
Application of Evolutionary Methods to 3D Geoscience
Modelling

Brad Alexander
School of Computer Science

University of Adelaide
Adelaide, South Australia

brad@cs.adelaide.edu.au

Jared Peacock
Geology and Geophysics

University of Adelaide
Adelaide, South Australia

jared.peacock@adelaide.edu.au

Stephan Thiel
Geology and Geophysics

University of Adelaide
Adelaide, South Australia

stephan.thiel@adelaide.edu.au

ABSTRACT

Geoscience modelling plays a vital role in mapping and track-
ing Earth’s resources. Magnetotellurics, which maps the
electrical resistivity of the subsurface, is a useful and cost-
effective technique for sensing large areas at depth. However,
due to the inherent difficulty in sensing deep strata, models
produced using MT have a degree of uncertainty. Geosci-
entists can reduce this uncertainty by producing multiple
alternative models, and using multiple modelling techniques
and settings, to correlate robust model features with field
data responses. Population-based evolutionary search tech-
niques are of interest to MT modelling because they offer
an alternative to deterministic techniques, and are able to
produce multiple models for analysis. Unfortunately, evolu-
tionary techniques have not been successfully applied to 3D
MT modelling. In this work we describe a new, more com-
pact, representation of MT models using volumetric func-
tions. Using this representation we successfully apply evo-
lutionary search techniques to 3D MT modelling for both
artificial and real models and show how the development of
large scale features during modelling can be correlated with
the model’s fit to field data.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and En-
gineering—Earth and Atmospheric Sciences; I.2.8 [Computing
Methodologies]: Artificial Intelligence—Problem Solving

Control Methods and Search

Keywords

Modelling, Geoscience, Evolutionary Search, Magnetotel-
lurics

1. INTRODUCTION
Humans are heavily reliant on geological knowledge to dis-

cover and conserve the Earth’s material, energy and water
resources. Due to the inherent difficulty in sensing structures
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at depth, much of our geological knowledge is provisional
and ambiguous[10, 15]. Given this unavoidable uncertainty,
there is a need to develop modelling techniques to help geol-
ogist explore the space of viable models. One way to explore
this space is to have a population of viable models that al-
lows common traits to be observed and correlated with field
data. For this reason, there is a strong research interest in
the application of population-based evolutionary search to
geoscience modelling[6, 11, 4, 13, 18, 7].

One geoscience modelling technique to which evolution-
ary search has been successfully applied is Magnetotellurics.
Magnetotellurics (MT) measures the electrical response of
the subsurface due to natural time-varying magnetic fields.
MT is a diffusive volumetric method, where the depth of
penetration depends on the period of the source field. MT
field data can be processed to form a map (model) of the re-
sistivity of the subsurface. MT is relatively cost-effective and
can model the earth to great depth. MT is used for mineral
exploration[14], mapping geothermal-provinces[9], and map-
ping fluid reservoirs at depth[17]. The MTmodelling process
can produce one, two and three-dimensional models. Evolu-
tionary search has been used in the derivation of simple 1D
and 2D MT models[9, 13, 18, 7] but, to date, there are no
published applications to not 3D models. This omission is
significant because 3D models not only provide much more
detail than 2D models, they also reflect the complex three-
dimensional geometries of earth’s subsurface structures [15].
The lack of evolutionary search applied to 3D models is, at
least in part, due to the large size of 3D models which can
consist of thousands to millions of real-valued parameters.

This work describes an alternative encoding of MT mod-
els that requires many fewer parameters but is still capa-
ble of expressing non-trivial subsurface structures. Instead
of using the common encoding of 3D models as grids of
hexahedral cells (structured meshes), we express our model
using small set of diffuse 3D ellipsoidal volumetric func-
tions. These functions, inspired by metaballs, or blobs,
used in computer graphics[1] are sampled to 3D mesh to
represent an MT model. This new representation produces
a new search space for which we have developed a hybrid
search technique, combining bespoke greedy search with Co-
variance Matrix Adaptation Evolutionary Strategies (CMA-
ES)[5]. We have integrated these components with existing
MT modelling tools to produce a new modelling framework.
The contributions of this work are two-fold: First, the novel
use of volumetric functions to compactly express non-trivial
3D maps of values in a scientific domain; and second, a new
hybrid search technique, incorporating evolutionary search,



that traverses the space of volumetric functions to produce
good 3D MT models for both artificial and real field data.
The reduced number of parameters used to express our

models is significant. Not only do fewer parameters make
the use of population-based search methods feasible, but
their simple relationship to the actual shape of the blob-
structures in the model creates a much more intuitive and
comprehensible link between the parameter space and model
fitness.
The remainder of this article is structured as follows. In

the next section we summarise related work. In section 3
we outline the MT modelling process. We describe our blob
representation in section 3.1 and our hybrid search technique
and modelling process in section 4. In section 5 we present
our results for both an artificial benchmark and real field
data. Finally, in section 6 we canvass ways in which the
search framework might be improved and further explored.

