function ⊕ is associative if:

∀x, y, z : (x⊕ y)⊕ z = x⊕ (y ⊕ z)

All binary functions given to parallelisable versions of reduce and scan must

be associative in order to guarantee deterministic behaviour.

259
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axiom: A rule consisting of an assertion with no premises. An example of an axiom

is f · id⇒ f .

backtracking: Attempting an alternative path to proof upon failure of the current

rule. Backtracking is, potentially, a major source of inefficiency in the Adl

prototype implementation. Rules are carefully crafted to avoid redundant

backtracking with some compromise to the declarative style of the semantics.

barrier synchronisation: A synchronisation event in which every member of a

group of processes participates. Very good for simplifying the state space of a

parallel application. In the Adl project the composition of parallel components

is currently implemented as a barrier synchronisation.

binary function: In the Adl project, any function accepting a pair of values.

BMF (language): A point-free subset of Bird-Meertens-Formalism used as an

intermediate language in this work.

BMF (theories): The notation and algebra of Bird-Meerten’s formalism as applied

to different aggregate types. There is a BMF theory for each of a number of

types.

body: The core part of a function or expression. For example, the body of a map

function is the function that it encapsulates. The term body is necessary to

differentiate the code that performs the core activity of a function from the

code that is used to support that activity.

compaction: A normalisation process using rewrites to reduce the number of

function compositions between the function of interest and the current site of

optimisation.

constant function: A function that, that when applied to any value, yields a

constant.

category theory: The abstract study of objects and arrows. The work upon

which this implementation is, primarily, derived from the category Set of sets

and total functions. Several BMF identities on concatenate lists have proofs, at

least partly, reliant on category theory.
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Centaur: A language system which takes a syntax description, a semantic

description and a pretty printer description and produces a working prototype

of a language or process.

concatenate-list (cf. vector): A concatenate list is an aggregate data type

defined by the constructors ++ (concatenate), [·] (make-singleton) and [] (the

empty list). Because ++ is associative such lists can be decomposed in arbitrary

orders, which allows parallelism. The constructors above are not used directly

by the Adl programmer. Other functions, such as iota are used to provide their

functionality in an indirect way.

conclusion/rule conclusion: The part of an inference rule that is below the line.

code-request: The newly optimised code produced by an optimisation rule.

Typically, optimisation rules output a code-request which is optimised and a

wish-list which refers to temporary code forming a bridge between the code-

request and unoptimised code upstream of the wish-list.

composition: Function composition, denoted: “·”. A binary function to combine

function such that the output of the right-hand function becomes the input of

the left-hand function. That is: f · g x = f(g x)

denotational: Denoting a value. A definition concerned only with a value.

distl: Distribute-left. A function, taking a pair consisting of a value and a list, that

distributes the value over the list to form a list of pairs. Can be implemented

using zip and repeat.

distributed memory architecture: Any computer hardware where memory is

strongly associated with a particular processor and the cost-difference between

access to the memory associated with a processor and access to other, remote,

memory is relatively large.

Data Movement Optimiser: The part of the Adl implementation responsible

for statically reducing the cost associated with data movement in the BMF

intermediate form.
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downstream: The direction in which data moves in a BMF program. Because

programs are expressed in point-free form in this report. Downstream is

synonymous with leftwards.

environment: In the context of the translator, the term environment refers to the

mapping between variables and the BMF functions used to access their values.

In a more general context, the term environment refers to the variables that

are free in the scope of the original Adl function. In point-free BMF, all values

that are used by a function must be explicitly passed to that function so the

environment is tupled with the original input parameters.

expression: A term returning a value.

fail: The state that occurs when a premise of a rule cannot be proven. A fail will

result in the inference engine backtracking to find a new rule.

filter (function): A common second-order function to eliminate elements of a input

list according to an input predicate. Not currently included as a primitive in

the Adl implementation.

filter (optimisation): A data-structure, used in tuple-optimisation, whose values

can be either BMF code or null. A filter expresses the data needs of downstream

code. The null value is needed to express the case of downstream code having

no specific data needs. In the current implementation a null filter is generated

only by constant functions.

front-of-optimisation: see optimisation-front.

function (partial): A function that has undefined elements in its range for some

elements in its domain. An example of a partial function is div.

index function/operator: (!) a function for randomly accessing a vector at a

given location.

index generating function: The code generating an integer forming the second

argument to an index operator.

indexing function: An index operator composed with the alltup function

generating its input.
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init: A function that returns all but the last element of its input vector.

id: The identity function. The function that always returns its input.

identity (algebraic): An equation for rewriting expressions, in general, and

programs consisting of composed functions, in the context of this work.

implementation (noun): A compiler.

instance: A single invocation of a portion of code, e.g. a map body.

iota: A primitive function that dynamically allocates a list containing a sequence

of successive integers, starting at zero. Used as the core means for dynamic

allocation of storage in Adl.

lambda lifting: Making free-variables bound. A necessary part of Adl to BMF

translation.

last: A function returning the last element of a vector.

map: A second order function for applying an input function, elementwise to each

element of a vector. map is a primitive in Adl.

map body: The functional parameter of the map function.

map-translation: The BMF code, produced by the translator, corresponding to a

map function in Adl.

mask: Function to filter a vector according to a boolean mask vector of the same

length.

model: In the context of this work: a model of the evaluation and cost of running

BMF programs. The most detailed model used in this work is a trace-generating

simulator that executes parallelised BMF code on a simulated distributed

machine.

Natural Semantics: The semantic framework used to express processes in the

Centaur system. Most parts of the Adl implementation were defined using

Natural Semantics. Natural semantics shares many features with Structured

Operational Semantics.
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nested vector: A vector of vectors. Vectors in Adl have only one dimension so

a nested vector is the only way of approximating multidimensional structures.

There is no requirement that the sub-vectors all have the same length.

normalisation: The process of making code predictable for the consumption of later

rules. In the Adl implementation, examples of normalisation include, removing

identity functions, compaction, and associating functions to the left or right.

optimisation front: The site in the BMF code where optimisation is currently

taking place. This point moves from downstream to upstream as optimisation

progresses. At the optimisation front a wish-list is optimised w.r.t the upstream

code to form a code-request and a new-wish list which is now further upstream.

pair: A tuple with two elements.

parallelisation: The process of converting BMF code which is implicitly parallel

into explicitly distributed BMF code. This process is defined in a similar way

to the optimisation process with parallelisation starting from the downstream

parts of the program and moving upstream.

π1, π2 etc: Functions to project elements from tuples. π1 projects the first element

from a tuple, π2 the second and so on. When the arity of the input tuple is

more than two, the arity of the input tuple is written as a prefixed superscript.

For example 3π3.

permutation: A re-ordering of a data structure.

polymorphic: The property of being able to handle more than one type. map,

reduce and scan are polymorphic functions. Adl allows a limited amount

of user-defined polymorphism through limited overloading of user-defined

functions.

point-free: A style of programming without the use of named variables or

parameters. Using point-free style, functions are glued together with second-

order operations such as function composition and alltup.

predicate: A function returning a boolean value.

prefix(parallel): A parallel variant of scan.
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premise: A clause above the line of an inference rule. All premises must be proved

true before the rule is proved true.

priffle: Predicate-riffle. A function to merge elements of two sub-vectors into a

single vector with the guidance of a vector of boolean values specifying which

vector to extract the next value from.

program(BMF): A BMF function intended for execution.

product type: A tuple.

proof: A sequence of inference steps ascertaining the truth of a desired goal. In the

context of the Adl project the translator, optimiser and (to a lesser extent) the

paralleliser are executable proof processes.

ragged vector: A vector of vectors of varying length.

range generator: The code in a translated map function that generates the vector

of values corresponding the second input value to the original Adl map function.

reduce: A primitive function to insert a binary operator between the elements of a

vector, evaluate this expression and return a single result. reduce has a highly

parallel implementation.

reduce body: The code appearing on the left-hand-side of the / symbol in the

translation of a reduce function.

repeat: A BMF function that takes a pair of the form (a, n) and produces a

vector containing a repeated n times. A distributed version of repeat is used to

broadcast values.

rule-set: A named group of inference rules, written in natural semantics with a well

defined purpose.

scan: A primitive function that takes a binary operator and a vector and returns

a vector containing the results of inserting the operator between the elements

of each of the initial segments of the vector. As with reduce, a highly parallel

implementation exists for scan.
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scan body: The code appearing on the left-hand-side of the // symbol in the

translation of a scan function.

select: A BMF function that takes a pair of vectors (s, t) and returns the elements

of s indexed by the values in t.

split: A BMF function that takes a vector and partitions it into a vector of

distributed vectors.

strict: An evaluation order were arguments to functions are evaluated prior to being

passed into the body of the function. Adl is strictly evaluated.

surface: That part of a BMF function that has no other functions composed

upstream of it.

syntactic polymorphism: Polymorphism implemented by instantiation of

polymorphic functions to the types of their actual parameters. With this type of

polymorphism, a function can be instantiated more than once when it is called

with different types.

translator: The phase of the Adl compiler responsible for converting Adl code to

BMF code.

translator code: The code produced by the Adl to BMF translator.

transpose: In the context of this work, a primitive BMF function to re-arrange

the elements of two dimensions of a nested vector so that indices to access

each element are swapped in those dimensions. When applied to ragged vectors

transpose may mix undefined elements into its result.

tuple: A product-type containing two or more values of possibly different type.

tuple-optimisation: Pass of the optimiser responsible for reducing the quantity of

data transported to support access to elements of tuples.

Typol: The language used to express the natural semantics definitions executed by

Centaur.

unary operator: A function of one non-tuple parameter.
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upstream: The direction from which data flows in BMF programs. In the examples

in this report, upstream is a synonym for rightwards.

vector: An array structure restricted to one-dimension. Vectors can be nested.

vector-optimisation: Pass of the optimiser responsible for reducing the quantity

of data transported to support access to elements of vectors.

vector referencing function: A function generating a vector forming the first

argument of an index operator.

wish list: A section of BMF code forming a bridge between already-optimised code

downstream and yet-to-be optimised code upstream. Typically, the wish-list

extracts a small amount of output data from a large amount of input data.

zip: A function that takes a pair of vectors and produces a list of pairs from

corresponding elements of the input vectors.
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The transpose function

This chapter has three parts. The first part describes the issues surrounding the

implementation of parametric transpose on nested vectors. The second part is an

annotated listing of a Scheme program implementing parametric transpose. The third

part is a transcript of the output of the model run against selected test data.

B.1 Implementation of parametric transpose

What is the meaning of a parametric transpose operation? An informal definition is:

(. . . (. . . (. . . (transpose(x,y) v) . . .!ix) . . .)!iy . . .) = (. . . (. . . (v . . .!iy) . . .!ix) . . .)

for all indices ix valid in the xth from-outer dimension of v and all indices iy valid

in the yth-from-outer dimension of v and where all other index values are preserved

across the equals.

Figure 170 gives a concrete illustration of the effect of transpose of dimension

0 (outermost) and dimension 2 (in this case, innermost) of a triple-nested vector.

Note, that any practical implementation of transpose has to decide which indices to

iterate over in order to build the transposed vector. The answer is, generally, that the

index that each dimension of the transposed vector should range over is the length

of corresponding dimension of the original vector. Also note that, even though the

transposed dimensions x and y have moved they should still range over the lengths

they had in the original vector. This preservation of range means that when the

length of x and the length of y are different, the shape of the transposed vector is

different.

268
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transpose(0,2)

[ [[1, 2], [3, 4], [5, 6]],
[[7, 8], [9, 10], [11, 12]],
[[13, 14], [15, 16], [17, 18]],
[[19, 20], [21, 22], [23, 24]]]

=
[ [[1, 7, 13, 19], [3, 9, 15, 21], [5, 11, 17, 23]]
[[2, 8, 14, 20], [4, 10, 16, 22], [6, 12, 18, 24]]]

Figure 170. An illustration of the effect of transpose(0,2) on a triple-nested vector.
Note that the length of the middle dimension, the one unaffected by this operation

is untouched while the lengths of the other two dimensions are exchanged.

transpose(0,1)·transpose(0,1)

[ [1, 2],
[3, 4, 5],
[6],
[7, 8, 9, 10]]

6= transpose(0,1)

[ [1, 3, 6, 7],
[2, 4, 8],
[5, 9],
[10]]

6=
[ [1, 2, 5, 10],
[3, 4, 9],
[6, 8],
[7]]

Figure 171. An illustration of how naive transposition of a jagged vector leads
incorrect results. Using well-behaved transposition the last vector would be the

same as the original input vector.

There is one minor shortcoming in the foregoing analysis. We have referred to the

length of a dimension as if such a thing exists. Unfortunately, when the subvectors

of one or more dimensions have different lengths there is no such thing as a single

length for that dimension. How such jagged vectors are handled is discussed next.

B.1.1 Transposing non-rectangular vectors

transpose works well with rectangular vectors and, we envisage, vectors that

require transposition will, almost invariably, be rectangular. However, a complete

implementation will need to work with all semantically-correct programs and it is

possible, using carefully chosen index values, for a program to be both semantically-

correct and specify transposition of a jagged vector.

Transposing jagged vectors is a non-trivial operation. Figure 171 shows how easily

the process goes wrong. A basic identity that we expect to hold for transpose is:

transpose(0,1) · transpose(0,1) x = x

That is, if we transpose the same dimensions of a vector twice we expect to get back

the same vector. In figure 171 this is most definitely not the case.
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...
...

...
...

...
...

· · · ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·
· · · ⊥ 1 2 ⊥ ⊥ ⊥ · · ·
· · · ⊥ 3 4 5 ⊥ ⊥ · · ·
· · · ⊥ 6 ⊥ ⊥ ⊥ ⊥ · · ·
· · · ⊥ 7 8 9 10 ⊥ · · ·
· · · ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

...
...

...
...

...
...

Figure 172. A nested vector floating in a sea of undefined values. Any attempt to
access beyond the bounds of a vector returns the undefined value ⊥.

transpose(0,1) · transpose(0,1)

1 2 ⊥ ⊥
3 4 5 ⊥
6 ⊥ ⊥ ⊥
7 8 9 10

= transpose(0,1)

1 3 6 7
2 4 ⊥ 8
⊥ 5 ⊥ 9
⊥ ⊥ ⊥ 10

=

1 2 ⊥ ⊥
3 4 5 ⊥
6 ⊥ ⊥ ⊥
7 8 9 10

Figure 173. An illustration of how padding, provided by ⊥ values, leads to the
correct behaviour of transpose.

The problem is caused by misaligned values and a cure for the problem is

to take account of the space surrounding the jagged vector when performing our

transposition. Our approach is to imagine the jagged vector as floating in a sea of

undefined values. Figure 172 illustrates this view. Any attempt to reference values

beyond the bounds of the vector returns ⊥ (pronounced “bottom”), the undefined

value. Following the convention used by FP*[145] it is the programmer’s repsonsibility

to make sure that programs do not access undefined values. The ⊥ values, within the

bounding box surrounding the defined values of the jagged vector, provide valuable

padding for the transpose function. Figure 173 shows how transposition of the entire

bounding box enclosing a jagged vector behaves correctly. Note that the middle
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vector, in particular, is interspersed with ⊥ values. These values correspond to

attempting to access values beyond the bounds of the original nested vector1.

Using ⊥ comes at a cost. Values in a transposed vector can be either, a valid value

or⊥. This representation requires a tagged-union type with the run-time penalty that

this representation entails. However, ⊥ will be accessed only in incorrect programs

and there is a strong argument that an implementation should at least allow the use

of the tagged-union type to be switched off once the programmer is confident that

the program is working.

B.2 Source code of an implementation

The source code for a test-implementation of parametric transpose, written in MIT-

scheme, follows.

An electronic copy of the source can be downloaded from:

http://www.cs.adelaide.edu.au/~brad/src/Adl/scheme/transpose.scm

The basic method used by the implementation is to convert an arbitrarily nested

list2 into a flattened bag of data/index-list pairs. The indices of the bag are

manipulated by transpose and the bag can then be converted back into a list.

An intuitive understanding of the process can be had by loading the source code

shown in the next section into the scheme interpreter and executing the following

sequence of evaluations.

list1

simple-transpose-list1

list2

jagged-transpose-list2

list3

ident-list3

backw-ident-list3

1From experiments with an experimental implementation of transpose written in scheme it is
apparent that two versions of ⊥ are needed. One version is required for attempts to access beyond
the bounds of a sub-vector. Another less common version ⊥e is required to denote an attempt to
access the first element of an empty vector. At first glance this might not seem like a special case but
the special form is required so that the empty vector can be reinstated if/when the vector containing
the empty vector is returned to its original orientation.

2Scheme’s relaxed typing allows such arbitrary nesting without defining extra types.
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Note that the symbols % and e% are place-holders for references beyond the

bounds of the original vector and references to the first element of an empty vector

respectively. These place-holders are vital if transpositions are to be reversible in

general. A transcript of the output of the above expressions appears in the last

section of this chapter.

B.3 Source code for transpose.scm

;;;; Model for sequential transpose

;;;; ------------------------------

;;;; Works by converting a nested list

;;; to a bag.

;;;; The bag elements are then manipulated

;;;; Finally, the bag is turned back into a nested

;;;; list.

(define (list-to-bag l) (lb-iter l 0 ()))

(define (lb-iter l c v)

(cond ((null? l) ())

((pair? l) (append

(if (null? (car l)) ;;; the first element is empty list?

(list (list () (append v (list c))))

(lb-iter (car l) 0 (append v (list c))))

(lb-iter (cdr l) (+ c 1) v)))

(else (list (list l v))))) ;;; atom? just write bag entry.

;;; Auxiliary functions



APPENDIX B. THE TRANSPOSE FUNCTION 273

;;; different-outers compares two vectors (not always of

;;; the same length and returns true if the outer dims

;;; are different. Looks at all but the last elements of

;;; the longest vector.

(define (different-outers c t)

(cond ((null? c) #f)

((or (and (= 0 (car c)) (eq? ’% (car t)))

(= (car c) (car t)))

(different-outers (cdr c) (cdr t)))

((= 1 (length c)) #f)

( else #t)))

;;; length, function to find the length of a list.

(define (length l)

(if (null? l)

0

(+ 1 (length (cdr l)))))

;;; different-inner compares the innermost elements (last

;;; elements of the current-index vector and target-index

;;; vector. If the end of the current index vector is

;;; different from the same element of the target-index

;;; vector then there is, possibly, a missing element.

(define (different-inners c t)

(cond ((or (null? c) (null? t)) #f)

((= 1 (length c)) (not (= (car c) (car t))))

(else (different-inners (cdr c) (cdr t)))))
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;; current-shorter returns true if the current vector is shorter

;; than the target vector. If it is (and it is the same otherwise)

;; then we should add a zero element to the end of the current-index

(define (current-shorter c t)

(cond ((null? t) #f)

((null? c) #t)

(else (current-shorter (cdr c) (cdr t)))))

;; append-zero returns the input list with a zero appended to the

;; end. This is used when the current vector is shorter than the

;; target value but identical otherwise.

(define (append-zero c)

(append c (list 0)))

;; increment the number associated with the last element of

;; the input list.

(define (inc-last l)

(cond ((null? l) ())

((= 1 (length l)) (list (+ 1 (car l))))

(else (cons (car l) (inc-last (cdr l))))))

;;; main-function. Calls bag-to-list-iter and then extracts

;;; the first part of the state. The second part of the state

;;; should be the empty target value list -- if all works well.

(define (bag-to-list l)

(if (null? l)

()

(car (bag-to-list-iter (list 0) l ))))
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;;; The function that does all the work.

;;;

(define (bag-to-list-iter c l)

(if

(null? l)

(cons () ())

(let ((t (car (cdr (car l))))

(v (car (car l))))

(if (different-outers c t)

(cons () l)

(if (different-inners c t)

(let ((state1 (bag-to-list-iter (inc-last c) l)))

(cons (cons ’% (car state1)) (cdr state1)))

(if (current-shorter c t)

(let* ((state1 (bag-to-list-iter (append-zero c) l))

(state2 (bag-to-list-iter (inc-last c) (cdr state1))))

(cons (cons (car state1) (car state2))

(cdr state2)))

(let ((state1 (bag-to-list-iter (inc-last c) (cdr l))))

(cons (cons v (car state1))

(cdr state1)))))))))

;;;; The transpose operations (and its auxiliary defs) follow.

;;;; transpose is broken into four stages.

;;;; 1. conditional-pad: scans the bag and pads the arrays out to

;;;; the highest swapped dimension. Any entry needing pading

;;;; will have its value component changed to ’%e

;;;; 2. swap-dims: will swap the elements in the dimensions of

;;;; each index.

;;;; 3. unpad: will remove trailing padding from the elements.

;;;; 4. restore-empty: will replace ’%e’s with () if there are
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;;;; no # values in the corresponding target index lists.

;;; conditional pad - scan the bag and pad out the arrays to the

;;; highest dimension in the dimension pair argument.

(define (conditional-pad ds b)

(letrec ((mds (max (car ds) (cdr ds)))

(cond-pad (lambda (b)

(if (null? b)

()

(cons (pad-one mds (car b))

(cond-pad (cdr b)))))))

(cond-pad b)))

;;; pad-one: check the length. If it is greater than the index, do nothing.

;;; if it is less than or equal to the index then pad the target index list

;;; out with the difference.

(define (pad-one m be )

(let*

((t (car (cdr be)))

(l (length t))

(gap (- m (- l 1))))

(if (> gap 0)

(list ’%e (append t (repeat gap ’%)))

be)))

(define (repeat n item)

(if (= n 0)

()

(cons item (repeat (- n 1) item))))
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;;; Swap dimensions in each element of the bag-list

;;; the second stage of transpose.

(define (swap-dims d1 d2 l)

(if (null? l)

()

(cons (list (car (car l))

(swap-one d1 d2 (car (cdr (car l)))))

(swap-dims d1 d2 (cdr l)))))

;;; Swap one

(define (swap-one f s l)

(let*

((fst_val (index l f))

(snd_val (index l s))

(fst_tmp (insert l f snd_val))

(snd_tmp (insert fst_tmp s fst_val)))

snd_tmp))

;;; index operation. returns the (n-1)th element of l

(define (index l n)

(if (= n 0)

(car l)

(index (cdr l) (- n 1))))

;;; insert operation. returns l with the nth element changed to v

(define (insert l n v)

(if (= n 0)

(cons v (cdr l))

(cons (car l) (insert (cdr l) (- n 1) v))))

;;; remove-excess-padding



APPENDIX B. THE TRANSPOSE FUNCTION 278

;;; traverse the list. For each target remove excess #’s at the end of

;;; the list.

(define (remove-excess-padding l)

(if (null? l)

()

(cons (remove-one-lot (car l))

(remove-excess-padding (cdr l)))))

(define (remove-one-lot be)

(list (car be) (remove-from-target (car (cdr be)))))

(define (remove-from-target t)

(let*

((rt (reverse t))

(crt (remove-leading-errors rt))

(ct (reverse crt)))

ct))

;;; generic reverse function

(define (reverse l)

(letrec

((rev-iter (lambda (i r)

(if

(null? i)

r

(rev-iter (cdr i)

(cons (car i) r))))))

(rev-iter l ())))

;;; function to remove leading ’% elements
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(define (remove-leading-errors t)

(cond ((null? t) ())

((eq? ’% (car t)) (remove-leading-errors (cdr t)))

(else t)))

;;; revert empty.. produces an empty list if the coordinates of a ’#e

;;; element are all valid.

;;; function is

(define (revert-empty l)

(map revert-one l))

(define (revert-one be)

(if (eq? (car be) ’%e)

(check-valid-coord be)

be))

(define (check-valid-coord be)

(if (valid-coord (car (cdr be)))

(list () (car (cdr be)))

be))

(define (valid-coord t)

(cond ((null? t) ’#t)

((eq? (car t) ’%) ’#f)

(else (valid-coord (cdr t)))))

;;; now we need to define a sorting function

;;; to return the bag to a form that is easy to

;;; convert back to a list.

;;; use quicksort
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(define (filter f xs)

(cond ((null? xs) ())

((f (car xs)) (cons (car xs) (filter f (cdr xs))))

(else (filter f (cdr xs)))))

;;; The quicksort function

;;; issues recursive calls relies on a binary filter predicate p.

;;; this p will be the equivalent of ">" (i.e. true if first arg is

;;; ">" the second.

(define (quicksort l p)

(cond

((null? l) ())

((= 1 (length l)) l)

(else

(let ((left (filter (lambda (x) (p (car l) x)) (cdr l)))

(right (filter (lambda (x) (not (p (car l) x))) (cdr l))))

(append (quicksort left p)

(append (list (car l))

(quicksort right p)))))))

;;; custom binary comparator operator for bag elements.

;;; the items are compared on the target index lists (second component)

;;; rather than on their value component. Remember # = 0 for our

;;; purposes.

(define (bag-index-greater-than x y)

(define xt (car (cdr x)))

(define yt (car (cdr y)))

(define turn-zero (lambda (n) (if (eq? ’% n) 0 n)))

(define xtn (map turn-zero xt))
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(define ytn (map turn-zero yt))

(define gt-iter (lambda (xs ys)

(cond ((null? xs) ’#f) ;; must ask this question before next

((null? ys) ’#t) ;; must be asked after last.

((= (car xs) (car ys)) (gt-iter (cdr xs) (cdr ys)))

((> (car xs) (car ys)) ’#t)

(else ’#f))))

(gt-iter xtn ytn))

;;; now for the transpose operator

;;; it takes a bag and puts it through 4 stages.

;;; first it takes the bag and pads out all of the

;;; index lists that have lengths shorter than the highest

;;; transposed dimension. This will occur with empty lists

;;; (whose index lists can be shorter than those items which

;;; need all dimensions in the array to specify their location.

;;; The second step is the index swap for the transpose itself.

;;; This is a straightforward step.

;;; Some transpositions can leave trailing invalid index elements

;;; in the index lists. These can be removed with no effect on future

;;; operations (the semantics says that there are infinitely many of

;;; these trailing valuesanyway). These can be

;;; eliminated by remove-excess-padding.

;;; Finally, the resulting bag is sorted using quicksort.

