Constructing an Optimisation Phase Using Grammatical Evolution

Brad Alexander and Michael Gratton
Outline

• Problem
• Current Approaches
• Experimental Aim
• Ingredients
• Experimental Setup
• Experimental Results
• Conclusions/Future Work
Problem

- Optimising compilers work in a complex design space.
 - Difficult for the author of the optimiser configure well for all applications.
 - Static design is always a compromise.

- A Solution:
 - automatically adapt the optimiser to the set of programs it compiles!

- Problem:
 - the design space is huge and chaotic
 - however, can search this space using heuristic methods.
Current Approaches

• Phase sequencing

 Loop Invariant Hoisting

 Common Subexpression Elimination

 Dead Code Elimination

 Block Reordering
Current Approaches

- Phase sequencing

1. Common Subexpression Elimination
2. Loop Invariant Hoisting
3. Dead Code Elimination
4. Block Reordering
Current Approaches

• Phase sequencing

 Common Subexpression Elimination

 Block Reordering

 Dead Code Elimination

 Loop Invariant Hoisting
Current Approaches

- Phase sequencing
 - Dead Code Elimination
 - Block Reordering
 - Common Subexpression Elimination
 - Loop Invariant Hoisting
Current Approaches

- Phase sequencing
 - Dead Code Elimination
 - Block Reordering
 - Common Subexpression Elimination
 - Loop Invariant Hoisting
Current Approaches

- Parameter Tuning

Loop unroll factor: 3
Loop tiling factor: 2
Current Approaches

• Parameter Tuning

- Loop unroll factor: 4
- Loop tiling factor: 3
Current Approaches

- Evolution of Control Code
Current Approaches

• Evolution of Control Code

```java
if(reg_size > &spill_cost ...)
```

Register Allocation
Current Approaches

• Evolution of Control Code

```
if (reg_size > &spill_cost ...)
```

Register Allocation
Experimental Aim

• All current work assumes that optimisation phases are pre-existing and atomic or parametric.
• Currently no work on the construction of these phases from smaller components.
• Aim of this experiment is a proof of concept:
 • To attempt to build a safe, substantial, and effective optimisation phase using heuristic search.
 – We use Grammatical Evolution (GE) a form of Genetic Programming (GP).
 – The genotype to phenotype encoding in GE constrains the population to syntactically correct individuals.
Experimental Application

• Evolution of a phase of a compiler mapping a functional language (Adl) to a hardware definition language (Bluespec).

• The target phase is the Data Movement Optimiser (DMO) that reduces data flowing through a functional intermediate form (point-free code).

• There is an extant hand-written DMO that:
 – was non-trivial to construct.
 – can be used as a source of building blocks.
 – can be used as a benchmark

• The DMO is written in Stratego, a term-rewriting language consisting of rewrite rules and strategies for their application.
Ingredients

• Three ingredients in any GP exercise:
 1. The language grammar consisting of:
 • terminals
 • non terminals
 2. The evolutionary framework.
 3. The evaluation function
• We look at these in turn.
The Language Grammar (1)

- All individuals are expressed in Stratego
- **Terminals**
 - Consist of simple rewrite rules e.g.
 - CompIntoMap: \(f^* \circ g^* \rightarrow (f \circ g)^* \)
 - MapIntoComp: \((f \circ g)^* \rightarrow f^* \circ g^* \)
 - RemoveId: \(\text{id} \circ f \rightarrow f \)
 - grouped together using the left choice (\(<+\)) operator e.g.
 - CompIntoMap \(<+\) RemoveId
 - **Semantics:** try applying CompIntoMap to current node and, if that fails, try applying RemoveId.
- **We use the same terminals as the handwritten DMO**
The Language Grammar (2)

• Actual terminals include:
 - `pushDownMap` (vectorise)
 - `pushDownComp` (fuse loops)
 - `simp` (apply simplifying rules)
 - `leftAssociate` (left associate binary composition)

 – In most contexts, the order of rules within a group is of minor consequence
 - If they can be applied they eventually will be applied.
 – These terminals have little impact without strategies to apply them.
The Language Grammar (3)

• Non-terminals are strategies for rule application.
 – These take strategies or rule-groups as parameters and apply them to the target AST in some order.

