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Abstract

Purpose – The purpose of this paper is to describe a real-world system developed for a large food
distribution company which requires forecasting demand for thousands of products across multiple
warehouses. The number of different time series that the system must model and predict is on the
order of 105. The study details the system’s forecasting algorithm which efficiently handles several
difficult requirements including the prediction of multiple time series, the need for a continuously
self-updating model, and the desire to automatically identify and analyze various time series
characteristics such as seasonal spikes and unprecedented events.

Design/methodology/approach – The forecasting algorithm makes use of a hybrid model
consisting of both statistical and heuristic techniques to fulfill these requirements and to satisfy a
variety of business constraints/rules related to over- and under-stocking.

Findings – The robustness of the system has been proven by its heavy and sustained use since being
adopted in November 2009 by a company that serves 91 percent of the combined populations of
Australia and New Zealand.

Originality/value – This paper provides a case study of a real-world system that employs a novel
hybrid model to forecast multiple time series in a non-static environment. The value of the model lies
in its ability to accurately capture and forecast a very large and constantly changing portfolio of time
series efficiently and without human intervention.
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1. Introduction
Forecasting is a common and important component of many real-world systems. Some
systems require the forecasting of a very large portfolio of time series with differing
characteristics, for example, demand forecasting systems for businesses with numerous
products and customers spread over multiple regions. Additionally, in a real-world
environment, it is common for frequent changes to the time series portfolio as new
relevant time series are added to the system and other no-longer-relevant time series are
removed from the system.

In such systems, it is not feasible for time series analysis and model selection to be
executed manually as the number of time series to be modeled is prohibitive. Thus,
a general model that can update itself, capture, and predict a wide variety of time series
efficiently and without human intervention must be employed.

This paper presents a system developed for a large food distribution company in
which the number of time series to forecast is on the order of 105. The system has been
live since November 2009 and is used daily by an Australian company to forecast
product demand and replenish warehouse stock for a customer base that covers
91 percent of the combined populations of Australia and New Zealand. The system
makes use of a novel hybrid model that applies statistical and heuristic techniques for
time series modeling, analysis, and prediction.

The rest of this paper is organized as follows: Section 2 gives a brief review of current
forecasting methods, Section 3 describes the forecasting model employed by the system,
Section 4 provides several examples of forecasting results taken from the live system,
and Section 5 provides a conclusion and discusses potential areas of future work.

2. Review of current forecasting methods
Current time series forecasting methods generally fall into two groups: methods based
on statistical concepts and computational intelligence techniques such as neural
networks (NN) or genetic algorithms (GA). Hybrid methods combining more than one
technique are also commonly found in the literature[1].

Statistical time series forecasting methods can be subdivided into the following
categories:

. exponential smoothing methods;

. regression methods;

. autoregressive integrated moving average (ARIMA) methods;

. threshold methods; and

. generalized autoregressive conditionally heteroskedastic (GARCH) methods.

The first three categories can be considered linear methods, that is methods that employ
a linear functional form for time series modeling, and the last two are non-linear
methods[2].

In exponential smoothing a forecast is given as a weighted moving average of
recent time series observations. The weights assigned decrease exponentially as the
observations get older. In regression, a forecast is given as a linear function of one or
more explanatory variables. ARIMA methods give a forecast as a linear function of past
observations (or the differences of past observations) and error values of the time series
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itself and past observations of zero or more explanatory variables. See Makridakis et al.
(1998) for a discussion of smoothing, regression, and ARIMA methods.

Threshold methods assume that extant asymmetric cycles are caused by distinct
underlying phases of the time series and that there is a transition period (either smooth or
abrupt) between these phases. Commonly, the individual phases are given a linear
functional form and the transition period (if smooth) is modeled as an exponential
or logistic function. GARCH methods are used to deal with time series that display
non-constant variance of residuals (error values). In these methods, the variance of error
values is modeled as a quadratic function of past variance values and past error values.
In Makridakis et al. (1998), McMillan (2001) and Sarantis (2001), various threshold
methods are detailed while Akgiray (1989), Bollerslev (1986) and Engle (1982) describe
GARCH methods.