(define (transpose ds b)

(let*

((pb (conditional-pad ds b))

(spb (swap-dims (car ds) (cdr ds) pb))

(sb (remove-excess-padding spb))

(sbr (revert-empty sb))

(ssb (quicksort sbr bag-index-greater-than)))

ssb))
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;;; Test data

;;;

(define list1 (list (list 1 2 3)

(list 4 5 6)

(list 7 8 9)))

(define list2 (list (list 1 2)

(list 3 4 5 6)

()

(list 7)

(list 8 9 10)))

(define list3 (list (list (list 1 2 3) (list 4 5 6) (list 7))

(list (list 8 9) () )

(list (list 10 11 12) (list 13) (list 14))

()

(list (list 15) (list 16 17 18 19))))

;;; Test applications

(define simple-transpose-list1 (bag-to-list

(transpose (cons 0 1)

(list-to-bag list1))))

(define jagged-transpose-list2 (bag-to-list

(transpose (cons 0 1)

(list-to-bag list2))))
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(define ident-list3 (bag-to-list (transpose

(cons 0 1)

(transpose

(cons 1 2)

(transpose

(cons 0 1)

(transpose

(cons 0 2)

(list-to-bag list3)))))))

(define backw-ident-list3

(bag-to-list (transpose

(cons 0 2)

(transpose

(cons 0 1)

(transpose

(cons 1 2)

(transpose

(cons 0 1)

(list-to-bag list3)))))))

B.4 Test results

To test the transpose implementation above we ran the code against a number of test

expressions. To illustrate the effect of the transpose operator we show the output of

the following expressions at the end of the code above:

simple-transpose-list1: runs a single transpose on a rectangular vector, nested

to two dimensions.

jagged-transpose-list2: runs a single transpose on a jagged vector, nested to

two dimensions.
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ident-list3: a composed series of transpositions over various dimensions of a

jagged vector, nested to three dimensions. The series of transpositions is

equivalent to an identity operation on an input vector.

backw-ident-list3: the series of transpositions in ident-list3 applied to the

same input list in reverse.

The transcript of the output of the evaluation of these expressions follows:

1 ]=> list1

;Value 5: ((1 2 3) (4 5 6) (7 8 9))

1 ]=> simple-transpose-list1

;Value 2: ((1 4 7) (2 5 8) (3 6 9))

1 ]=> list2

;Value 6: ((1 2) (3 4 5 6) () (7) (8 9 10))

1 ]=> jagged-transpose-list2

;Value 3: ((1 3 %e 7 8) (2 4 % % 9) (% 5 % % 10) (% 6))

1 ]=> list3

;Value 7: (((1 2 3) (4 5 6) (7)) ((8 9) ())

((10 11 12) (13) (14)) () ((15) (16 17 18 19)))

1 ]=> ident-list3

;Value 4: (((1 2 3) (4 5 6) (7)) ((8 9) ())

((10 11 12) (13) (14)) () ((15) (16 17 18 19)))

1 ]=> backw-ident-list3
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;Value 1: (((1 2 3) (4 5 6) (7))

((8 9) ()) ((10 11 12) (13) (14)) () ((15) (16 17 18 19)))



Appendix C

Sorted and Sortable indexing

functions

A sorted indexing function is a nested indexing function where the existing rules

of the optimiser are able to remove all index operators (!). This chapter precisely

defines the property of a nested indexing function, in a map-body, being sorted. We

also describe the properties that have to hold for an indexing function to be sortable.

The following section lists the assumptions and notation employed by the rest

of this chapter. Section C.2 defines the set of valid addresses that are amenable to

sorting. Section C.3 defines a partial ordering on this set of addresses. Section C.4

defines a process for converting an index function into a list of addresses. Section C.5

uses the definitions in the previous sections to define a predicate to test if an index

function is sorted. Finally, section C.6 outlines the process by which an unsorted

index expression can be converted to a sorted index expression if it is found to be

sortable.

C.1 Assumptions

In what follows we assume that all nested indexing functions take the form:

! · (! · (. . . (! · (v, an−1)
◦, . . .)◦, a1)

◦, a0)
◦

We also assume that each index-generator, ai:

• has undergone code-compaction, as described on page 102.

286
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• and has had all superfluous identity functions removed with the exception of

any (π1, π2)
◦ functions immediately upstream of a primitive non-addressing

function1.

Whether such an indexing function is sorted to a form where it is possible to

optimise-away all index operations depends on which addressing functions appear

in the index-generating functions a0, a1, . . . , an−1. To extract, and analyse, these

addressing functions, we will define:

• a set called Addr that contains all valid addressing functions,

• a partial ordering on the members of Addr ,

• a function called ExtractAddrs that extracts the set of all address functions from

an index generator,

• a function called ToAddr which condenses the output set of ExtractAddrs to a

single value,

• the property an indexing function being sorted, in terms of the above entities,

and

• the property of an indexing function being sortable.

We start by defining Addr .

C.2 The set of valid address functions

We define a set Addr :

Addr = {p ∈ B EXP |is trans addr(p)} ∪ {K} ∪ {⊥}

which contains all address functions that can appear in a nested index function along

with an additional element K used as a placeholder to denote constant functions which

are not dependent on any input value. The undefined value ⊥ is included to denote

1This exception is to handle the cases where the code such as ! · (π1, π2)
◦ appears inside code to

generate an index value to a nested index function. If the, otherwise superfluous, (π1, π2)
◦ were to be

removed it would introduce a special case making detection of code that is amenable to optimisation
more difficult.
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error values generated by a ToAddr function to be defined shortly. The predicate

is trans addr(f) is true iff:

(f = π2)∨
(f = op · π2)∨
(f = g · π1) ∧ is trans addr(g)

Informally, Addr is the set:

{π2, op · π2, π2 · π1, op · π2 · π1, π2 · π1 · π1, op · π2 · π1 · π1 . . . , K}

where op is any element of B EXP − {π1, π2}. That is op is any non-addressing

function2.

C.3 A partial ordering on address functions

We define a partial order, <a, on the elements of Addr . p <a q for some p, q ∈ Addr

iff:
(p = π2) ∧ (q = f · π1)∨
(p = f · π2) ∧ (q = g · π1)∨
(p = f · π1) ∧ (q = g · π1) ∧ (f <a g)∨
q = K

informally, <a defines the partial ordering:

π2

op · π2
<a

π2 · π1

f · π2 · π1
<a

π2 · π1 · π1

op · π2 · π1 · π1
<a . . . <a K

Note also that K <a K 3 and ⊥ is not related to anything by <a. Now we define a

mapping, in two stages, from the index generating functions ai appearing in nested

index functions, to members of Addr .

2In non-translator code the set of addressing functions is bigger than the set {π1, π2}. This set
would have to be enlarged to adapt these definitions to non-translator code.

3This means that the relative order of constant index-generating functions can be adjusted, with
compensating use of transpose functions, with impunity. However, because K is the greatest element
in the partial ordering, all constant index generating functions must be more deeply nested than
any non-constant index-generating function in order to be part of a correctly formatted nested index
function.
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C.4 Extracting address functions from index-

generators

First we define a function ExtractAddrs that maps each index generating function ai

to the set of address functions it contains:

ExtractAddrs(ai) = {p ∈ B EXP |addr seq(p, ai) ∧ depends(ai, p)}

where the relation address seq(p, a) holds iff:

(a = (q1, q2)
◦) ∧ (addr seq(p, q1) ∨ addr seq(p, q2))∨

(p = g · πi) ∧ (a = f · πi) ∧ (addr seq(g, f))∨
(p = q = πi)∨
(a = op · q) ∧ (Upstream(op) 6= πi) ∧ addr seq(p, q)

Where Upstream extracts the most upstream function in a composition sequence.

addr seq(p, q) is true if p matches a complete unbroken composed sequence of address

functions in q. Under the earlier assumption that code is compacted, these unbroken

sequences are the absolute addresses of values in the input tuple to the nested index

function.

The second relation in ExtractAddrs : depends(a, p) holds if:

∃v ∈ VALUE , (a[p/Wrong] v = ⊥) ∧ (a v 6= ⊥)

where Wrong is a polymorphic function defined Wrong x = ⊥. depends(f) is true if

f is ever evaluated for valid input values to the function4. If the address function is

never evaluated then it is not added to the result of ExtractAddrs.

C.4.1 Condensing the output of ExtractAddrs

The second stage of mapping, is a function called ToAddr , that converts the output

set of ExtractAddrs into either a single member of Addr or the value ⊥. ToAddr is

4depends detects dead code. Such detection is generally undecidable. We are assuming that an
implementation of depends will perform some conservative approximation of the semantics above
where we assume dependency unless it can be proven dependency does not exist. Also note, that
if a stage of dead-code-elimination is implemented prior to vector-optimisation the call to depends
can be removed.
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defined:
ToAddr(∅) = K

ToAddr({p}) = p, if p ∈ Addr

ToAddr({f}) = ⊥, if f /∈ Addr

ToAddr(A) = ⊥, if Cardinality(A) > 1

The first clause returns the place-holder K if the set of extracted functions is empty.

The second clause returns the address function contained in the set. The third clause

handles invalid address functions, this clause should not apply to valid, compacted,

translator code. The fourth clause applies when two or more different address

functions are extracted.

C.5 The property of being sorted

Given the definitions above, it is now possible to define what makes a nested indexing

function sorted. The nested indexing function:

! · (! · (. . . (! · (v, an−1)
◦, . . .)◦, a1)

◦, a0)
◦

is sorted iff:

ToAddr(ExtractAddrs(a0)) <a ToAddr(ExtractAddrs(a1) <a . . .

<a ToAddr(ExtractAddrs(an−1))

That is, if the outermost index generator is least in the partial order and the next

outermost is second-least in so on. Intuitively, it means that π2 functions must be

on the outside and more complex addressing functions should be further inside and

index-generators not dependent on any input value should be innermost.

C.6 From sortable to sorted

The section on reorientation on page 127 showed that it is possible, in some cases, to

insert tranpose functions into code in order to make the elimination of index operations

possible. In other words, transpose can be used to turn an unsorted indexing function

into a sorted indexing function. Indexing functions that can be converted in this way

are sortable.
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An indexing function:

! · (! · (. . . (! · (v, an−1)
◦, . . .)◦, a1)

◦, a0)
◦

is sortable iff there is some permutation:

p = permute[a0, a1, . . . , an−1]

of the index-generators for which:

ToAddr(ExtractAddrs(p0)) <a ToAddr(ExtractAddrs(p1) <a . . .

<a ToAddr(ExtractAddrs(pn−1))

That is, a nested indexing function is sortable if the partial ordering >a can be applied

to some permutation of its extracted and condensed addresses.

If it exists, a sorted permutation of index generators is achieved by using

applications of transpose to swap the order of index generators.

A final note All of the preceding definitions depend on the tuple structure built

by translator code. The definitions will change with major changes to the structure

of code produced by the translator. In most cases, minor changes to the language

such as the addition of new primitives will not affect the definitions above.



Appendix D

The time-space model

This appendix describes a sequential model for the execution of BMF programs

against known data. The model is defined as a series of rules. Each rule is

associated with a BMF function. When combined, the rules form a specification for an

interpreter. This interpreter not only produces an output value but other information

about the program’s execution. It is, essentially, a collecting interpretation[82] over

BMF programs and their input data.

Amongst the other data collected by the interpreter is a trace of the the space

consumption of the program over time. This trace information is used in chapters 4

and 5 as a basis for a comparison of the efficiency of BMF programs. An executable

version of the interpreter has been implemented in Mirandatm, and this version

corresponds to the rules shown in this appendix.

The layout of this appendix is as follows. Section D.1 defines the syntactic domains

used to describe the interpreter and its input. Section D.2 describes the semantics of

the top level rules of the interpreter and some auxiliary rules. Section D.3 presents

the rules of the interpreter and forms the bulk of this appendix. Lastly, section D.4

very briefly describes the process of extracting a trace from the final state produced

from the interpreter.

D.1 Syntax

The syntax used by the interpreter is split between three syntactic domains (phyla).

The first domain is the VALUE (see chapter 4). VALUE contains the syntax of

valid input values for BMF functions. VALUE contains syntax for integer, real and

292
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boolean values as well as for aggregate structures i.e. tuples and vectors. For the

purposes of this interpreter, we define an additional member of the VALUE domain

called null . null is a place-holder for a not-yet-defined value.

The second domain is B EXP (see chapter 4). B EXP defines the syntax of BMF

functions.

The third domain contains the syntax for defining interpreter rules. This domain

is called I RULES . It contains the sequence of interpreter rules defining how the trace

is generated for each BMF function. The first rule in this sequence belongs to the

I TOP phyla. Other rules, at least one for each BMF function, are contained in the

I RULE phyla. An (almost complete) abstract syntax for interpreter rule definitions

is given below.

Phyla

I RULES 7→ Interpreter Rules, I TOP 7→ Top rule,

I RULE 7→ Interpreter Rule, I DEF 7→ Interpreter definition,

I EXP 7→ Interpreter expressions, I PAT 7→ Patterns ,

I STATE 7→ Interpreter state, I TRACE 7→ Interpreter trace,

I TR 7→ Trace record , I NUM 7→ Number ref ,

I NAME 7→ Name, NUM 7→ Number ,

VALUE 7→ Value, B EXP 7→ BMF functions .

Abstract syntax

I RULES ::= irules I TOP [I RULE ]+

I TOP ::= tracegen I PAT I EXP

I RULE ::= strdef I PAT I EXP

I DEF ::= def I NAME [I PAT ]∗ I EXP .

I EXP ::= pass between [I NAME ]+ I STATE | space I PAT |
add to trace I STATE I NUM I NUM | length I PAT |
append I TRACE I TRACE | pval I PAT | plus I NUM I NUM |
mult I NUM I NUM | minus I NUM I NUM | uminus I NUM |
funapp I NAME [I PAT ]+ |
where I EXP [I DEF ]+ | ival I PAT | str I PAT .
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I PAT ::= var I NAME | val VALUE | ilist [I PAT ]∗ |
ituple [I PAT ]+2 | bmf B EXP .

I STATE ::= state I NUM I NUM I PAT I PAT I TRACE .

I TRACE ::= trace [I TR]∗ | tr name I NAME .

I TR ::= tr I NUM I NUM .