• Examples include:
 - \text{bottomup}(s) : apply \(s\) to the current sub-tree bottomup
 - \text{innermost}(s) : apply \(s\) to the current sub-tree bottomup until it can no longer be applied (fixpoint strategy)
 - \(s \; ; \; t\) : apply \(s\) to current sub-tree followed by \(t\)
 - \text{repeatUntilCycle}(s) : apply \(s\) to the current sub-tree until a result seen before in this invocation is detected.

• Example:
 - \text{bottomup(leftAssociate;innermost(simp))}
The Evolutionary Framework

• We used LibGE in our experiments.
 – A popular framework for developing GE applications.

• LibGE (based on LibGA) takes:
 – A grammar definition and,
 – A fitness function
 – Some parameter settings

and handles:
 – Population initialisation, application of the fitness function to individuals, application of genetic operators, collection of statistics and, genotype to phenotype mapping.

• The mapping works by using 8-bit numbers in the genotype string to select productions in the language grammar.
Fitness Function (1)

- Fitness is calculated by running evolved optimisers against up to six benchmark programs and their data against a dynamic cost-model.
 - Benchmarks needed to be carefully chosen to require multiple strategies and have a gradual gradient of difficulty.
- Fitness calculated relative to cost of hand-coded DMO on each benchmark i ($cost_{opt_i}$):

$$fitness = \frac{\sum_{i=0}^{n} (cost_{opt_i}/cost_{evo_i})}{n}$$

- Average fitness evaluation takes 5 seconds. Zero fitness for timeout or stack-overflow error.
Fitness Function(2)

• Hand Coded Benchmark:

```plaintext
repeatUntilCycle(
  bottomup(
    repeatUntilCycle(
      innermost(LeftAssociate)
      ;innermost(pushDownComp)
      ;innermost(LeftAssociate)
      ;innermost(simp)
      ;innermost(LeftAssociate)
      ;innermost(pushDownMap)
      ;innermost(LeftAssociate)
      ;innermost(simp))
  bottomup(
    repeatUntilCycle(
      innermost(LeftAssociate)
      ;innermost(pushDownAlltup)
      ;innermost(LeftAssociate)
      ;innermost(alltupSimp)
      ;innermost(LeftAssociate)
      ;innermost(convertAndRemoveIds))))
```
Experimental Setup

• All grammar elements pre-compiled into stratego libraries for faster running.
• Several runs conducted to tune fitness function.
• Final two runs:
 – Population approximately 250 individuals
 – Run for 80 generations and 63 generations respectively.
 – LibGE settings: Max tree depth 15. Read of genome can wrap-around twice.
 – Mostly default LibGA settings (for GE): Roulette wheel selection, 90% probability of crossover, 1% mutation probability, 1% replacement ratio and elitism switched on.
Experimental Results (1)

- Both runs evolved individuals at least as good as the handwritten DMO’s on the benchmarks.
Experimental Results (2)

- **Robustness**
 - Take the fittest individuals and expose them to thirty benchmarks and measure their performances.
 - Most did not generalise well but the fittest did slightly better than hand coded optimiser.

- **Correctness**
 - 500 fittest individuals collected and tested.
 - None produced semantic errors.

- **Code Size**
 - Best individuals very large with much redundancy.
Conclusions and Future Work

• Evolving a non-trivial optimisation phase is feasible
 – Good results for effectiveness, robustness and correctness.

• Future work includes:
 – Pushing evolutionary process down to individual rules
 – Controlling code-size and efficiency.
 – Extending work to rewriting systems in other languages.