2. RELATEDWORK
Stochastic search has been widely applied to MT. Monte-

Carlo techniques[6, 11] where parameters for MT models
are generated randomly are applied to provide better global
search. Faster search is provided by informed search heuris-
tics such as Markov chaining[4], simulated annealing[3] and
evolutionary methods[9, 13, 18, 7]. Work using evolution-
ary methods has been diverse, ranging from direct evolu-
tion of 2D models using specialised operators (Flores and
Schultz[9]); to hybrid schemes combining genetic algorithms
and local search (Tong and Lui, et. al.[18]); to using pareto
techniques to balance model fitness and model smoothness
(Moorkamp, Jones, and Fishwick[7]). To date, MT work
using stochastic methods has been limited to 1D and 2D
models. Our work extends the use of evolutionary search to
small 3D models by using a parameter-reducing representa-
tion.
In terms of representation, parametric models, often de-

scribing layers[6], or using simple functions[12], have long
been used for MT. Schnegg[12] expressed 3D MT models
using polynomial functions in terms of curved layers. His
representation, like ours, substantially reduces the param-
eter space for models. However, our representation is able
to represent more complex and diffuse structures, does not
rely as much on a-priori knowledge of the model.

3. MAGNETOTELLURIC MODELLING
MT modelling builds a map of subsurface resistivities to

match field data. The broad process of MT is shown in Fig 1.
The first step of the process is data collection. MT data is
collected by measuring orthogonal horizontal components
of the electric and magnetic fields. In addition, sometimes
a vertical magnetic component is measured1. Instruments,
called stations, are left in the field for an extended period
of time depending on the target depth. The time-series ex-
tracted are then converted to the frequency domain to es-
timate the MT transfer function as the ratio of the electric
field to magnetic field. Robust statistics are applied to ex-
tract the best representation of the complex MT transfer
function, known as the impedance tensor. An impedance
tensor is derived for each frequency for each station. In in
this work, each impedance tensor consists of eight scalar
components. We do not detail these components here, but

1as it is in this work

Figure 1: Summary of the MT modelling process

1 ǫ = min value
2 models = initial guesses
3 loop
4 models = improve(models)
5 errors = calculate errors(field data,models)
6 while min(errors) > ǫ
7 return best of(models)

Figure 2: General algorithm for MT inversion

we use the same components as those described briefly in [8]
and in a deeper account in [14].

After derivation of the impedance tensors we commence
the third, and most computationally intensive, phase: MT

Inversion. Inversion converts impedance tensors into an MT
model. An MT model is a a one, two or three dimensional
mesh of resistivity values – literally, a map of the subsur-
face below the stations with a resistivity value ρ, measured
in Ohms per meter (Ωm), at each mesh cell. A general al-
gorithm for MT inversion is given in Fig 2. The algorithm
works by iterative improvement of a population of one or
more models. The inversion process can take from a few
hours to a few months of processor time depending on algo-
rithm settings and model size. The first line of the algorithm
sets ǫ to the minimum acceptable error value for the best of
the models. Line 2 initialises the models to a list of ini-
tial guesses. The algorithm then loops, improving the set of
guesses on line 4, and calculating errors on line 5. Line 6
test the terminating condition and line 7 returns some best
sub-set of the refined models2.

Note there are several open design choices in the MT in-
version algorithm in Fig 2, including the size of the popu-

2The criteria for best is user-defined but it is usually some
combination of low-error and smoothness.