I NUM ::= inum NUM | numvar I NAME .

I NAME ::= Implemented as a string .

NUM ::= Implemented as an integer .

VALUE ::= see definition from chapter 4 + null.

B EXP ::= see definition from chapter 4.

Notes on syntax Each interpreter rule (I RULE ) must have an I PAT term of the

form ituple[B EXP,i pat0] where i pat0 must be an I PAT of the form val VALUE

or var I NAME .

The main I PAT term belonging to each interpreter rule (I RULE ) always has the

form ituple[B EXP,i pat0] where i pat0 must be an I PAT of the form val VALUE

or var I NAME .

Concrete syntax The mapping between expressions in the abstract syntax and

their concrete equivalents is shown below. The rules of the interpreter will be defined

using the concrete forms.

Abstract Syntax Concrete Syntax

irules trg [r0, ..., rn−1] 7→ trg r0, ... , rn−1

tracegen (b exp, v) 7→ Trg(b exp,v)

strdef (b exp, st) exp 7→ Str(b exp, st) = exp

def a [p0, ..., pn−1] exp 7→ a p0 ... pn−1 = exp

pass between [f0, ..., fn−1] env 7→ pass between [f0, ..., fn−1] env

space pat 7→ S(pat)

length pat 7→ #pat

add to trace env n0 n1 7→ add to trace env n0 n1

append tr0 tr1 7→ tr0++ tr1

pval st 7→ Pval(st)

plus n0 n1 7→ n0 + n1
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mult n0 n1 7→ n0 × n1

minus n0 n1 7→ n0 − n1

uminus n 7→ −n

funapp a [p0, ..., pn−1] 7→ a p0, ... , pn−1

where exp [d0, ..., dn−1] 7→ exp where d0, ... , dn−1

ival p 7→ p

str p 7→ Str(p)

var a 7→ a

val v 7→ v

ilist [v0, ..., vn−1] 7→ [v0, ..., vn−1]

ituple [v0, ..., vn−1] 7→ (v0, ..., vn−1)

state s t i o tr 7→ (s, t, i, o, tr)

trace [tr 0, ..., trn−1] 7→ [tr 0, ..., trn−1]

tr name a 7→ a

tr n0 n1 7→ (n0, n1)

inum n 7→ n

numvar a 7→ a

null 7→ null .

Other concrete syntax The concrete syntax corresponding to VALUE and

B EXP is shown in chapter 4.

D.2 Semantics

There will is no formal semantic description of the interpretation or trace building

process in this report. Instead, the syntax defined above will be used as a vehicle to

present the rules of the BMF interpreter1.

In this section we define, informally, the meaning of some of the framework for

the interpreter rules.

1To complete a formal description of the interpretation process an interpreter for interpreter rules
could be defined in natural semantics. We have omitted such a definition for now. This decision is
justified by the fact that the interpreter rules are defined in informal mathematical notation and, as
such, can be understood without a lengthy introduction.
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D.2.1 The trace generator

Trg is the function forming the entry-point of the time-space interpreter. Trg accepts

a tuple containing a BMF function and a value, injects the value into an initial

interpreter state and passes the resulting state and the BMF function into the set of

trace generating rules which, eventually, generates a final interpreter state.

Type

(BMF function,Value)→ Interpreter state

Semantics The semantics of Trg is defined by the following expression:

Trg (b exp, v) = Str(b exp, (S(v), 0, v, null, [ ]))

That is, the result of Trg is the same as the result of Str with the appropriate initial

values injected into the starting interpreter state. This state consists of an an initial

space requirement S(v), an initial time 0, an initial input value v, an initial output

value null , and an initial empty trace [ ]. Note that the null value is used as a

place-holder when no valid value yet exists2.

D.2.2 Interpreter rules

Str is the state-transforming function. Str is defined by the rules of the interpreter.

Each rule of the interpreter defines Str with respect to a different BMF construct.

Type

(BMF function, Interpreter state)→ Interpreter state

where the interpreter state consists of the current space consumption, current time,

input value, output value and trace. The trace is a series of integer pairs of the form:

(space, time). Each point represents an instantaneous transition3 to a new value for

space consumption at the corresponding time. Str is the core of the interpreter.

Semantics The semantics of Str are defined in the interpreter rules in the next

section.

2null is similar to ⊥.
3Hence the use of discrete steps to graph traces in chapters 4 and 5.
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D.2.3 Auxiliary function definitions

Auxiliary functions are called by Str to assist in the process of transforming the state.

Definitions of these functions follow

D.2.3.1 pass between-passing the state

pass between is a function used to pass an state tuple between a series of functions.

pass between is used where the execution of a BMF construct can be expressed as a

composition of state transforming functions.

Type

([(IS → IS)], IS)→ IS

where IS is an abbreviation for Interpreter state.

Semantics If we view the first input parameter is a cons-list a recursive definition

of pass between is:

pass between [ ] st = st

pass between (f : fs) st = pass between fs (f st)

D.2.3.2 S-the space function

S is a function used to determine the space consumed by a value.

Type

Value → Number

Semantics S(v) will return an integer value being the space, in words4, currently

occupied by v. S is defined by a small set of rules corresponding to the recursive

structure of VALUE .

D.2.3.3 add to trace-adding new trace records

add to trace creates an updated state with new space, time and trace values.

4A word is defined here as the space consumed by a single integer or floating point number. For
the sake of convenience, all scalar values are assumed to consume one word of space.
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Type

(Interpreter state, Number, Number)→ Interpreter state

Semantics A definition of add to trace is:

add to trace (s, t, i, o, tr) si ti = (s + si, t + ti, i, o, tr++ [(sl + si , tl + ti)])

where

sl = (fst · last) st

tl = (snd · last) st

where last accesses the last element in a trace list, fst accesses the first element of a

pair and snd accesses the second element of a pair. Note that si and ti are increments

on the current (last) trace values rather than being absolute space and time values.

D.2.3.4 add to trace null-adding new trace records and setting input to null

This function is identical to add to trace except that in addition to updating the time

and space values it sets the input value to null. It is defined:

add to trace null (s, t, i, o, tr) si ti = (s + si, t + ti, null , o, tr++ [(sl + si , tl + ti)])

where

sl = (fst · last) st

tl = (snd · last) st

add to trace null is used at the end of rules where, by convention, the input value is

set to null to record its deallocation.

D.2.3.5 append-combining two traces

append , which is written as concatenate (++ ) joins two trace lists together. append

does not check that the time in the first trace record of the second list is greater than

or equal to the time in the last trace record of the first list.

Type

(Interpreter Trace, Interpreter Trace)→ Interpreter Trace

Semantics The semantics of append corresponds exactly to that of list concatenate.

Informally:

[x0, ..., xi]++ [y0, ..., yj] = [x0, ..., xi, y0, ..., yj]
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D.2.3.6 Length Operator

The length operator (#) is used to find the length of an input vector.

Type

Value → Num

Semantics Assuming the input is a vector the definition of # is:

# [ ] = 0

# [x] = 1

#xs++ ys = (#xs) + (#ys)

D.2.3.7 Projecting the output value

The operator Pval projects the input value component out of the interpreter state.

Type

I STATE → VALUE

Semantics Pval extracts the fourth element of the interpreter state tuple. It is

defined:

Pval(s, t, i, o, tr) = o

D.2.3.8 Arithmetic Operators

The operators +, × and minus (−) have their conventional meanings. They are used

for arithmetic over time and space values.

Semantics The conventional semantic definitions for these operators apply.

Variable references are resolved to Num before these operators are applied.

D.3 Interpreter Rules

The rules of the interpreter form the core of this chapter. They describe the process

for generating the sequential traces used in this work. The rules will be presented

shortly but, in order to motivate their structure, it is worth reiterating the conventions

that guide their construction.
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Conventions used by the interpreter The following conventions apply to the

sequential performance model:

• Storage for output of each scalar function is allocated just prior to evaluation

of that function.

• Storage for input data of each scalar function is de-allocated just after evaluation

of each function.

• The time taken to allocate or deallocate any amount of storage is one time unit.

• With the above in mind, functions on scalar data, such as + and × have the

following execution profile:

1. allocate storage for the result (one time unit).

2. perform the operation (one time unit).

3. deallocate storage for the input (one time unit).

• A vector takes up one unit of space plus the combined space used by its elements.

• A tuple takes up a space equal to the combined space used by its elements.

• The cost of copying one item of scalar data is one time unit.

• During aggregate operations, data is copied/allocated at the last possible

moment and deallocated at the first possible moment.

These conventions guide the design of the rules that follow. There is a rule for

each BMF construct. A short introduction to the semantics of each construct is given

before its rule. Each rule is followed by a synopsis of its main features.
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D.3.1 Scalar Functions

Scalar functions include arithmetic, logical, trigonometric and type-coercion

functions. All of these functions produce an output value which is one word long.

These functions have rules with the following form for any given scalar function f :

Str(f, (s, t, v, o, tr)) = last part

where

first part = add to trace (s, t, v, o, tr) 1 1

last part = applyf first part

applyf (s, t, v, o, tr) = (s1, t1, null , f v, tr++[(s1, t1)])

where

s1 = s− S(v)

t1 = t + 2

first part is the state after allocating the word of space required for the result.

last part is the state after applying f to its input value v and then deallocating

the input value. last part is the state returned by the scalar function.

D.3.2 Length

The length function takes a vector as input and produces an integer representing its

length. Even though its input is not a scalar, the rule for length is the same as the

one for scalar functions above with length substituted for f .

D.3.3 Vector Indexing

The index function takes pair (vs, i) as input, where vs is a vector and i is an integer

and returns the value vsi as a result. The rule for vector indexing is
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Str(index, (s, t, (vs, i), o, tr)) = last part

where

first part = add to trace (s, t, (vs, i), o, tr) svsi 1

last part = apply index first part

svsi = S(vs!i)

apply index(s, t, (vs, i), o, tr) = (s1, t1, null , vs!i, tr++ [(s1, t1)])

where

s1 = s− (S(vs) + S(i))

t1 = t + svsi

The state first part accounts for the allocation of space to hold the result of the

index function. The state last part accounts for the cost of copying the indexed value

across to the space allocated for the result and for the deallocation of the original

input vector and index value.

D.3.4 The identity function

The id function returns its input value. If we strictly adhere to the conventions

followed in the rest of the interpreter then the rule for id is:

Str(id, (s, t, v, o, tr)) = last part

where

first part = add to trace (s, t, v, o, tr) S(v) 1

last part = apply id first part

apply id (s, t, v, o, tr) = (s− S(v), t + S(v), null , v, tr++[(s− S(v), t + S(v))])

However, if we are willing to make a sensible departure from convention in this case

then the rule could be simplified to:

Str(id, (s, t, v, o, tr)) = (s, t + 1, null , v, tr++ [(s, t + 1)])

which just increments the time consumption by one unit. This, simpler version, is

used in the model used to generate the traces in this report5.

5Our motivation for departing from convention is that strict adherence to the convention, by
using the first version of the rule, would result in sometimes quite large costs being attached to id.
These costs are easily avoided even in a relatively naive implementation. These unrealistic costs
would impact disproportionately on translator code, due to the number of id functions that such
code typically contains. In the interests of a fair comparison we do not use the expensive rule for id

in our experiments.
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D.3.5 Function Composition

The b comp(f, g) function, written f ·g takes an input value v and produces the result

f(g v).

Str(f · g, st) = result

where

(s, t, i, o, tr1 ) = Str(f st)

result = Str(g (s, t, o, null , tr1 ))

Synopsis The first line under the where clause applies the function g to the input

state st to produce a new state (s, t, i, o, tr1 ). The next line takes this state, with the

output value, o, moved to the input position, applies it to the function f producing

the state result which is the final result of this rule.

D.3.6 Map

The map(g) function takes an input vector [x0, . . . , xn−1] an applies g point-wise to

produce a new vector as a result.

Str(map g, (s, t, [x0, ..., xn−1], o, tr)) = last part

where

first part = add to trace (s, t, [x0, ..., xn−1], [ ], tr) 1 1

main part = pass between[f0, . . . , fn−1] first part

last part = add to trace null main part −1 1

fi (s, t, [xi, ..., xn−1], [v0, ..., vi−1], tr)

= (s1, t1, [xi+1, ..., xn−1], [v0, ..., vi], tr1)

where

(s1, t1, null , vi, tr1) = Str(g, (s, t, xi, null , tr))

Synopsis first part is generated by a call a call to add to trace. This call increments

the initial time and space measures by one to account for the allocation of an empty

result vector. The result vector will grow incrementally as the rule for map produces

new results.

main part simulates the application of g point-wise to the input vector. The call

to pass between transfers intermediate states between the list of auxiliary functions

[f0, . . . , fn−1]. Each of these functions applies g to the next element of the input vector
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and produces a new element of the output vector. Each input element is deallocated

as soon as it is used. Space for each output element is allocated just before it is

produced. Note that the rule does not define the [f0, . . . , fn−1] functions individually.

Instead a single function, parameterised by i, called fi is defined to capture their

meaning.

Finally, the last part state accounts for the deallocation of the now-empty input

vector after all of the point-wise applications of g have taken place.

D.3.7 Distl

The distl function takes a pair (v, [x0, . . . , xn−1]) and produces a vector

[(v, x0), . . . , (v, xn−1)] consisting of copies of the first element of the pair distributed

over the second element of the pair.

