Genetic Programming to Generate Better Compilers

Brad Alexander and Michael Gratton
Outline

• Background and Context
• Current Approaches
• Experimental Aim
• Design Choices
• Experimental Setup
• Experimental Results
• Conclusions/Future Work
Background

• This talk is about making computers write programs for themselves.
 – Using Genetic Programming (GP)

• This is not new
 – GP is nearly 20 years old.

• The new part is what we do with GP
 – We get the computer to program a tricky part of a compiler.
 – This task is usually challenging for humans.

• What is a compiler?
Background: Programs

• Computing is the art of creating software to do new things.
• Software is generally expressed as a program e.g.

```c
#include <stdio.h>
int main(){
    printf("Hello World");
}
```
Background: Machine code

• Unfortunately computers can’t directly understand our programs.
• They only understand machine code.
 – Sequences of instructions expressed as ones and zeros.

```c
#include <stdio.h>
int main(){
    printf("Hello World");
}
```
Background: Compilers

- Compilers are programs that translate our programs into machine code that a computer can understand.

```c
#include <stdio.h>
int main(){
    printf("Hello World");
}
```
Anatomy of a compiler

- A basic compiler contains two main parts.
 - A Front End and a Back End
Anatomy of a Compiler

- The front end takes program code and converts it to an intermediate code.
- The back end takes intermediate code and converts it to machine code.
• Unfortunately, for certain applications compilers consisting only of a front and back end will produce slow code.
Background: The Optimiser

• An Optimiser can be used to transform intermediate code to make it more efficient:
Background: Optimiser Internals

• Optimisers are not monolithic
 – Instead, they often consist of 20 or more self contained optimisation phases.
Background: Optimiser Internals (2)

- Intermediate code is pushed through these phases one after the other.
Optimising the Optimiser

• How do we know that our optimiser’s sequence of phases is the best for our applications?
 – We don’t…

• So why not automatically adapt the optimiser to the set of programs we use?

• Problem:
 – The design space is huge and chaotic.
 – however, can search this space using heuristic methods.
Current Approaches

- Phase sequencing
 - Loop Invariant Hoisting
 - Common Subexpression Elimination
 - Dead Code Elimination
 - Block Reordering
Current Approaches

- Phase sequencing

 - Common Subexpression Elimination
 - Loop Invariant Hoisting
 - Dead Code Elimination
 - Block Reordering
Current Approaches

- Phase sequencing

 - Common Subexpression Elimination
 - Block Reordering
 - Dead Code Elimination
 - Loop Invariant Hoisting
Current Approaches

- Phase sequencing

 Dead Code Elimination

 Block Reordering

 Common Subexpression Elimination

 Loop Invariant Hoisting
Current Approaches

- Phase sequencing
 - Dead Code Elimination
 - Block Reordering
 - Common Subexpression Elimination
 - Loop Invariant Hoisting
Current Approaches

- Parameter Tuning

loop tiling/unrolling phase

Loop unroll factor: 3
Loop tiling factor: 2
Current Approaches

- Parameter Tuning

loop tiling/unrolling phase

<table>
<thead>
<tr>
<th>Loop unroll factor:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop tiling factor:</td>
<td>3</td>
</tr>
</tbody>
</table>
Current Approaches

- Evolution of Control Code
Current Approaches

• Evolution of Control Code

if(reg_size > & spill_cost ...)
Current Approaches

- Evolution of Control Code

Register Allocation

```c
if (reg_size > &spill_cost …)
```
The Story So Far

• Thus far we have shown the following:
 – Programs need compilers.
 – Compilers are made of front-ends, back-ends and optimisers.
 – Optimisers help compilers produce fast machine-code.
 – Optimisers have many stages.
 – There have been successful experiments in using computers to automatically:
 • Reorder optimisation phases.
 • Control optimisation phases using parameters
What’s Missing?

• All current work assumes that optimisation phases are pre-existing and atomic or parametric.
• Currently no work on the construction of these phases from smaller building blocks.
• Our Research Question:
 – Can we use Genetic Programming (GP) to build a non trivial optimisation phase?
• From our experiments the answer is a clear yes!
 – But as in all GP exercises, careful design is required.
Experimental Design Choices

• In designing an experiment we need to make the following design choices:
 – Application Domain
 – Intermediate Language for candidate optimisers to transform.
 – Raw ingredients to build the candidate optimisation phases out of.
 – Choosing a GP Framework
 – Choosing an Evaluation Function.
• I cover each of these in turn.
Choose an Application Domain