The literature documenting statistical forecasting methods is vast. Many forecasting
studies employ a variation on one of the techniques described above. Some examples
include Baille and Bollerslev (1994), Chen and Leung (2003), Cheung and Lai (1993),
Clements and Hendry (1995), Dua and Smyth (1995), Engle and Granger (1987), He et al.
(2010), Hjalmarsson (2010), Masih and Masih (1996), Ramos (2003), Sarantis and Stewart
(1995), Shoesmith (1992), Spencer (1993), Stock and Watson (2002) and Tourinho and
Neelakanta (2010). Some studies employ statistical techniques to handle demand time
series with unusual characteristics. In Ozden et al. (2009), regression trees are used to
handle forecasting demand for products influenced by promotions. Dolgui and
Pashkevich (2008) use a Bayesian method to forecast demand for products with very
short demand histories. A system described in Chern et al. (2010) uses statistical
measures to help users manually select a forecasting model for a particular demand
series.

Computational intelligence techniques for time series forecasting generally fall into
two major categories:

(1) methods based on NN; and

(2) methods based on evolutionary computation.

We can refine the latter category by dividing it further into methods based on GA,
evolutionary programming (EP), and genetic programming (GP). All of the methods
listed above are motivated by the study of biological processes.

NN attempt to solve problems by imitating the human brain. An NN is a graph-like
structure that contains an input layer, zero or more hidden layers, and an output layer.
Each layer contains several “neurons” which have weighted connections to neurons
of the following layer. A neuron from the input layer holds an input variable. For
forecasting models, this input is a previous time series observation or an explanatory
variable. A neuron from the hidden or output layer consists of an “activation” function
(usually the logistic function: gðuÞ ¼ 1=ð1 þ e2uÞ). Some examples of recent NN
forecasting studies include Yu and Huarng (2010) and Zou et al. (2007). General
descriptions of NN can be found in Gurney (1997) and White (1992).

For methods based on evolutionary computation, the process of biological evolution
is mimicked in order to solve a problem. After an initial population of potential solutions
is created, solutions are ranked based on their “fitness.” New populations are produced
by selecting higher ranking solutions and performing genetic operations of “mating”
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(crossover) or “mutation” to produce offspring solutions. This process is repeated over
many generations until some termination condition is reached.

When GA is applied to forecasting, first an appropriate model is selected and an
initial population of candidate solutions is created. A candidate solution is produced by
randomly choosing a set of parameter values for the selected forecasting model. Each
solution is then ranked based on its prediction error over a set of training data. A new
population of solutions is generated by selecting fitter solutions and applying a
crossover or mutation operation. Crossover is performed by swapping a subset of
parameter values from two parent solutions. Mutation causes one (random) parameter
from a solution to change. New populations are created until the fittest solution has a
sufficiently small prediction error or repeated generations produce no reduction of
error. Back (1996), Michalewicz (1992) and Mitchell (1996) give detailed descriptions of
GA while Chambers (1995), Chiraphadhanakul et al. (1997), Goto et al. (1999), Ju et al.
(1997), Kim and Kim (1997) and Venkatesan and Kumar (2002) provide examples of
GA applied to forecasting.

For EP each candidate solution is represented as a finite state machine (FSM) rather
than a numeric vector. FSM inputs/outputs correspond to appropriate inputs/outputs
of the forecasting task. An initial population of FSMs is created and each is ranked
according to its prediction error. New populations are generated by selecting fitter
FSMs and randomly mutating them to produce offspring FSMs. Some examples of EP
forecasting experiments include Fogel et al. (1966, 1995), Fogel and Chellapilla (1998)
and Sathyanarayan et al. (1999).

In GP, solutions are represented as tree structures instead of numeric vectors or
FSMs. Internal nodes of solution trees represent appropriate operators and leaf nodes
represent input variables or constants. For forecasting applications, the operators are
mathematical functions and the inputs are lagged time series values and/or explanatory
variables. Some recent examples of GP forecasting applications include Chen and Chen
(2010), Dilip (2010) and Wagner et al. (2007).

Prevalent in recent literature are forecasting studies which make use of a hybrid
model that employs multiple methods. NN are commonly involved in these hybrid
models. Examples of hybrid models combining statistical and NN techniques include
Azadeh and Faiz (2011), Mehdi and Mehdi (2011), Sallehuddin and Shamsuddin (2009)
and Theodosiou (2011). Examples of models combining GA and NN techniques include
Araujo (2010), Hong et al. (2011) and Wang et al. (2008). Johari et al. (2009) provide a
hybrid model that combines EP and NN while Lee and Tong (2011) and Nasseri et al.
(2011) provide hybrid models that combine GP with an ARIMA model and a Kalman
filter, respectively[3]. Sayed et al. (2009) provide a hybrid model that combines GA and
statistical techniques while Wang and Chang (2009) provide a hybrid model that
combines GA and diffusion modeling[4].