Figure 3: Evaluative function: calculate errors

lation and the choice of improvement function. For exam-
ple, a very common choice in MT inversions is to have a
population of just one model and to use a standard non-
linear search algorithm[15, 14] for improvement. In con-
trast, most evolutionary approaches have a population size
greater than one and a stochastic or hybrid improvement
process[13, 18, 7]. In an evolutionary setting, the calcu-
late errors function performs the role of evaluative function
over the population. Fig 3 shows the structure -of the evalu-
ative function for a single individual. The key component of
the evaluative function is a process called forward-modelling.
Forward-modelling takes as input a candidate model, the
set of station locations, and the frequencies to be produced.
As output, it produces an artificial response – the set of
impedance tensors that would have been produced for the
stations and frequencies if the earth below the stations were
the candidate model. There are a number of techniques for
forward modelling[14]. These typically use iterative approx-
imation to produce its response through finite-difference or
finite-element methods. The forward-modelling method we
use in this work is Siripunvaraporn’s data-space method[16]
because it has good speed, generality and accuracy. After
forward-modelling has produced an artificial response, the
rest of the evaluative function is straightforward: we simply
pairwise-subtract the field response from the artificial re-
sponse (weighting for estimated errors in field data). Then
the root-mean-squares (RMS) of these weighted differences
is calculated to give a single numeric estimation of error. For
any given model, the lower the RMS, the better the fitness.
This concludes our brief introduction to the process of

MT. Next we describe our new representation for MTmodels
using blobs.

3.1 The Blob Model
The blob model is a parametric representation of a 3D

model using simple ellipse-shaped volumetric functions. In
our modelling framework these blob parameters must first be
converted a single composite volumetric function and then
sampled to produce a candidate model for evaluation. This
process is illustrated in Fig 4. We implemented this con-
version and sampling process from blob parameters to the
res-map function in Python because Python supports direct
manipulation of functions. We describe the two steps of
this evaluation process, function formation, and sampling in
turn.

Figure 4: Conversion of blob parameters to MT
Model

3.1.1 Function Formation

Function formation converts a set of blob parameters to a
function res-map(x, y, z) that maps a Cartesian coordinate
(x, y, z) into a resistivity value: ρ. res-map is a composite
function consisting of a generalised average of a smaller set
ellipse-shaped volumetric functions (or blobs) {f1, . . . , fn}
where n is typically in the range of 5 to 20 depending on
model complexity. We will describe how the fi are com-
bined to form res-map shortly but first we will describe the
encoding the individual blob functions fi. Each fi(x, y, z)
maps a point (x, y, z) in 3D space into a scalar value rep-
resenting the deviation of that point in space from a, user-
estimated, background level of resistivity (this background
level is called the half-space). All fi are kept to the same
range, usually, ±0.5 which is scaled to produce a real resis-
tivity value when all functions are combined to form res-map

Each blob function fi has the form:

fi(x, y, z) = δi/((x
2
tr + y2

tr + z2tr)
α + 1)

where δi is difference of resistivity from the half-space at the
centre of the blob; α is a power that determines how fast the
blob diffuses into the background – a high α will produce a
sharply defined blob whereas a low α produces a very diffuse
blob. The input coordinates (x, y, z) are geocentric – x and
y are in the horizontal plane and z is the vertical depth. For
the sake of simplicity, we normalise x, y and z to be in the
domain [0.0, 1.0]. The triple (xtr, ytr, ztr) in the function
above represents (x, y, z) after it has been transformed by
9 parameters representing translation, scaling and rotation
in all three dimensions. In all, including these translation,
scaling, and rotation parameters, each blob is defined by 11
parameters. Thus, a large model consisting of 20 blobs will
have a total of 220 real-valued parameters. The 11 blob pa-
rameters are summarised in table 1. Note that this represen-
tation was inspired by, and bears some resemblance to, the
volumetric functions used to represent blobs or metaballs in
computer graphics [1]. The main difference being the use of
a variable sharpness parameter α and the fact blobs are com-



Param Description Range

δ central intensity [−0.5, 0.5]
α sharpness [0.1, 15.0]
xloc, yloc, zloc x,y,z-location [0.0, 1.0]
xs, ys, zs x,y,z-scale [0.0, 1.0]
xr, yr, zr rotation about x,y,z axis [0.0, π]

Table 1: Summary of blob parameters

bined by averaging their sampled values rather than joined
with spline functions.
A two-step process is used to combine the fi to form a

res-map. First individual blobs functions fi are combined:

f(x, y, z) = (
1

n

n∑

i=1

fi(x, y, z)
p)1/p

to produce a composite function f which is a generalised
average of the sampled value of each blob function fi at the
point (x, y, z). In our experiments to date, we have found
good results if we set the power of the average to: p = 11
which biases f in favour of the most extreme fi at each point
without completely subsuming the effects of the other fi at
that point. Note that p must be an odd integer to preserve
negative values. Finally, after f is formed, we can use it to
define the res-map function:

res-map(x, y, z) = 10f(x,y,z)/0.2Ωm+ half-space

where half-space is the background resistivity mentioned pre-
viously. half-space is a rough-estimate of background resis-
tivity , usually between the values of 101Ωm and 103Ωm,
depending on the geological area under study. Once res-map

has been created it can then be sampled and evaluated. We
describe this process next.