• The optimisation phase we used is part of a compiler mapping a simple language, Adl, to programmable hardware.
• The optimisation phase we want to build is responsible for reducing the amount of data flowing through intermediate code.
 – Less data == Less wires!!
• This is a parallel high-performance application so we have more to gain from optimisation than we would in most application domains.
 – But optimisers for parallel programs harder to build.
Choose an Intermediate Language

• The language used to express intermediate code is important.
 – We chose Point-Free-Form (functional programming without variables)

• Three advantages:
 1. Point-Free-Form is easy to transform -
 – makes it easier for our compiler to make progress.
 2. Point-Free-Form has explicit flows of data between operations.
 – We can see what we’re optimising.
 3. Point-Free-Form is naturally parallel.
 – Easy to map to a parallel machine.
Choose Ingredients

• As much as we’d like, we can’t just say to our computer: “Build Me an Optimisation Phase!”
 – GP wouldn’t know where to start!
• We need to provide a carefully selected set of ingredients.
• For this application our ingredients are:
 1. Small sets of rewrite rules for changing point-free code.
 2. Strategies for applying these rules to different parts of point-free programs.
• We borrowed these ingredients from a hand-written optimiser.
• Both are expressed in Stratego
 – An amazing language for writing optimisers and other program transformers using rewriting.
Ingredients: Choosing Rewriting

There is no great writing, only great rewriting.
(Louis Brandeis)

• Rewriting is the transformation of system through a series of small local changes.
• Rewriting is a great basis for program transformation.
 – If your rewrite rules are correct then you cannot use them to produce an incorrect program.
 – This gives you a lot of freedom to experiment with how you apply these rules without worrying about breaking the user’s program.
• In our experiments we keep the rewriting rules fixed
 – The GP algorithm experiments with how these rules are applied.
• The how is important - rewriting systems can be hard to control..
An Aside: The Importance of Rewriting

• The most beautiful and important things we know are rewriting systems or are products of rewriting systems:
 – Mathematics
 – Fractals
 – Nuclear Physics
 – Chemistry
 – Life….

• Rewriting systems are often chaotic and hard to control but..

• Rewriting works!
Choosing a GP Framework

• The genetic programming framework is responsible for:
 – Generating an initial population of candidate optimisers (individuals).
 – and then, over many generations:
 • **Applying** the evaluation function to each new individual.
 • **Selecting** individuals that did well enough.
 • **Applying** genetic operators to some surviving individuals
 – **Deciding** when to stop.

• We chose Grammatical Evolution, using LibGE as a framework because it generates, mostly, viable individuals, which makes it work faster.
GP Framework (in pictures)

• Generate an initial population:
 – We used between 100 and 300 individuals.
 – These individuals are not very good to start with.
 – But our population will get better over many generations.
GP Framework: Evaluation(1)

• Applying an evaluation function to measure the fitness of individuals in each generation.
 – The fitter ones are given a better chance of surviving.
GP Framework: Evaluation(2)

- We feed it a small number of benchmark intermediate codes and measure the average performance of these.
 - We used the results from the hand-coded optimiser as a basis for comparison.
GP Framework: Evaluation(3)

• Special treatment is needed when individuals fail.
 – Four failure modes:
 • DOA (fail to compile individual), Optimiser blows stack, Optimiser takes too long, A benchmark takes too long.
 • These are all detected and minimum fitness is assigned.
GP Framework: Genetic Operators: Crossover

• Fitter individuals are randomly selected for breeding using crossover.
 – Crossover mixes the genes of individuals in the hope that good traits will combine.
GP Framework: Genetic Operators: Mutation

- Randomly selected individuals will be mutated in each generation.
 - Not all mutations are beneficial!!
The framework stops after a certain amount of time or when a certain number of generations have been reached.

- We stopped at times between 20 and 60 hours of runtime on a single 2.5GHz Intel processor (50 to 80 generations).
- After stopping the fittest individuals can selected for use.
Experimental Setup

• All grammar elements pre-compiled into stratego libraries for faster running.
• Several runs conducted to tune fitness function.
• Final two runs:
 – Population approximately 250 individuals
 – Run for 80 generations and 63 generations respectively.
 – LibGE settings: Max tree depth 15. Read of genome can wrap-around twice.
 – Mostly default LibGA settings (for GE): Roulette wheel selection, 90% probability of crossover, 1% mutation probability, 1% replacement ratio and elitism switched on.
Experimental Setup (2)