The general procedure for forecasting tasks is to analyze the data to be forecast,
select/construct an appropriate model, train or fit the model, and finally use it to forecast
the future (Makridakis et al., 1998, pp. 13-16). In all of the above studies, analysis and
model selection is done manually by a practitioner. When the number of time series
to be forecast is small and unchanging, this is reasonable and, perhaps, preferable.
However, when the number of time series to be forecast is large and/or frequently
changing, this becomes infeasible. In such circumstances, it is necessary for a
forecasting system to update itself, model, and predict a wide variety of time series
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without human intervention. Additionally, if the number of time series to be forecast is
very large, the computation time required to generate forecasts becomes a significant
issue. Several of the techniques discussed above require the execution of many iterations
to properly train the model for a single time series and can take quite long to complete.
Thus, a successful forecasting system for such an environment must not only be able to
forecast automatically but also do so efficiently with minimal computation time for a
single time series so as to allow forecasts for all time series to be generated in a feasible
amount of time.

This study presents a novel hybrid forecasting model employed by a demand
planning and replenishment system developed for a large Australian food distribution
company which automatically models and predicts a portfolio of product demand time
series with size on the order of 105. The time series portfolio is constantly changing
as new products are introduced and older products exhibiting low demand are
discontinued. The system is used to forecast product demand and replenish warehouse
stock and has undergone heavy and sustained use since going live in November 2009
for a customer base that covers 91 percent of the combined populations of Australia
and New Zealand. The following section describes the efficient multiple time series
forecasting model employed by the system.

3. Multiple time series forecasting system
The food distribution company that the system is developed for requires the
forecasting of product demand for approximately 18,000 products in 60 þ warehouses
located across Australia and New Zealand. Each warehouse stocks approximately
4,000 products making the total number of time series to be modeled on the order of
105. These time series contain different characteristics: some have long histories, others
short, some display seasonal spikes in demand, others do not, some are stationary[5],
while others are not.

The challenge is to develop a forecasting model that inputs weekly product demand
for these products at their respective warehouse sites and produces weekly demand
forecasts for a 12-week period. The forecasts should be updated on a weekly basis as
new product demand input arrives. Because the number of demand series to be forecast
is quite large, the model must be efficient in its use of processor time as forecasts must
be generated for all products during a two-day period between the end of one week and
the start of the next. This issue is critical as the forecasting model must be able to
update itself, train, and predict a single time series with several years of historical data
in less than 1/10 s in order to complete the demand forecasts for all products within the
required time frame. Additionally, executives and managers require that the system
automatically identify and analyze spikes in demand in order to determine whether the
spikes are seasonal and likely to be repeated or are unprecedented “one-off” events that
are unlikely to occur again. Also important are a number of business rules/constraints
that are related to prevention of over- and under-stocking.

The final developed model is a hybrid that uses both statistical and heuristic
techniques and can be split up into the following components:

. a series spike analyzer;

. a linear regression base model; and

. a safety stock rule engine.
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The spike analyzer is concerned with identification and analysis of historical demand
spikes, the linear regression model provides the base forecast, and the rule engine
executes the various business rules and/or constraints. The following sections give a
detailed description of these components.

3.1 Series spike analysis
During the initial phase of the project, a subset of historical product demand time series
were made available for analysis. Several of these series contain short-lived spikes in
demand that correspond to seasons such as Christmas or Easter. Other series contain
short-lived demand spikes that are not related to the season and instead represent
“one-off” events such as a product promotion or unusual circumstance (e.g. spike in
demand for canned goods during a power outage). Because, the company does not keep
data-linking spikes in historical demand to promotions or other unusual events, an
important requirement is for the system to automatically identify historical demand
spikes and categorize them as likely to repeat (i.e. seasonal) or not.

In order to accomplish this, the series spike analysis component of the system must
first ensure that each series is stationary in the mean[6]. A common way to remove
non-stationarity in the mean is to difference the data (Makridakis et al., 1998, p. 326).
Differencing involves generating a new time series as the change between consecutive
observations in the original series. To be sure that non-stationarity is completely
removed, two orders of differencing are executed, that is the differencing procedure is
repeated twice (Makridakis et al., 1998, p. 329)[7]. Figure 1 shows an example demand
series that displays seasonal characteristics while Figure 2 shows the same series after
it has undergone two orders of differencing.