3.1.2 Sampling and Evaluation

To convert the res-map function to a candidate model we
simply sample res-map at the desired intervals of the model
to produce a 3D hexahedral mesh representing the model.
For the sake of speed, we currently sample only one point
at the centre of each mesh cell. Once the model is sampled,
it is given to the calculate errors function shown in in Fig 3
which produces an error (RMS) value that guides the search
process we describe next.

4. THE SEARCH PROCESS
We can frame the search problem as:

argmin
ps=[p1,...,pn]

evaluate(ps)

where evaluate is the sampling and evaluation process, de-
scribed in section 3.1.2 above, which converts the model pa-
rameters ps to an RMS value. Conventional MT inversion
often uses standard non-linear search methods to directly
optimise the resistivities of the model cells3. Unfortunately,
our attempts to apply standard non-linear search techniques
blob models resulted in fast convergence to very sub-optimal
local minima. Likewise, we found that direct application of
a variety of GA’s results in only limited progress even for

3often using extremely large Jacobian or hessian matrices in
the process

simple models. To investigate further, we closely inspected
the fitness landscape surrounding known global optima of
artificial blob models. We found this landscape for various
combinations of parameters to be reasonably smooth on a
large scale but sometimes rough on a local scale. To cope
with this mix of global smoothness and local roughness we
developed a composite search method consisting of the fol-
lowing steps.

• Seeding Progressively adding alternately resistive and
conductive spherical blobs of a variety of sizes and
depths and allowing them to be optimised for position
and resistivity.

• Priming Cyclically optimising groups of model pa-
rameters.

• Culling Removing from the model the blobs that have
the least impact on fitness.

• Model Evolution Using Covariance Matrix Adapta-
tion Evolutionary Strategies (CMA-ES)[5] to allow for
simultaneous search on all parameters.

In our experiments to date, we have needed to run each of
the steps above to produce good final models. We summarise
each step next.

4.1 Seeding
Seeding adds spherical blobs to the model one at a time.

The number of blobs added varies between 5 and 20 depend-
ing on a-priori assumptions we make about the complexity of
the model. Blob resistivity alternates between higher than
half-space and lower than half-space. Blobs vary in size,
smaller blobs are added near the surface of the model first
due to a higher sensitivity of MT to near-surface features
and larger blobs are added at depth later on. In our exper-
iments thus far we have found that our inversion process is
relatively insensitive to the precise position and resistivity
of blobs added – as long as there is sufficient variety at each
depth and shallow blobs are added first. Other parameters
are fixed, with rotations set to zero and sharpness set to it’s
maximum value. When each blob is added it is optimised
first for its position parameters and then for resistivity using
the bespoke perturbation algorithm shown in Fig 5. Note
that this greedy algorithm refines models by cycling through
the selected model parameters, perturbing the model param-
eters by a set amount4 and recording the perturbation that
gives the greatest improvement (if any). The selected per-
turbation is then applied and the search continues. If no
perturbation improves the model then the search continues
with reduced step size until a minimum step size is reached5.

4.2 Priming
After seeding is performed, the model consists of a number

of spherical blobs distributed through the model space. The
hope is that many of these blobs are, roughly, in the right
location and have the right resistivity. Priming performs
preliminary optimisation of all the parameters in turn using
same greedy search algorithm as the one for seeding (Fig 5).

4In our experiments start perturbations at one-quarter of
the maximum parameter range.
5To speed up search a little, we modified the algorithm
to also adaptively increase step size when justified by the
progress of the search.



input:
model //{m1, ..,mn}
params //{p1, ..., pk}, k ≤ n
maxstepsize// in range (0.0, 1.0]
minstepsize // in range (0.0,maxstepsize)

algorithm:
stepsize=maxstep
evaluate initial fitness
while stepsize >=minstepsize

for i in 1 to k
perturb model at param i up by stepsize
perturb model at param i down by stepsize
record best perturbed paramater so far

end for
if if best recorded fitness improved
replace model with best perturbed model

else
halve stepsize

end if
end while
return model

Figure 5: Greedy algorithm for perturbation search

Optimisation starts with x, y and z scales of all blobs, pro-
gressing to all the resistivities, all sharpness parameters, all
rotations and all positions. This cycling through the whole
parameter space is typically done twice.