Str(distl , (s, t, (v, [x0, ..., xn−1]), o, tr)) = last part

where

first part = add to trace (s, t, (v, [x0, ..., xn−1]), [ ], tr) 1 1

main part = pass between[f0, ..., fn−1] first part

last part = add to trace null main part −(sv + 1) 1

sv = S(v)

fi (s, t, (v, [xi, ..., xn−1]), [(v, x0), ..., (v, xi−1)], tr) =

(s1, t1, (v, [xi+1, ..., xn−1]), [(v, x0), ..., (v, xi)], tr++ [(s1, t1)])

where

s1 = s + sv

t1 = t + sv + S(xi)

Synopsis The state first part accounts for the allocation of the new output vectors.

main part simulates the production of the output vector from copies of v and each

xi. Each xi is deallocated as soon as its value is transferred to the result vector. v is

not deallocated because its value is needed again.

Finally, last part , accounts for the deallocation of v once the production of the

entire output vector is complete.
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D.3.8 Reduce

The reduce(⊕, z) function takes an input vector [x0, . . . , xn−1] and produces the output

value x0 ⊕ . . .⊕ xn−1. If the input vector is empty the value produced is z applied to

[x0, . . . , xn−1].

Str(reduce(⊕, z), (s, t, [ ], o, tr) = zero result

where

zero result = Str(z, (s, t, [ ], o, tr))

Str(reduce(⊕, z), (s, t, [x0, ..., xn−1], o, tr)) = last part

where

main part = pass between [f1, ..., fn−1] (s, t, [x1, ..., xn−1], x0, tr)

last part = add to trace null main part −1 1

fi(s, t, [xi, ..., xn−1], v, tr) =

(s1, t1, [xi+1, ..., xn−1], v1, tr1)

where

(s1, t1, null, v1, tr1) = Str(⊕, (s, t, (v, xi), null , tr))

Synopsis The interpretation of reduce can take one of two different paths. If the

input value is an empty vector, then the first rule applies the zero-element z to the

input state6). to produce the state labelled zero result .

If the input value is a non-empty vector then the second rule is used. main part

simulates the application of ⊕ to successive elements of the input vector. Each

intermediate result is used as the left-operand of the next application. Values of

the input vector are allocated as they are consumed. The last part state accounts for

the deallocation of the empty input vector at the end of processing.

The interpreter has similar rules for reducel. In the rule for reducer the last element

of the vector is operated upon first and the tuple (v, xi) is reversed. For reducep,

reducelp and reducerp the first clause of the rule for handling empty input vectors is

omitted.

6The translation process ensures that the zero-element, when it remains with the reduce function,
is a constant function (see page 74.
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D.3.9 Scan

The scan(⊕) function takes an input vector [x0, ..., xn−1] and produces an output

vector [x0, x0⊕x1, . . . , x0⊕x1⊕ . . .⊕xn−1] of the cumulative application of ⊕ to the

prefixes of the input vector.

Str(scan (⊕), (s, t, [ ], o, tr)) = empty result

where

empty result = add to trace null (s, t, null , [ ], tr) 0 2

Str(scan (⊕), (s, t, [x0, ..., xn−1], o, tr)) = last part

where

first part = add to trace (s, t, [x1, ..., xn−1], [x0], tr) 1 1 + S(x0)

main part = pass between [f1, ..., fn−1]

(s, t, [x0, ..., xn−1], [x0], tr)

last part = add to trace null main part −1 1

fi(s, t, [xi, ..., xn−1], [v0, ..., vi−1], tr) =

(s1, t1, [xi+1, ..., xn−1], [v0, ..., vi−1, vi], tr1)

where

(s1, t1, di, vi, tr1) = Str(⊕, (s, t, (vi−1, xi), null , tr))

Synopsis If the input vector is empty the first clause of the rule for scan will allocate

a new empty vector for a result and deallocate the empty input vector7 returning the

new state empty result .

If the input vector is not empty then the second clause applies. The first part

state accounts for the copying of the first element of the input vector to the new

result vector. Note that net space consumption is increased by one to account for

the allocation of a new vector descriptor and time is increased to account for this

allocation plus the copying of the first element.

main part simulates the application of ⊕ to successive intermediate results and

successive elements of the input vector. For each application of ⊕ the current

intermediate result is applied to the next input value. The result becomes a new

intermediate value which is copied to the output vector. The old input value is then

deallocated.

7In this case, allocation and deallocation is not necessary. It is done in this rule for consistency
with the conventions used in other parts of the interpreter.
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Finally, after main part has been produced last part accounts for the deallocation

of the input vector.

The definitions for scanl, scanp and scanlp, are similar to the rules above. The

definitions for scanr and scanrp are more verbose but their infrequent use does not

warrant describing them here.

D.3.10 Alltup functions

An alltup function (g1, . . . , gn)
◦ applies a copy of its input value v to each gi producing

a new tuple, (g1 v, . . . gn v).

Str( (g1, ..., gn)
◦, (s, t, v, o, tr)) = last part

where

main part = pass between [f1, ..., fn−1] (s, t, v, o, tr)

last part = applye main part

fi (s, t, v, (o1, ..., oi−1), tr) = (s2, t2, v, (o1, ...oi), tr2)

where

(s2, t2, v, oi, tr2) = Str(gi, (s1, t1, v, null, tr1))

sv = S(v)

tr1 = add to trace (s1, t1, v, (o1, ..., oi−1), tr) sv sv

applye (s, t, v, (o1, ..., on−1), tr) = (s1, t1, null , (o1, ..., on), tre)

where

(s1, t1, null , on, tre) = Str(gn, (s, t, v, null , tr))

Synopsis main part simulates the application of each gi, except the last, to a copy

of the input value v. A new copy of v is made immediately prior to each of these

applications and this copy is deallocated by that application.

The final state is generated by a call to the local function applye. applye simulates

the application of the last function in the alltup, gn to the original input value. This

remaining input value is deallocated by this last application producing the final state

for this rule.
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D.3.11 Allvec functions

An allvec function [f0, . . . , fn−1]
◦ applies its input value v to each fi producing a

vector, [f0 v, . . . , fn−1 v]. Note that all fi must have the same type8. If the allvec

function is empty, that is if it takes the form [ ]◦, then it will return an empty vector

irrespective of its input.

Str([ ]◦, (s, t, v, o, tr)) = (s, t, v, [ ], tr2)

where

tr1 = (s, t, null , [ ], tr)

tr2 = add to trace tr1 (−sv + 1) 2

sv = S(v)

Str([ f0, ..., fn−1]
◦, st) = last part

where

main part = pass between [f0, ..., fn−2] st

last part = applye main part

fi (s, t, v, [o0, ..., oi−1], tr) = (s2, t2, v, [o0, ...oi], tr2)

where

(s2, t2, v2, oi, tr2) = Str(fi, (s1, t1, v, null, tr1))

sv = S(v)

tr1 = add to trace (s1, t1, v, [o0, ..., oi−1], tr) sv sv

applye (s, t, v, [o0, ..., on−2], tr) = (s1, t1, null , [o0, ..., on−1], tr1)

where

(s1, t1, null , on−1, tr1) = Str(fn−1, (s, t, v, null , tr))

Synopsis The interpreter handles allvec expressions in a very similar manner to the

way it handles alltup functions. The primary difference between the allvec and alltup

rules is the clause to handle an empty allvec function. This clause updates the trace

to reflect the deallocation of the input value and the allocation of space for the empty

result vector.

The handling of non-empty allvec functions is structurally identical to the handling

of alltup functions.

8This restriction is not enforced by the interpreter, it is assumed to be enforced by the typechecker
of the Adl compiler.
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D.3.12 Select

select takes a pair of vectors (xs, [y0, . . . , yn−1]) and produces a new vector

[xs!y0, . . . , xs!yn−1]. That is, the result produced comprises the elements of the first

vector indexed by the second vector.

Str( select, (s, t, (xs, [y0, ..., yn−1]), o, tr)) = last part

where

first part = add to trace (s, t, (xs, [y0, ..., yn−1]), null , tr) 1 1

main part = pass between [f0, ..., fn−1] (s, t, (xs, [y0, ..., yn−1]), null , tr)

last part = add to trace null main part −(S(xs) + 1) 2

fi (s, t, (xs, [yi, ..., yn−1]), [v0, ..., vi−1], tr) =

(s1, t1, (xs, [yi+1, ..., yn−1]), [v0, ..., vi], tr1)

where

vi = xs!yi

s1 = s + S(vi)− S(yi)

t1 = t + S(vi) + 1

tr1 = tr++(s1, t1)

Synopsis first part increments the time and space from the initial state to account

for the allocation of an empty result vector. main part simulates the copying of vector

elements from xs into the result vector, deallocating each yi as it goes. last part

decrements the space consumption to account for the deallocation of xs and the,

now-empty, y-vector.

D.3.13 Zip

The zip function takes a pair of vectors of equal length ([x0, . . . , xn−1], [y0, . . . , yn−1])

and produces a vector of pairs: [(x0, y0), . . . , (xn−1, yn−1)].
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St(zip, (s, t, (xs, ys), null , tr)) = last part

where

n = #xs

first part = add to trace (s, t, (xs, ys), null, tr) 1 1

last part = add to trace null main part −2 2

main part = pass between [f0, ..., fn−1] first part

fi (s, t, ([xi, ..., xn−1], [yi, ..., yn−1]), [(x0, y0), ..., (xi−1, yi−1)], tr) =

(s, t1, ([xi+1, ..., xn−1], [yi+1, ..., yn−1]), [(x0, y0), ..., (xi, yi)], tr1)

where

tr1 = add to trace tr 0 t1

t1 = t + (S(x0) + S(y0)) + 1

Synopsis first part simulates the allocation of the new result vector. main part

simulates the copying of corresponding xi and yi values into pairs in the result vector.

Note that tr1 increments space consumption by zero. This is due to allocation

and deallocating cancelling each other out. Note that t1 takes account of the time

consumed by copying xi and yi.

Finally, last part accounts for the deallocation of the empty input vector.

D.3.14 If

The if function applies its predicate function p to its input value v and, subsequently,

produces c v if p v = true or p a if p v = false.

Str (if(p, c, a), (s, t, v, o, tr)) = last part

where

first part = add to trace S(v) S(v) (s, t, v, o, tr)

(s1, t1, null , b, tr1) = Str(p, first part)

last part = Str(c, (s1, t1, v, null, tr1)), if b = true

= Str(a, (s1, t1, v, null , tr1)), otherwise

Synopsis first part accounts for the cost of making one extra copy the input value.

The middle state, (s1, t1, i1, b, tr1), accounts for the cost of evaluating the predicate

function, p. last part simulates the evaluation of either c v or a v.
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D.3.15 While

The function while(f, p) takes an input value, v, and successively applies f to v while

p v is true. If p v = false to begin with then f will never be applied. Note that while

is potentially non-terminating.

Str( while(f, p), (s, t, v, o, tr)) = cond do Pval(next part) first part

where

first part = add to trace S(v) S(v) (s, t, v, o, tr)

next part = Str(p, first part)

cond do false st = st

cond do true st = Str(while(f, p), (s3, t3, o3, null, tr3))

where

(s3, t3, null , o3, tr3) = Str(f, st)

Synopsis first part accounts for the copying of the input value required to evaluate

the predicate, p. next part simulates the application of the predicate function. The

output of next part and the state first part are then applied to the local function

cond do which either returns the first part or the state produced by a recursive call

to the rule for while with a modified state, depending upon whether the result of the

predicate is true or false.

D.3.16 Priffle

The priffle (predicate-riffle) function take a triple of vectors (bs, xs, ys) and produces

a result vector rs which is the result of merging xs and ys according to to the boolean

values in bs. More precisely, for each successive bi, in bs, the next element ri, in rs, is

the next element of xs if bi = true and the next element of ys otherwise. Note that

#bs = #rs = #xs + #ys.
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Str( Priffle, (s, t, ( [b0, ..., bn−1],

[x0, ..., xl−1],

[y0, ..., ym−1]), o, tr)) = last part

where

first part = add to trace (s, t, ([b0, ..., bn−1], xs, ys), o, tr) 1 1

main part = pass between [f0, ..., fn−1] first part

last part = add to trace null main part −3 3

fi (s, t, ( [bi, ..., bn−1], [xj , ..., xl−1], [yk, ..., ym−1]),

[r0, ..., ri−1], tr) = (s, t1, v1, o1, tr1)

where

v1 = ([bi+1, ..., bn−1], [xj+1, ..., xl−1], [yk, ..., ym−1]), if bi = true

= ([bi+1, ..., bn−1], [xj , ..., xl−1], [yk+1, ..., ym−1]),otherwise

o1 = [r0, ..., ri−1, xj], if bi = true

= [r0, ..., ri−1, yk],otherwise

tr1 = add to trace tr 0 t1

t1 = S(lasto1)− S(bi)

Synopsis first part accounts for the allocation of a new result vector. main part

simulates the transfer of values from either xs or ys according to the next value in bs.

Space for new output values is allocated and space consumed by the input values used

is deallocated. Finally, last part accounts for the deallocation of the three, now-empty,

input vectors.

D.3.17 Mask

mask takes a pair (xs, bs) and filters xs according to the boolean values in bs. If

bsi = true then xs i is included in the result vector, otherwise it isn’t.

mask is used, in conjunction with priffle, to process the functions, corresponding

to different branches of a conditional, embedded in a map body, separately.
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Str( mask, (s, t, (xs, [b0, ..., bn−1]), o, tr)) = last part

where

first part = add to trace (s, t, (xs, [b0, ..., bn−1]), null , tr) 1 1

main part = pass between [f0, ..., fn−1] first part

last part = add to trace null main part −(S(xs)) 1

fi (s, t, (xs, [bi, ..., bn−1]), os, tr) =

(s1, t1, (xs, [bi+1, ..., bn−1]), os++ o, tr1)

where

o = [xs!i], if bi

= [ ],otherwise

s1 = s + (S(o)− 1)− S(bi)

t1 = t + (S(o)− 1) + 1

tr1 = tr++(s1, t1)

Synopsis first part accounts for the allocation of a new empty vector for the

result. main part simulates the conditional copying of elements of xs according to

the corresponding values in bs. Elements of both input vectors are deallocated as

each fi, called to produce main part , is invoked. Finally, last part accounts for the

deallocation of both, now-empty, input vectors.