Upon visual inspection of Figure 1, it appears that historical demand spikes
occurring near Christmas are present and that demand spikes (in the negative
direction) may be present near Easter. The system must identify such spikes without
human intervention, and thus makes use of the second-order differenced series of
Figure 2 for this purpose by calculating its mean and the standard deviation. The red
and green lines in the figure denote the upper and lower bounds, respectively, of two
standard deviations from the series mean. These bounds give the system a method for
determining whether or not a historical demand observation represents an outlier.
As can be seen in Figure 2, five groups of consecutive observations “break”

Figure 1.
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the boundaries and may be considered outliers. Three of these (the first, second,
and fourth groups) correspond to demand near Christmas and two of these (the third and
fifth groups) correspond to demand near Easter. These outlying groups of differenced
data are therefore marked as Christmas or Easter “spikes” and this information is used
later by the system when producing forecasts[8].

Executives and other domain experts in the company were also able to provide
business rules concerning the determination of whether a demand spike represents a
seasonal occurrence or one-off event such as a product promotion. These rules are the
following:

. the demand spike must have occurred in multiple years; and

. it must have occurred in the year corresponding to the most recent previous
season.

Based on these rules, the marked spikes are further filtered and spikes that are
classified as one-off events are removed from consideration.

At this point, it is important to note that the dates of holiday events often change from
year to year. For example, the date of Easter can change by as much as three weeks from
one year to the next. Even Christmas, which does not change date, can change from one
year to the next for a series that is represented as weekly. This is because the same
numeric date falls on a different day of the week from year to year. Thus, if a holiday date
falls on a Sunday in one year, it may fall on a Monday or Tuesday in the following
year[9]. This changing day of the week can cause a change to the weekly time series as
the date may fall in such a way as to make corresponding demand occur in differing
weeks (e.g. corresponding demand occurring in the 51st week of the year instead of the
50th week of the year). These kinds of changing dynamics can make it very difficult for
a forecasting model to correctly capture the underlying data-generating process and
make accurate predictions. It is critical for a forecasting model to handle such moving
annual events correctly because if a demand spike corresponding to a repeating event is
late by even one time period, then warehouse stock will not adequately cover customer
demand and significant revenue may be lost.

It becomes necessary for a model to analyze the demand corresponding to different
years and synchronize their dynamics such that moving annual events

Figure 2.
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are appropriately reconciled. This problem is addressed by the procedure used to
generate base forecasts described below.

3.2 Linear regression base model
As mentioned in the previous section, a subset of historical product demand time series
were made available initially for analysis. After review of these series and confirmation
from company domain experts, a linear regression model with seven autoregressive
explanatory variables (AR(7)) model was selected as one of the components to be used to
generate base forecasts[10]. As discussed above seasonality is a common characteristic
observed in the product demand series analyzed. The AR(7) model taken by itself
does not handle seasonality. However, in conjunction with the series spike analysis
component described in the previous section seasonality can be accurately modeled as
long as moving annual events are dealt with adequately.

There are two ways that seasonality is commonly handled: by “seasonal
differencing” or through the use of seasonal “dummy” variables[11].

Seasonal differencing is similar to the differencing technique discussed in Section 1.
However, instead of generating a new time series by calculating the change between
consecutive observations, the time series is produced by calculating the change
between observations separated by one year. Thus, for a weekly series, the seasonally
differenced series is produced by calculating the change between observations that are
52 values apart. Annual events that change dates from year to year may render the
seasonal differencing procedure ineffective. This is because demand series values that
correspond to a particular event from different years may be separated by more or less
than a full year. Reconciling these changes can be problematic.

The use of seasonal dummy variables is another often-used technique. A dummy
variable can only take on one of two possible values: 0 or 1. A seasonal dummy variable
is used to indicate a particular season. Consider the following example. If Easter is a
relevant season influencing a product demand time series, then another dummy series is
generated to correspond to the original demand series. This corresponding series is made
up of values that are either 0 or 1: a value of 1 in the dummy series means that its
corresponding original demand series value has occurred in the Easter season and a
value of 0 in the dummy series means that its corresponding original demand series
value has not occurred in the Easter season. Typically, one series of dummy values is
required for each season that may affect a demand series (Diebold, 1998, p. 108).

Seasonal dummy variables can be used to handle moving annual events. For example,
if Easter occurs in the 16th week of one year and in the 19th week of the following year,
then the Easter dummy variable series would contain a value of 1 for the 16th
observation of the first year (and a value of 0 for all other observations of that first year)
and a value of 1 for the 19th observation of the second year (and a value of 0 for all other
observations of that second year). Because, the linear regression includes the dummy
explanatory variable, the Easter event is correctly modeled in both the first and second
years despite the event having its date of occurrence moved by three weeks.