4.3 Culling
After priming, the model usually has a number of blobs

making a net negative contribution to fitness. Culling re-
moves a number of these blobs by first sorting the blobs
according to contribution and then progressively removing
blobs until the RMS plateaus.

4.4 Evolution
After culling, the model has most of the structure neces-

sary to produce a reasonably low error value. However, in
MT, many large scale structures, especially resistive bodies
at depth, exhibit only a weak signal to the surface probes.
A tuning step is necessary to evolve the large scale shape of
these structures in response to very subtle changes in RMS.
We use CMA-ES applied to all model parameters to per-
form this tuning. In our experiments to date, the number of
model parameters involved varies between 55 and 220. The
population, λ, varies between 50 and 200 and the number
of individuals retained at each iteration was set to λ/2. In
our later experiments we set the standard deviation (σ) of
the initial search distribution to be small, approximately,
1% of the parameter range. This is due to the high sensitiv-
ity of fitness to changes of some model parameters6 We let
evolution run for between 1000 iterations for simple mod-
els with few blobs to 2000 iterations for models with many
blobs resulting in between 50000 and 100000 evaluations7.

6In earlier experiments we found that progress could be
made, albeit more slowly, with σ up to 12% of the parameter
range. Values larger than this lead to divergence.
7From earlier experiments running with different popula-
tions, it appears that the total number of evaluations rather
than population size is the best predictor of model refine-
ment.
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Figure 6: Effect of removing blobs in order of least
contribution from primed model

5. RESULTS
The results presented here are for two sets of data. The

first experiment ran against a simple standard benchmark
for 3D MT, the 3d2 COMMEMI model[19]. The second
experiment ran against field data taken from an enhanced
geothermal prospect near Paralana in South Australia[17].
In both experiments we used CMA-ES with a population
of 50 individuals from which 25 were selected to form the
basis of the next iteration. The initial σ was set to 0.01
representing 1% of the range of most parameters. The CMA-
ES process was allowed to run for 1000 iterations in the first
experiment and 2000 in the second. We describe each result
in turn.

5.1 COMMEMI 3d2 model
The COMMEMI 3d2 is one of a series of models developed

to test MT inversion techniques. It is a reasonably challeng-
ing target in that it has highly contrasting bodies near the
surface and alternating conductive and resistive layers. In
this context, a further challenge is added by fact that the
bodies in the model are rectangular which makes them more
difficult to approximate using ellipsoid functions.

To create the response data needed for this experiment we
ran forward modelling on the COMMEMI model shown in
Fig 7 (a). We placed 50 simulated stations in a rectangular
grid near the surface of the model. Data was collected for
five frequencies ranging from 2Hz down to 0.0001Hz. The
purpose of inversion here is then to re-discover the model
from the response data. We start the inversion process with
a half-space of 10Ωm and sampled into a 13x14x10 grid.
This relatively low grid resolution allowed forward-modelling
to run in just a few seconds on a Linux virtual machine
running on a 2.8 GHz Intel Core i7 processor. In terms of
runtime, the seeding and priming process used 19750 eval-
uations taking just under 17 hours. Culling required just
29 evaluations and took less than two minutes. The evolu-
tionary stage of the process consisted of 50000 evaluations
and took 1.5 days giving a total runtime for the inversion
of just over two days. In the first step of the inversion the
model was seeded with 14 blobs. The model, after seeding
is shown in Fig 7(b) some of the basic features are starting
to become visible, particularly near the surface, the RMS
value is high to moderate at 7.68 (down from over 50 in the
initial empty model). By the end of priming (part (c)) the
model has a stronger resemblance to the target, particularly
at depth, and the RMS has decreased to 4.62. In the culling