• Hand Coded Benchmark:

```
repeatUntilCycle(
  bottomup(
    repeatUntilCycle(
      innermost(LeftAssociate)
      ; innermost(pushDownComp)
      ; innermost(LeftAssociate)
      ; innermost(simp)
      ; innermost(LeftAssociate)
      ; innermost(pushDownMap)
      ; innermost(LeftAssociate)
      ; innermost(simp))
  bottomup(
    repeatUntilCycle(
      innermost(LeftAssociate)
      ; innermost(pushDownAlltup)
      ; innermost(LeftAssociate)
      ; innermost(alltupSimp)
      ; innermost(LeftAssociate)
      ; innermost(convertAndRemoveIds)))))
```
Experimental Results (1)

- Both runs evolved individuals at least as good as the handwritten DMO’s on the benchmarks.
Experimental Results (2)

• Robustness
 – Take the fittest individuals and expose them to thirty benchmarks and measure their performances.
 – Most did not generalise well but the fittest did slightly better than hand coded optimiser.

• Benchmark Choice
 – Need at least one that makes even mediocre individuals look good.

• Correctness
 – 500 fittest individuals collected and tested.
 – None produced semantic errors.

• Code Size
 – Best individuals very large with much redundancy.
Conclusions and Future Work

- Evolving a non-trivial optimisation phase is feasible
 - Good results for effectiveness, robustness and correctness.
- Future work includes:
 - Pushing evolutionary process down to individual rules
 - Controlling code-size and efficiency.
 - Extending work to rewriting systems in other languages.
Questions?
Experimental Application

• Evolution of a phase of a compiler mapping a functional language (Adl) to a hardware definition language (Bluespec).
• The target phase is the Data Movement Optimiser (DMO) that reduces data flowing through a functional intermediate form (point-free code).
• There is an extant hand-written DMO that:
 – was non-trivial to construct.
 – can be used as a source of building blocks.
 – can be used as a benchmark.
• The DMO is written in Stratego, a term-rewriting language consisting of rewrite rules and strategies for their application.
Ingredients

• Three ingredients in any GP exercise:
 1. The grammar for building individuals consisting of:
 • terminals
 • non terminals
 2. The evolutionary framework.
 3. The evaluation function

• We look at these in turn.
The Language Grammar (1)

• All individuals are expressed in Stratego

• Terminals
 – Consist of simple rewrite rules e.g.
 CompIntoMap: \(f^* \circ g^* \rightarrow (f \circ g)^* \)
 MapIntoComp: \((f \circ g)^* \rightarrow f^* \circ g^* \)
 RemoveId: \(\text{id} \circ f \rightarrow f \)
 – grouped together using the left choice (\(<+\)) operator e.g.
 CompIntoMap \(<+\) RemoveId
 – Semantics: try applying CompIntoMap to current node and, if that fails, try applying RemoveId.

• We use the same terminals as the handwritten DMO
The Language Grammar (2)

- Actual terminals include:
 - `pushDownMap` (vectorise)
 - `pushDownComp` (fuse loops)
 - `simp` (apply simplifying rules)
 - `leftAssociate` (left associate binary composition)
 - In most contexts, the order of rules within a group is of minor consequence
 - If they can be applied they eventually will be applied.
 - These terminals have little impact without strategies to apply them.
The Language Grammar (3)

• Non-terminals are strategies for rule application.
 – These take strategies or rule-groups as parameters and apply the them to the target AST in some order.

• Examples include:
 bottomup(s) : apply s to the current sub-tree
 innermost(s) : apply s to the current sub-tree until it can no longer be applied (fixpoint strategy)
 s ; t : apply s to current sub-tree followed by t
 repeatUntilCycle(s) : apply s to the current sub-tree until a result seen before in this invocation is detected.

• Example:
 bottomup(leftAssociate;innermost(simp))
The Evolutionary Framework

• We used LibGE in our experiments.
 – A popular framework for developing GE applications.

• LibGE (based on LibGA) takes:
 – A grammar definition and,
 – A evaluation function
 – Some parameter settings

and handles:
 – Population initialisation, application of the evaluation function
to individuals, application of genetic operators, collection of
statistics and, genotype to phenotype mapping.

• The mapping works by using 8-bit numbers in the
genotype string to select productions in the language
grammar.
Evaluation Function (1)

- Fitness is calculated by running evolved optimisers against up to six benchmark programs and their data against a dynamic cost-model.
 - Benchmarks needed to be carefully chosen to require multiple strategies and have a gradual gradient of difficulty.
- Fitness calculated relative to cost of hand-coded DMO on each benchmark \(i \) (\(cost_{opt_i} \)):

\[
\text{fitness} = \frac{\sum_{i=0}^{n}(cost_{opt_i}/cost_{evo_i})}{n}
\]

- Average fitness evaluation takes 5 seconds. Zero fitness for timeout or stack-overflow error.