D.3.18 Transpose

In the current time-space model transpose is specialised to operate on just the outer

two dimensions of the nested input vector. That is, in this model,

transpose = transpose(0,1)

For maximum flexibility, future versions of this model must be extended to implement

transpose over arbitrary dimensions in the same fashion as the model described in

appendix B. The current rule for transpose is:
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Str( transpose, (s, t, xs, o, tr)) = last part

where

last part = (s2, t2, null, newxs, tr2)

s2 = s1− S(xs)

t2 = t2 + 1

tr2 = tr1++ (s2, t2)

s1 = s + S(newxs)

t1 = t + S(newxs)

tr1 = tr++(s1, t1)

newxs = trans xs

trans

[[x(0,0), x(0,1), . . . , x(0,m0−1)],

[x(1,0), x(1,1), . . . , x(1,m1−1)],
...

[x(n−1,0), x(1,1), . . . , x(n−1,mn−1−1)]]

=

[[x(0,0), x(1,0), . . . , x(n−1,0)],

[x(0,1), x(1,1), . . . , x(n−1,1)],
...

[x(0,m0−1), x(1,m0−1), . . . , x(n−1,m0−1)]]

Synopsis The trace generated by the rule for transpose abstracts over most internal

details of the operation. There are only two steps in the trace. The first step allocates

enough space for the transposed result vector. The second step takes time equivalent

to the size of this result vector and the final st. The trans function, informally,

describes the functional semantics of transpose.

This completes the description of the interpreter. Next we, very briefly outline

the process we used for extracting and displaying traces.

D.4 Extracting the trace

The interpreter rules described above define the process for generating an interpreter

state for a given sequential BMF program and its input data. The process of

extracting a trace-graph from this state is straightforward.

First the trace is projected out of the state by using the function:

get trace (s, t, i, o, tr) = tr

the trace tr is in the form of a list of pairs. For plotting this list is converted into a

text file with a pair of numbers on each line. This is done using the Miranda show

function and facilities for file output.
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Once the trace data is saved to a file in the above format it is a simple matter to

plot the data in a graphing package. In our case we used Gnuplot .



Appendix E

Nested Parallelism

Thus far, this report has described the introduction of one level of parallelism to

BMF code. While one level is satisfactory for many applications there are some

conditions under which it is desirable to exploit parallelism on more than one level by

nesting parallel constructs. For the Adl programmer there are three broad contexts in

which the use of nested parallelism may be warranted by the improved performance

it generates:

• The extension of block partitioning to more than one dimension;

• the efficent exploitation of parallelism on irregular nested vectors with fixed

shape;

• and the efficient exploitation of parallelism on irregular nested vectors with

dynamically changing shape.

In the following, the use of nested parallelism in each of these three contexts is

discussed in turn. First however, as a preparatory step, we present the methodology

we use for expressing nested parallelism in BMF code.

E.1 Methodology

For most functions, adding nested parallelism to BMF code is a simple extension of

the process for adding a single layer of parallelism to BMF code. Figure 174 shows the

process of propagating a single layer of parallelism through a BMF program which

calculates the sums of squares of an input vector. The outermost function types

316
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+/([int]→int) · (× · (id, id)◦)∗([int]→[int]) ⇒
id(int→int) ·+/([int]→int) · (× · (id, id)◦)∗([int]→[int]) ⇒
+/

‖

([int]‖→int)
· (+/) ∗‖

([[int]]‖→[int]‖)
·splitp ([int]→[[int]]‖) · (× · (id, id)◦)∗([int]→[int]) ⇒

+/
‖

([int]‖→int)
· (+/) ∗‖

([[int]]‖→[int]‖)
·(× · (id, id)◦) ∗ ∗‖

([[int]]‖→[[int]]‖)
· splitp ([int]→[[int]]‖)

Figure 174. Parallelisation process for code to calculate the sum of squares for a
list of numbers.

+/‖ · (+/) ∗‖ ·(× · (id, id)◦) ∗ ∗‖ · splitp ⇒
+/‖ · id · (+/) ∗‖ ·(× · (id, id)◦) ∗ ∗‖ · splitp ⇒
+/‖ · (+/‖ · (+/)∗‖) ∗‖ ·splitq ∗‖ ·(× · (id, id)◦) ∗ ∗‖ · splitp ⇒
+/‖ · (+/‖ · (+/)∗‖) ∗‖ ·(× · (id, id)◦) ∗ ∗‖ ∗‖ ·splitq · splitp =
+/‖ · (+/‖) ∗‖ ·(+/) ∗‖ ∗‖ · (× · (id, id)◦) ∗ ∗‖ ∗‖ ·splitq · splitp ⇒

Figure 175. Propagation of a second layer of parallelism through the program
from figure 174.

in the program are written as subscripts. Parallel vector types are annotated with

the (‖) superscript. Another layer of parallelism can be added to this program by

propagating parallel functions through the sequential code embedded inside parallel

constructs. In general, any function f whose type unifies with [[α]]‖ → β is a

candidate for adding another layer of parallelism. The most downstream candidate

function in the parallelised program in figure 174 is (+/)∗‖
([[int]]‖→[int]‖)

and this is

where the process of propagating a second layer of parallelism starts in figure 1751.

Note that the transformation between the last two lines does not serve to propagate

parallelism any further into the code, but rather it distributes the outer map function

in (+/‖ · (+/)∗‖)∗‖ over its component functions in order to more clearly demarcate

the stages of the program. The nested parallel program in the last line of figure 175

introduces a hierarchy of parallelism where each element of the input vector is

distributed once by splitp and each of these distributed elements is further distributed

by splitq∗‖. This hierarchy is apparent in the snapshots, shown in figure 176, of

the execution of the nested parallel program on the last line of figure 175. Note

that, in this case, the hierarchy is balanced which makes it a simple matter to map

the virtual nodes of the hierarchy efficiently onto actual nodes of a machine2. In

1The type subscripts have been omitted for the sake of readability.
2The simulator, described in chapter 6, uses the mapping:
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.( *+ x/
o

*) ||)id,id( ..*) ||(+/ .|| [1,2,3,4,5,6,7,8]

step 0

step 1

step 2

0 [1,2,3,4,5,6,7,8]split2split2
.*

||
*

||
*) |||| . *

||+/(

.( *+ x/
o

*) ||)id,id( ..*) ||(+/ .|| [[1,2,3,4],[5,6,7,8]]split2*
||

*
||

*) |||| . *
||+/(

0 [   ,   ]

0.0 [1,2,3,4] 0.1 [5,6,7,8]

( *+ x/
o

*) ||)id,id( ..*) ||(+/ .|| **) |||| . *
||+/(

0 [   ,   ]

0.0 [   ,   ] 0.1 [   ,    ]

0.0.0 [1,2] 0.0.1 [3,4] 0.1.0 [5.6] 0.1.1 [7,8]

[[[1,2],[3,4]],[[5,6],[7,8]]]

step 3

+/ *) ||(+/ .|| *) |||| . *
||+/(

0 [   ,   ]

0.0 [   ,   ] 0.1 [   ,    ]

0.0.0 [1,4] 0.0.1 [9,16] 0.1.0 [25.36] 0.1.1 [49,64]

[[[1,4],[9,16]],[[25,36],[49,64]]]

step 4

+/(+/ .|| *) ||||

0 [   ,   ]

0.0 [   ,   ] 0.1 [   ,    ]

0.0.0 5 0.0.1 0.1.0 61 0.1.1 113

[[5,25],[61,113]]

25

step 5

+/ ||

0 [   ,   ]

0.0 30 0.1 174[30,174]

step 6 0 194
194

Figure 176. Snapshots of the execution of the nested parallel program from
figure 175.
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general, hierarchies do not have to be balanced and, in programs with the appropriate

conditional functions, they do not even have to have uniform depth. Such unbalanced

hierarchies will require a more sophisticated mapping from virtual to real nodes.

It should also be noted that applying nested parallelism to the one-dimensional

sum-of-squares program above is not going to produce better performance than

applying the same degree of parallelism on a single level. However, there are general

classes of problem where nested parallelism can be of substantial benefit and the

remainder of this chapter is devoted to describing these classes of problem and

outlining how nested parallelism can be applied to them. We start with problems

that benefit from the extension of block partitioning to more than one dimension.

E.2 Using nesting to extend block partitioning to

more than one dimension

In Adl, and in its implementation, multidimensional vectors are emulated by nested

single-dimensional vectors. So, for example, the two dimensional structure in

figure 177(a) is emulated, in Adl, by the nested vector in figure 177(b). Partitioning

nested vectors along one dimension is straightforward: figure 178 shows a simple

partitioning of the outer dimension of the nested vector shown in figure 177(b).

This partitioning, which may be appropriate if the application requires limited

interaction between elements of sub-vectors, divides the array into longitudinal strips.

Unfortunately, there are many applications that require substantial interactions

spanning more than one dimension. Stencil algorithms, for example, typically require

interactions between each element and its neighbouring elements in all dimensions.

Figure 179(a) shows the inter-node interactions generated a stencil algorithm running

over the partitioned vector from figure 178. Figure 179(b) shows the communications

arising from an alternative partitioning of the same vector. A simple count of the

number of arrows shows that the two-dimensional block-partitioning shown in (b)

generates less communication than the one-dimensional block partitioning. If we

{[0, 0.0, 0.0.0] 7→ node 0 , [0.0.1] 7→ node 1 , [0.1, 0.1.0] 7→ node 2 , [0.1.1] 7→ node 3}

of nodes of the virtual machine to physical nodes. Note that this mapping places virtual parent
nodes on the same physical nodes as their children. This is done on the assumption that the amount
of work done by parent virtual nodes is small compared to the work done by virtual nodes at the
bottom of the hierarchy.
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Figure 177. A two dimensional structure, part (a), and its representation in Adl,
part (b).
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Figure 178. Simple 4-way partitioning of the outer dimension of the nested vector
shown in figure 177(b).
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Figure 179. Comparison of communications costs arising from a stencil algorithm
on a one-dimensional partitioning of a two dimensional vector, part (a), and a two

dimensional partitioning of the same vector, part (b).

generalise the partitioning schemes in part (a) and (b) to p nodes and square datasets

whose side is length n we find that the partitioning scheme of part (a) gives rise to:

(p− 1)n

two-way inter-node communications and the partitioning scheme of part (b) gives rise

to:

2(
√

p− 1)n

two-way inter-node communications. We can see that, in terms of communications,

a two-dimensional block partitioning of data for a two dimensional stencil algorithm

is asymptotically better than a one dimensional partitioning. This means that, for

some important algorithms, there are substantial gains to be had by dividing our

data in more than one dimension. In Adl this means that it advantageous to exploit

parallelism both between and within sub-vectors, which entails the use of nested

parallelism.

E.2.1 Nested block partitioning in Adl

Nested parallelism on nested structures in Adl is implemented by propagating parallel

constructs through the outer and inner level of the array. To illustrate this process,



APPENDIX E. NESTED PARALLELISM 322

a
00

a
10

a
20

a
30

a
40

a
50

a
60

a
70

a
01

a
11

a
21

a
31

a
41

a
51

a
61

a
71

a
02

a
12

a
22

a
32

a
42

a
52

a
62

a
72

a
03

a
13

a
23

a
33

a
43

a
53

a
63

a
73

a
04

a
14

a
24

a
34

a
44

a
54

a
64

a
74

a
05

a
15

a
25

a
35

a
45

a
55

a
65

a
75

a
06

a
16

a
26

a
36

a
46

a
56

a
66

a
76

a
07

a
17

a
27

a
37

a
47

a
57

a
67

a
77

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

p
0.0

p
0.1

Figure 180. Nested vector from figure 177(b) partitioned across two nodes in the
outer dimension.

imagine a sequential BMF program working over a nested vector:

f ∗ ∗[[α]]→[[β]]

such a program would accept input, and produce output, with a structure similar to

that shown in figure 177(b). The first step of parallelisation propagates split through

f ∗ ∗ giving:

++ /
‖

[[[β]]]‖→[[β]]
· f ∗ ∗ ∗[[[α]]]‖→[[[β]]]‖ ·split2 [[α]]→[[[α]]]‖

In this version, the function f ∗ ∗∗‖ is presented with data with a structure like that

shown in figure 180. The second stage of parallelisation propagates split through f∗
the innermost map of f ∗ ∗∗‖ giving:

++ /
‖

[[[β]]]‖→[[β]]
· (++ /

‖

[[β]]‖→[β]
· f ∗ ∗‖

[[α]]‖
· split2 [α]→[[α]]) ∗ ∗‖[[[α]]]‖→[[[β]]]‖

· split2 [[α]]→[[[α]]]‖

we can further transform the program above to consolidate the splitting and merging

into distinct phases3:

++ /‖ · (++ /‖) ∗ ∗‖ · f ∗ ∗‖ ∗ ∗‖ · split2 ∗ ∗‖ · split2

The central f ∗ ∗‖ ∗ ∗‖ function is presented with data having the nesting structure

shown in figure 181. This partitioning allocates a square-shaped block to each of the

3Again, we have omitted type subscripts for the sake of readability.
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Figure 181. The nested vector from figure 177(b), block-partitioned in both the
outer and inner dimensions.

physical nodes mapped to the virtual nodes 0.0.0, 0.0.1, 0.1.0 and 0.1.1. The inner

function f is applied simultaneously in each of these nodes in the sequence indicated

by the four thick arrows in figure 182. Note that the innermost level of parallel

execution occurs inside a sequential map. To date, in this work, we have implicitly

assumed that in an application of sequential map:

(f) ∗ [x0, x1, . . . , xn−1] = [f x0, f x1, . . . , f xn−1]

the execution of each application, f xi must finish completely before execution the

next application f xi+1 begins. This makes sense when each application, itself, runs

sequentially. However, in the execution trace represented in figure 182 the function

f∗∗‖, applied to the members of the sequential vectors [a0, a1, a2, a3] and [a4, a5, a6, a7],

is parallel. If we insist, for example, that f ∗ ∗‖ a0 finish completely before we start

the execution of any of f ∗ ∗‖ a1 then we introduce an unnecessary synchronisation

between nodes 0.0.0 and 0.0.1. In order to avoid the costs of such synchronisations

the semantics of sequential map should be refined to have explicit synchronisation

only at the end of the map in cases where the map-body is parallel.
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Figure 182. Trace of execution of f ∗ ∗‖ ∗ ∗‖ applied to the data structure from
figure 181.