Figure 7: COMMEMI results showing the target model (a), the model after seeding (b), the model after
priming (c), the model after culling (d) and the best model after evolution using CMA-ES (e). The arrow in
part (a) points to a resistive layer referred to later in this text.
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Figure 8: Fitness of COMMEMI model over CMA-
ES run

stage we selectively removed blobs to assess their impact,
positive or negative, on the RMS value and sorted the mod-
els. The graph of the RMS response resulting from removing
blobs one-by-one from the primed model is shown in Fig 6.
The RMS value plateaus for a short time when nine and ten
blobs are removed. To be conservative, we removed only
nine blobs8. The resulting model is shown in part (d), as
can be seen, culling appears to have improved the accuracy
of deeper parts of the model somewhat. The final step of the
process was to evolve all the remaining 55 model parameters
using CMA-ES. In this case we ran the evolutionary process
for 1000 iterations. The best individual from this evolution-
ary step (RMS=1.27) is shown Fig 7 part (e). As can be
seen, the evolutionary process has resulted in a model that
bears a close resemblance to the target model (part (a)).
This result is competitive with other inversion processes for
this and similar models[16] though our process is still slower
than standard non-linear search which, for this model size,
would take hours rather than days.
The biggest differences between the culled model in part

(d) and the evolved model in part (e) are, first, more accu-
rately approximated resistivity in the deeper layers in the
model and, second, a much more accurate shape for the
blue-green resistive layer (see arrow). The trajectory of the
RMS value during evolution is shown in Fig 8. Note that,
at first RMS drops quite rapidly. From our observations
of models during the early part of the evolutionary run,
this steep drop in RMS appears to correspond to improved
shape of surface features and improved approximations of
resistivity. Later stages of evolution show only very slow
improvement in RMS. However, even during this quiescent
stage, the model is developing substantially. In particular,
the blue-green resistive layer is becoming more planar in
shape. This late development can be seen in Fig 9, which
tracks the size of blob corresponding to the resistive layer
in the x,y and z dimensions over time9. Note that quite
far into the evolutionary process the shape of this layer is
still improving even though the change in RMS driving this
improvement is very weak. This ability to easily track the

8It should be noted that any approach to culling is, necessar-
ily, imperfect because it anticipates what blobs will become
during the evolution step.
9Almost no rotation was applied to this blob so the direc-
tions of each dimension are intact.
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Figure 9: Development of size parameter values for
the resistive layer during evolution

correspondence between the development of large-scale fea-
tures in the model to the RMS is a new advantage of using
our parametric model representation.

5.2 Paralana
Our second experiment applies our blob modelling method

to real geological data. The data was collected from a site
near Paralana in South Australia that shows promise as an
enhanced geothermal power source[17]. The response data
was collected from 54 stations and processed tensors in six
frequencies ranging from 50Hz to 0.01Hz. For the inversion
we again, used a low-resolution model (13x13x10 cells).

To start the inversion process, we seeded our model with
four layers of four blobs each. The initial seeding and prim-
ing process produced a model with an RMS of 2.58. We ran
CMA-ES for 2000 iterations - just under four days - and ar-
rived at a model with an RMS of 2.51. This model is shown
in Fig 10 (a). For comparison, the output of an earlier 2D in-
version using the deterministic OCCAM[2] method is shown
in part (b)10. Both models seem to capture the conductive
surface layer over a more resistive crustal layer. They also
appear to capture a conductive body at depth on the right
hand side (see arrows). This conductive body is present in
all of our other 2D inversions at roughly this location, which
gives some confidence that it is real - perhaps corresponding
to a large heat-source.

6. CONCLUSIONS AND FUTUREWORK
The results presented in this paper represent a proof-of-

concept – they show that CMA-ES, given a compact model
representation, can be used in the production of good MT
models. There are several useful directions in which this
work can be taken. First, as part of its execution, CMA-
ES produces a covariance matrix. There is work to be done
in terms of interpreting this matrix to convey geologically
significant information about the model-space. Second, our
greedy search algorithm used by seeding and priming is very
naive – there is much scope for refining for both its efficiency
and accuracy. Third there is scope for speeding up the mod-
elling process by exploiting parallelism at all stages. Fourth,

10Note, we use a 2D inversion here because there are no ex-
tant 3D inversions available for this site. Also note, the
vertical line in part (b) represents a geothermal test-well.



Figure 10: West/East cross-section of 3D Paralana
Blob model (a) and West/East 2D OCCAM inver-
sion.

we would like to extend the search process to periodically
allow highly fit blobs to divide and less fit blobs to be culled.
Such a biological growth model has the potential to greatly
increase the adaptivity of the search process. Finally, we
would like to experiment more with the use of stochastic
search a global as well as a local level to assess it’s impact
on model diversity.
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