However, for a system that must model and predict thousands of different time
series, the use of seasonal dummy variables to capture seasonal demand spikes can
present significant inefficiencies. The problem lies in the fact that demand series may
be affected by many annual events. In Australia besides Christmas and Easter, there
are several other recurring events that may affect product demand. Some events affect
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only demand in certain regions of the country while others affect all regions.
Additionally, even a single event such as Easter may have several other “mini-events”
associated with it. For example, some demand time series observed in the live system
respond to Easter by an initial spike in demand one or two weeks before the event and
a reverse spike (i.e. drop in demand that is significantly below non-event levels) one or
two weeks immediately after the event. In order to accurately model such an effect,
a different dummy variable must be included for each mini-event. Capturing the
numerous annual events that may affect many different demand series with seasonal
dummy variables means that the system must process one dummy series for each
event for each demand series. This represents a significant increase in processing time,
and in general can be prohibitive when considering a system that must process a
number of demand series on the order of 105. The additional processing time occurs
when parameters of the regression model are estimated: more parameters to estimate
means more processing time[12]. The shortcomings of seasonal differencing and
seasonal dummy variables for the handling of moving annual events are difficult to
overcome, and thus a different technique is sought to address this issue.

3.2.1 Efficient handling of moving annual events. In order to avoid processing
numerous dummy variables for each demand series, a different approach to the
problem of moving annual events is used. The idea is to reconcile the demand series
values from one year with its values from a different year by synchronizing values that
correspond to the same event. The result is a transformed demand series in which one
year’s demand values have been altered temporarily to match those of another year in
such a way that guarantees values associated with a particular event are “in-sync,”
that is they occur in the same time period relative to their respective years.

Consider the following example. Suppose that a particular weekly product demand
series is affected by several annual events and has two years of historical data[13].
Suppose one or more of the events are moving events, that is they occur in the ith week
of the current year, the jth week of the previous year and that i – j. When a demand
series is processed by the system, the current year’s events are used to temporarily
alter historical demand data for a previous year. The procedure builds a temporary
copy of the previous year’s data points with altered values that “sync” with data points
of the current year. This synchronized version of the previous year’s data is then
pre-pended to the current year’s demand data before being sent to the spike analysis
component (described in Section 1) for processing. This is done by the following steps:

(1) For a single data point of the current year:
. retrieve the corresponding data point of the previous year (i.e. the data point

with the same relative time period for that year);
. check if the current year’s data point is associated with an annual event;

check if the previous year’s data point is associated with an annual event;
. if both are associated with the same annual event or neither is associated

with any event, no transformation is necessary for these points;
. if the current year’s data point is associated with an event and the previous

year’s data point is not associated with the same event, scan the previous
year’s data points until locating the data point that is associated with the
event. Replace the value of the previous year’s original data point with the
value of the event-associated data point; and
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. if the current year’s data point is not associated with any event and the
previous year’s data point is associated with an event, scan the previous
year’s data point for the nearest two points before and after the original data
point that have no event associated with them. Calculate the average value of
the two non-event data points. Replace the value of the previous year’s
original data point with this calculated average value.

(2) Repeat this procedure for all data points of the current year.

Note that in the above procedure, the current year’s data points remain unchanged. Only
data points of previous year(s) are temporarily altered. Thus, the series spike analysis
component of the system processes historical demand data that are synchronized from
year to year by the annual events that affect them and allows for accurate capture of
seasonality.

As mentioned in the previous section, the use of seasonal dummy variables to model
seasonality means that one dummy variable is required for each annual event that may
affect a product demand series. If m events exist, then m additional parameters must be
estimated by the linear regression. The ordinary least squares (OLS) estimation
procedure of linear regression is given by:

b̂ ¼ ðX0XÞ21X0y; ð1Þ

where b̂ are the estimated parameters, y is the vector of n observed samples, X is the
design matrix of k explanatory variables, and X0 is the transpose of X (Hamilton, 1994,
p. 201). The computational complexity of OLS estimation is given by the following[14]:

. Calculation of X0X is Oðn £ k 2Þ where n is the number of observations and k is
the number of explanatory variables.

. Calculation of the inverse of the result of the previous step (a ðk £ kÞ matrix)
is Oðk 3Þ.

. Calculation of X0y is Oðn £ k 2Þ.

. The final matrix multiplication (two ðk £ kÞ matrices) is Oðk 3Þ.