E.2.2 Nesting other structures

So far we have looked at how to propagate nested parallelism through the BMF

code produced by the Adl implementation in order to partition data into blocks in

more than one dimension. For most BMF functions this process is a straightforward

extension of the single-level parallelisation process. However, some important

constructs, such as select, defy a simple extension of parallelisation strategies to a

nested context. This is unfortunate because important classes of parallel algorithm,

such as stencil algorithms make intensive use of select. For example, a sequential

version of a simple stencil that repeatedly applies a binary operator f to each element

and its lower-left neighbour until a condition is met can be written:

while(f ∗ ∗ · zip · (id, select · (id, lshift)◦ · select ∗ ·zip · (id∗, ushift)◦)◦, not done)

Where lshift , ushift , and not done are place-holders for BMF code to generate left-

shifted indices, generate up-shifted indices and perform a boolean test for loop

completion respectively. Parallelisation of the program above in one dimension mostly

involves replacing the left-most select with distselect composed with some additional

detailed code as per the rules in chapter 6. However, parallelising two dimensions to

achieve a block partitioning leads to a much more complex code, involving at least:
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1. A stage to set up data for inter-block transfers.

2. A stage to perform the inter-block transfers.

3. A stage to perform intra-block transfers.

In general, each stage will involve calls to select and/or distselect as well as detailed

code to create the index vectors for these calls. The level of detail involved is

somewhat at odds with the relatively simple operation being performed.

E.2.3 Simpler block-partitioning

A strong argument could be made that part of the complexity arising from block

partitioning is due to the emulation of multi-dimensional arrays using nested lists.

If Adl supported genuine multi-dimensional arrays there would be no need for such

emulation. With multi-dimensional arrays as a primitive type, functions such as map

could be naturally applied to all dimensions and block partitioning could be specified

without the need for nesting. The expression of parallelism over multiple-dimensions

of regular multi-dimensional structures would be straightforward.

Such an extension to the Adl type system would involve the redefinition of vector

primitives such as map, reduce, scan, iota, length and index in a generic, shape-

polymorphic way. Such polymorphism has already been extensively explored in

languages such as FISh[85] and in a parallel-context in GoldFISh[86] so there are

already solid foundations for such an approach. However, the use of multi-dimensional

arrays only supplants the need for nested parallelism when structures are regular.

Nested parallelism becomes more attractive when a problem does not lend itself to

an efficient solution using regular structures. We examine strategies for exploiting

nested parallelism over irregular structures in the next two sections.

E.3 Using nested parallelism to exploit parallelism

over static irregular structures

Many parallel applications, including some finite-element and sparse-matrix

algorithms, operate over static data structures whose optimal distribution does not

evolve significantly over the course of the computation. In these cases, it is appropriate
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Figure 183. An irregular nested vector

to exploit parallelism using a static nested decomposition of irregular data over the

nodes of the machine.

In Adl irregular data structures are best expressed using nested vectors. The

effective exploitation of parallelism over such vectors will involve nested parallelism.

In the last section, we showed how multiple levels of nesting could be used to produce

a block partitioning. The same techniques could be easily applied to irregular nested

structures but, without modification, would be prone to produce poor load balancing.

In this section, we show how the techniques from the last section can be modified to

produce better load-balancing.

E.3.1 A simple schema

Figure 183 shows an irregular nested vector which is the intended data-source for

a parallel computation. Figure 184 shows a one dimensional decomposition of

the vector. Assuming that each data value corresponds to a similar amount of
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Figure 184. Irregular nested vector from figure 183 partitioned in one dimension,
producing poor load-balancing.

computation4, this regular decomposition gives a poor load-balance5. If we are

prepared to use more processing nodes we can achieve a better load-balance by

exploiting nested parallelism. Figure 185 shows how each of the larger sub-vectors

can be further distributed to achieve a more even global distribution of work. Note

that each sub-vector resides on at least one separate node and that the longer sub-

vectors are divided over different numbers of nodes to the shorter sub-vectors. This

non-uniformity in node-allocation requires the use of a split that is sensitive to the

statically determined partitioning scheme for its data. This means that instead of

having:

splitp ∗ ·splitq

4For most computations, this assumption is very reasonable but there are exceptions, such as
LU-factorisation of matrices, so the assumption is worth making explicit.

5Even if we are prepared to use contiguous partitions with different numbers of elements in each
a better load balance can be obtained but it is possible, for a given number of nodes, to come up
with a data distribution that defies a load-balanced one-dimensional decomposition.
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Figure 185. Irregular nested vector from figure 183 partitioned in two dimensions,
producing improved load-balancing.

as used in the last section, to sub-divide data, we use:

splitpi
∗ ·splitq

where each pi is determined by the partitioning function for the input data. The

partitioning scheme shown in figure 185 is is good but not perfect. Nodes p0.1.0, p0.4.0

and p0.5.0 have a small amount of work compared to the others. These small chunks

of work can be consolidated by choosing an appropriate mapping of virtual nodes to

physical nodes. For example, a mapping:

{ [0, 0.0, 0.0.0] 7→ Node 0 , [0.0.1] 7→ Node 1 , [0.0.2] 7→ Node 2 ,

[0.0.3, 0.1, 0.1.0] 7→ Node 3 , [0.2, 0.2.0] 7→ Node 4 , [0.2.1] 7→ Node 5 ,

[0.4, 0.4.0, 0.5, 0.5.0] 7→ Node 6 , [0.6, 0.6.0] 7→ Node 7 , [0.7, 0.7.0] 7→ Node 8 ,

[0.7.1] 7→ Node 9 , [0.7.2] 7→ Node 10}
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will achieve a reasonable load-balance at the cost of run-time infrastructure to support

the mapping6.

E.3.2 Nesting other functions in an irregular context

The issues that arise from nesting other structures besides map in an irregular context

are similar to those in a regular context. For most functions, the propagation of a

nested level of parallelism through the program is a simple extension of propagating

a single level of parallelism. However, some constructs, such as select produce

quite detailed code when parallelised in more than one dimension. With irregular

structures, the optimal implementation of the partitioning function is different from

that in a regular context. In a regular context the partitioning function can,

typically, be captured as a simple mathematical function. In an irregular context, the

partitioning function is much more likely to be implemented as an index into a lookup

table7. The overhead of maintaining such a table is minimal in most applications if

the partitioning is static. This overhead grows if the partitioning of data structures

evolve as computation proceeds. We examine the issues surrounding such dynamically

evolving nested parallelism next.

E.4 Using nested parallelism to exploit parallelism

over evolving irregular structures.

Important classes of parallel application including of molecular, gravitational, and

weather simulations, create an uneven and evolving distribution of work over their

computational domain. In such applications, any static distribution of work in

a parallel machine is likely to produce a poor load-balance at some point in the

computation. In response to this problem, application writers have employed

strategies to, periodically, migrate work from busy nodes to idle nodes to maintain a

reasonable load-balance. These strategies fall into two broad categories:

6It should be noted that having multiple virtual processors per-node introduces a higher-than-
necessary communications costs for efficient parallel implementations of algorithms such as scan.
However, if the number of virtual processors per node is kept at a moderate level then these extra
costs are not prohibitive.

7The other thread of the Adl project[54] implemented the partitioning function using a highly
optimised lookup table.
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1. Strategies that maintain the explicit structure of the data and periodically

perform explicit migration of work according to various heuristics.

2. Strategies that flatten parallel structures to an single dimension of parallelism

and maintain a simple, near optimal, partitioning of data throughout the

computation.

Both strategies have their advantages and drawbacks. For example, strategy 2 almost

always produces a better load balance than strategy 1 but at the cost of relatively

frequent redistribution of data. We briefly examine these strategies in turn.

E.4.1 Using work migration to implement dynamically

evolving irregular nested parallelism

Work migration requires some fine-grained control at least at the level of the run-time

system over data partitioning. Such fine-grained control could be achieved by having

many more virtual processors than physical nodes. A run-time system could then,

periodically:

1. migrate data,

2. alter the mappings in the partitioning functions, and

3. broadcast the changes to each physical node.

To preserve correctness these actions would need to be carried out in such a way as

to appear atomic from the point of view of the executing program. Other aspects of

parallelisation would remain the same as they did in previous sections.

Work migration would impose several overheads on the executing program. These

include: the cost of monitoring work balance; the cost of calculating and distributing a

new partitioning function; the cost of migrating the data; and the cost of maintaining

a large number of virtual processors.

A-priori maintaining the atomicity of work-migration would not be difficult since

work-migration could be integrated to parts of the program requiring a global

synchronisation.

Note that extent to which load-balancing is maintained is highly dependent on

how often work migration occurs, the granularity of virtual processors, and the
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quality of the information used to inform the work-migration process. It is up to the

implementor to carefully balance the costs and benefits of a work-migration strategy.

Next, we consider the data-flattening strategy.

E.4.2 Using flattening to implement dynamically evolving

irregular nested parallelism

The use of flattening in a parallel functional context was pioneered by Blelloch

using the language NESL[22, 23]. The NESL implementation works by flattening

nested vectors, maintaining a record of their shape, and using flat segmented data-

parallel operations over the flattened data. The segmented operations use the shape

descriptors associated with their input vectors to inform the semantics of their

operation. Load balancing is preserved by maintaining a simple one-dimensional

partitioning of the flattened data. Chakravarty and Keller (and others)[30, 29, 91, 92]

in Nepal, their parallel extension to the functional language Haskell, extended the

flattening transformation to a much broader variety of types. The also formalised the

transformations needed to functions to allow them to work with flattened arguments.

In both cases, the partitioning of data is kept implicit until run-time8 and the

primitives of the language provide the efficient segmented operations needed.

Flattened parallelism could be implemented for Adl by applying a flattening

transformation, extending that used in NESL, to allow vectors to contain tuple

elements. Such extensions already exist in Nepal so their feasibility is not in question.

However, the use of flattening in an Adl implementation would substantially change

the compilation process. The usefulness of data-movement-optimisation would be

maintained because its transformations would continue to reduce data movement in

a flattening implementation. In contrast, the parallelisation process would cease to be

a part of the compiler and move to the run-time system. The code-generation process

would be less straightforward with the need to map the nested function invocations

in BMF code to segmented operations. Finally, it is likely that the run-time system

would need to be substantial to help maintain the partitioning as the program runs.

In summary, it appears feasible to implement dynamically evolving nested parallelism

8Though, it must be noted, that in Nepal the programmer is able to embed sequential lists inside
parallel lists.
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in Adl using flattening transformations but such an implementation would be very

different to the current implementation.

E.5 Conclusion

This chapter has described a methodology for propagating nested parallelism through

Adl programs and described three broad classes of application where the exploitation

of nested-parallelism is useful. The efficient options for implementation vary from

class to class. Regular nested parallelism might be best substituted for a single level of

parallelism in the context of a richer type system. Static irregular nested parallelism

would typically need a detailed partitioning function and support for more virtual

processors. Dynamic irregular nested parallelism will probably need the support of a

substantial run-time system to support either work migration or structure flattening.

It seems that the best system to use varies with the regularity of the problem.

It seems unlikely that one system will be optimal for all problem domains. Careful

consideration of the likely problem domain for Adl is needed before deciding on an

implementation strategy.



Appendix F

Costs of malloc and free

Our parallel simulator, used to generate the results in section 6.4 requires estimates

of the cost of malloc and free in order to model the costs of memory management

on each node. In this appendix we describe the outcome of several basic experiments

designed to quantify these costs.

F.1 Factors

The costs of malloc and free depends on a number of factors including:

• the hardware.

• the design of the libraries that implement malloc and free.

• the quantity and pattern of allocation/deallocation.

These factors interact to produce quite complex patterns of performance that are

perhaps best studied empirically. We set up series of basic experiments in an attempt

to come up with a simple characterisation of the costs of free and malloc.

F.2 Methodology

We are interested in the cost of free and malloc under conditions that we will test

in the simulator. These conditions are:

• Frequent calls to malloc for small blocks of data (mostly less than 5000 words).

333
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• A variable but mostly short interval between the allocation of a block with

malloc and its deallocation using free.

• As a corollary to the above two statements we might expect that at a typical

point in time dynamic memory might contain a large number of small blocks,

adding up to a small to moderate memory consumption overall (at least for the

data-sizes used in the simulator).

We want measure costs in terms of instructions since this metric allows reasonable

cross-architecture comparisons.

Getting raw times Our raw measurements are performed with high-resolution

timers. These timers measure wall-clock time in units of nanoseconds. This resolution

is more than adequate for our purposes1. Measurements are taken by inserting a call

to get the time before and after calls to malloc and free.

Getting instruction times To convert raw times to instruction times we need

an estimate of the cost of basic instructions on each architecture. To do this we

created some benchmark programs to measure the cost of varying length sequences

of increment2 and assignment statements. The compiler was run with optimisation

turned off to ensure that the code we write is the code that runs. We are searching

for the marginal cost of instruction execution and this can be extracted and verified

by looking at the relative costs of different length instruction sequences.

Overcoming confounding factors There are a number of possible confounding

factors including

1. Systematic cache effects caused by calls to the timing functions and the code

to record the times.

2. A bias in the results caused by the particular set of block-sizes chosen.

3. A bias in results caused by the particular pattern of allocations and deallocations

used.
1We might expect the actual resolution of the timers to be somewhat lower and for probe-effects

to deliver some randomness in times, though at a scale that is not problematic in an experiment
with many trials.

2Every increment in each sequence was to the same variable which could limit execution speed
on some architectures.
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The first factor might be significant if the code collecting the time causes code and

data that is useful for malloc and free to evicted from the caches. We try to minimise

this effect by inserting mostly lightweight code between calls to the timers and malloc

and free. It could be argued that some use of the cache is likely to occur as the result

of normal execution of program code in any case so, in a sense, the effect of the timing

probes might occur in real code anyway.

Factor number two might be a problem if we were unlucky enough to choose block-

sizes that, by coincidence, matched points of good or poor performance for malloc

and free. To overcome this we chose a large number of block-sizes (100) at intervals

of 50 words (a number of no particular significance on most architectures). Block sizes

are always odd (i.e. 1 word, 51 words, 101 words). The randomness of our actual

cost measurements seems to indicate that we achieved a reasonably good sample of

the spectrum of performance.

Bias resulting from factor number three is difficult to eliminate without knowing,

in advance, the likely pattern of memory allocation used by code generator. Our

experiments tend to allocate and deallocate data in a systematic way. When we

altered an experiment to allocate randomly size blocks of data the peformance data

changed but not radically.

Overall, from the experiments we describe below we can expect a reasonable

characterisation of the cost of malloc and free. This characterisation can be

improved in a number of ways but, given the variations we tried and the moderate

consistency of the actual results under quite different conditions, it is unlikely that

our results are far off the mark.

Experimental platforms We timed malloc and free on two architectures:

• A 4-processor Sun Sparc Ultra running Solaris 5.9.

• A Dual-processor PowerPC running Darwin 6.6

For the first platform we use the gethrtime() library call declared in <sys/time.h>.

For the second platform we used the mach absolute time() library call declared in

<mach/mach time.h>.
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F.3 Experimental results

F.3.1 Raw instruction execution speeds

On both platforms we found the marginal cost of increment and assignment

instructions were very similar to each other. On both architectures the cost of

executing the first instruction in a sequence was very high, very likely, the result

of cache-effects. Once the execution of a sequence was underway performance seemed

quite consistent. The costs of both assignment and increment statements on the

older Sun platform are around 59 nanoseconds (plus or minus one nanosecond). On

the newer PowerPC platform the execution costs of increments and assignments are

around 0.25 nanoseconds (very small variations around this point).

We have described our experimental setup and some factors to watch out for. Now

we can show the results. First we describe the cost of malloc.

F.3.2 The cost of malloc

In this section we examine the results of a series of experiments to arrive at an estimate

of the cost of malloc. Each experiment assumes a different pattern of calls to malloc

and free.

Cost of malloc without deallocation In our simplest experiment we performed

50 calls to malloc on each of a series of 100 block sizes between four bytes (one

integer) and 19804 bytes (4951 integers), at 200 byte intervals. In this experiment we

made no calls to free.

Figures 186 and 187 show scatter-plots of data points collected the Sun and

PowerPC platforms respectively. Note the different scales in the diagrams. In both

figures the malloc’s involving small blocks of data tended to be the least costly3. The

effect of block-size appears more pronounced on the Sun platform where the cost of

allocating larger and larger blocks increases typical costs from around 50 instructions

to between 2000 and 10,000 instructions.

For the PowerPC platform costs for small blocks are clustered about two

modes at approximately 100 and 3000 instructions respectively. Perversely, average

3With the notable exception of the very first malloc performed in each program - probably due,
in part, to instruction cache effects.
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Figure 186. Cost of calls to malloc, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. No deallocation was performed.
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Figure 187. Cost of calls to malloc, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. No deallocation was performed.
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Figure 188. Cost of calls to malloc, measured in instructions, on the Sun server
platform. 50 calls to malloc are made for 100 different block-sizes. The block-size
used for each successive call is randomly determined. No deallocation is performed.

performance improves as we allocate larger block sizes. Costs on the PowerPC are

more variable than they are on the Sun with some calls on the PowerPC costing more

than 100,000 instructions.

Note, that there is a possible bias factor in this experiment: we are allocating the

larger blocks from a heap that is more “full” than the heap from which we allocate

smaller blocks. We can remove this factor by allocating the large and small blocks in

a random order. We show the results of using such a random allocation next.

Allocating large and small blocks in a random order In our second

experiment we allocate the same mix of large and small blocks but we permute the

sequence of allocations so blocks of different sizes are allocated in some randomly

determined order. So, whereas, in the previous experiment, we allocated 50 blocks of

one size followed by 50 blocks of the next size up and so on, in this experiment we

might allocate a block of 1051 words followed by a block of 251 words followed by a

block of one word and so on, in randomly determined order until all 5000 blocks have

been allocated.

The results of this experiment for the Sun and PowerPC platforms are shown in

figure 188 and 189 respectively.
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Figure 189. Cost of calls to malloc, measured in instructions, on the PowerPC
platform. 50 calls to malloc are made for 100 different block-sizes. The block-size
used for each successive call is randomly determined. No deallocation is performed.

In both figures there are more low-cost allocations of larger blocks and high-cost

allocations of smaller blocks. This appears to indicate that at least part of the low

cost for smaller blocks in the previous experiment was due to the fact that they were

allocated into a less full heap.

However, even with randomised allocation order, smaller blocks typically cost less

to allocate than larger blocks. Though, there seems to be no simple function that

adequately characterises the cost of malloc in these experiments.

Note that there is still scope for improving these experiments. In our

implementation, calls to malloc will be interspersed with calls to free. This on-the-

fly freeing up of memory is likely to change the behaviour of malloc. We examine

the cost of malloc when it is interspersed with calls to free next.

Cost of malloc when immediately followed by free We ran experiments to

measure the cost of malloc when it is immediately followed by a call to free. In

such circumstances malloc is always allocating into a completely empty heap. The

results of this experiment for the Sun platform and the PowerPC platform are shown

in figure 190 and 191 respectively.

Figure 190 shows a remarkable uniformity of allocation times across the range of

block-sizes. Figure 191 displays different behaviour for the lower and upper end of
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Figure 190. Cost of calls to malloc, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. Deallocation is performed after each call.
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Figure 191. Cost of calls to malloc, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size.Deallocation is performed after each call.
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Figure 192. Cost of calls to malloc, measured in instructions, on the Sun server
platform. 50 calls to malloc are made for each block-size followed by 50 calls to

free these blocks. Calls are made in ascending order of block-size.

the ranges. The sharpness of the discontinuity may indicate a change in algorithm

for larger block sizes.

In both cases the variability in allocation costs is low. This uniformity is probably

due to the fact that every allocation is into an empty heap.

Note that, like their predecessors, these experiments also fail to accurately capture

the conditions likely to prevail in our implementation. The likely scenario in our

implementation is to have clusters of allocations, followed by some processing, followed

by clusters of deallocation. Our next experiment attempts to mimic this behaviour.

The cost of malloc followed by delayed deallocation. In this experiment our

programs allocated 50 blocks of data of a given size, reported costs of these allocations,

and then freed the 50 blocks of data. The program starts by allocating 50 blocks of

one-word and finishes by deallocating 50 blocks of 4951 words. The results of this

experiment for the Sun platform and the PowerPC platform are shown in figure 192

and 193 respectively.

In figure 193 as in the previous experiment, there is a very uniform cost for

malloc’s of different sized blocks of data. Most blocks are allocated within 40

instructions though there are some blocks that take about six times longer than that
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Figure 193. Cost of calls to malloc, measured in instructions, on the PowerPC
platform. 50 calls to malloc are made for each block-size followed by 50 calls to

free these blocks. Calls are made in ascending order of block-size.

and yet more blocks that take over 50 times longer than the best case to allocate.

These outlying allocation times are large enough to significantly affect the average

allocation time.

In figure 193 the bulk of measurements lie in the same bands as the previous

experiment with the outlying costs for smaller block sizes being higher.

An estimate for the cost of malloc Characterisation of the results in these

experiments using a cost function or a constant is not easy. A simulator seeking

maximum fidelity might seek to model these costs as a set of distributions from which

to sample, according to the circumstances under which allocation occurs. However,

such a complex model is too heavyweight for our current purposes. Instead we opt

to use a constant to characterise the cost of malloc. Our choice of constant must

take account of the, mostly, small data sizes used in our simulation experiments. It

is best to make the choice of this constant, from the wide range of possible values,

conservative so as not to artificially inflate computation to communications ratios in

parallel programs. With this in mind we use an estimate of 100 instructions per call.

This value is in keeping with the data shown in figures 192 and 193.
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Figure 194. Cost of calls to free, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called immediately after each block is allocated.

F.3.3 The cost of free

We measured the cost of free in two experiments corresponding to the last two

experiments we used to measure the cost of malloc. In the first experiment we called

free immediately after a call to malloc which means that the heap contains one

block prior to the call. In the second experiment 50 calls to free are made after

every 50 calls to malloc. We present our results next.

Cost of immediate use of free This experiment corresponds to the experiment

where we measured the cost of malloc with immediate deallocation. In this

experiment we took away to probes to measure the cost of malloc and replaced

them with probes to measure the cost of free.

Figures 194 and 195 give performance figures for calls to free on the Sun and

PowerPC architectures respectively.

In both figures there is less variation apparent than the corresponding calls to

malloc in figures 190 and 191. With the exception of one extreme outlier (at

around 3300 words) the cost of free on the Sun is approximately 30 instructions.

Performance is more varied on the PowerPC and there is a sharp drop in performance

for block-sizes 3101 words and over. The cost of free for smaller block-sizes is

clustered around 70 instructions.
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Figure 195. Cost of calls to free, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called immediately after each block is allocated.

Cost of delayed use of free This experiment is a modified version of the

experiment that measured the cost of malloc with delayed deallocation. We replaced

the timing probes surrounding malloc with timing probes surrounding free.

Figures 196 and 197 show results of these experiments on the Sun and the PowerPC

architectures respectively. The scale in figure 196 is linear rather than logarithmic

to best capture the range of costs. This figure indicates that free is slightly more

expensive when calls to free are delayed until multiple allocations have been made.

A notable exception is the cost of freeing one word of memory. Our timer consistently

registered a cost of zero instructions for this activity indicating that the call takes

some time less than the actual resolution of the high-resolution clock.

Figure 197 tells a more complex story. For the most part, the cost of deallocation

has increased dramatically from the earlier experiment with immediate deallocation.

The cost of free for most smaller block-sizes is greater than the cost for larger block-

sizes4. This cost-profile is difficult to characterise with a single scalar or function.

An estimate for free A blanket estimate for the cost of free is harder to make

than for malloc. As with malloc a simulation of maximum fidelity would employ a

4Perhaps this high cost is the reason there seems to be a change of algorithms for larger blocks.
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Figure 196. Cost of calls to free, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called after every 50 allocations.
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Figure 197. Cost of calls to free, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called after every 50 allocations.
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function to sample from a set of distributions. However, our model only requires a

loose approximation of costs. A figure of 70 instructions is a good approximation of

the cost of free on the Sun. The costs on the PowerPC defy characterisation but a

figure of 70 is a reasonable estimate for many smaller block-sizes.

F.4 Conclusion

After sampling the performance of malloc and free on two architectures on a variety

of block-sizes with different patterns of allocation and deallocation we have the

following observations:

• The costs of malloc and free form distributions that depend on the timing of

allocation and deallocation, the platform and the size of the data allocated.

• There is no simple function that characterises the cost of malloc as a function of

block-size. With the exception of a cost discontinuity on the PowerPC platform

the cost of malloc seems to depend more on how many other blocks are currently

allocated in the heap than on the size of the new block being allocated. Even

when malloc allocates into empty memory performance can vary from call to

call.

• There is no simple function that characterises the cost of free on both

platforms. As with malloc the cost of free seems to depend more on the number

of blocks already allocated than on the size of the block being freed.

• Cost estimates of 100 instructions for malloc and 70 instructions for free are

not unreasonable as an approximation for a simple model. There is scope to use

experimentally derived distributions, such as the ones derived in this chapter,

to inform a more detailed model in future.

It must be stressed that any refinement of our cost estimates should involve sampling

for a greater variety of block-sizes and using more realistic patterns of allocation

and deallocation. The most accurate model for the costs of malloc and free

would probably come from a detailed model of the algorithms used on a particular

architecture. The implementation of such a model is beyond the scope of this work.
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