So, the total computational complexity is given by:

Oðnk 2 þ k 3Þ ¼ Oðk 2ðnþ kÞÞ: ð2Þ

It is clear from the above that the number of parameters to be estimated, k, is a
significant factor in the computational complexity. When a large number of seasonal
events must be modeled through the use of dummy variables, numerous parameters
are added to the linear regression. These additional parameters directly affect the
variable k in equation (2), and thus cause a significant increase in the computational
resources required. Since the system must process < 105 product demand time series,
this increase in computation proves prohibitive.

However, the system avoids the use of dummy variables by “synchronizing” the
historical demand data as described above, and thus has far fewer parameters to
be estimated. The extra computation necessary to synchronize a demand series
is essentially a single scan through the historical data. This adds a constant term
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to the complexity of equation (2) and is negligible. The full procedure for generating
base forecasts is described below.

3.2.2 Generating base forecasts. As mentioned above, the system employs an AR(7)
model as one component of the base forecasting model. The AR(7) linear model is
combined with spike analysis described in the previous section to generate a base
forecast. The following procedure is used:

(1) Time series data are “synchronized” for moving annual events using the
procedure described in the previous section. This synchronized series data are
then sent to the spike analyzer component.

(2) Spikes identified by the spike analyzer component are removed from the
second-order differenced demand series. Note that both seasonal and “one-off”
spikes are removed.

(3) The parameters of the AR(7) model are fitted using the spike removed,
second-order differenced series produced by the previous step.

(4) The fitted AR(7) model is then used to generate predictions for a 12-week
period.

(5) Spikes that are categorized as seasonal are grouped by the season (e.g. Christmas)
and their average change (difference between the spike and non-spike levels) is
calculated. Spikes that are categorized as one-off are discarded.

(6) The calculated average seasonal spike(s) are then overlaid onto the predictions
made by the AR(7) model.

(7) Finally, the resulting forecasts for the second-order differenced series are
undifferenced to produce the base forecasts[15].

In the following section, the safety stock rule component of the system is described.

3.3 Safety stock rules
The safety stock component is concerned with ensuring that system-generated forecasts
are at safe levels (not too low) so as to minimize the chance of stock outs (i.e. lack of
available stock to cover customer orders). The system uses several safety rules to
cover various circumstances such as low recent demand levels, up-trends, and
down-trends.

It is common for a demand series to experience a sudden drop in demand to
levels significantly below normal. Company domain experts often attribute this
kind of phenomena to an unusual circumstance such as a power outage or hardware/
infrastructure failure that prevents customers from submitting normal orders. In such
circumstances, the failure often will be rectified shortly and demand will return to its
pre-failure level. Thus, the following safety rule is used to prevent system forecasts from
being driven too far down by the low recent demand:

Safety rule 1. In the presence of low recent demand, the first three weekly
forecasts must be at least as high as the average demand for the item over the
last four weeks.

Up-trends are also a common dynamic seen in product demand series. An up-trend is
defined by company domain experts as consecutive increases in demand every week
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over the last four weeks. The system identifies series exhibiting an up-trend and
adjusts forecasts to minimize the chance of stock out by the following rule:

Safety rule 2. If an up-trend is detected, the first three weekly forecasts must be at
least as high as the most recent historical demand seen.

This rule minimizes the chance of stock out by preventing system-generated forecasts
from being too low if the up-trend in demand continues.

A down-trend is defined by company domain experts as consecutive decreases in
demand every week over the last four weeks. The system identifies series exhibiting a
down-trend and adjusts their forecasts to minimize the chance of stock out by the
following rule:

Safety rule 3. If a down-trend is detected, the first three weekly forecasts
must be at least as high as the average demand for the item over the last four
weeks.

This rule minimizes the chance of stock outs by preventing system-generated forecasts
from being too low if the down-trend is the result of consecutive unusual occurrences
(such as an extended power outage) that are likely to be rectified in the near future.

Once the system has generated a base forecast as described in the previous section,
the forecast is then processed by the system’s safety stock component. If the historical
demand data for the time series activate a particular safety rule, the base forecast is
then adjusted in accordance with the rule if necessary. This potentially adjusted
forecast is the final forecast output produced by the system.

As discussed above, the system is designed to model and predict a wide variety of
product demand time series with differing dynamics in minimal computation time. This
design allows the system to generate hundreds of thousands of forecasts per week that
are current for the most recently observed product demand, accurate for time series that
display seasonality and/or “one-off” events, and safe from a business perspective. This is
accomplished without the need for human invention and represents true automatic
forecasting.

In the following section, several forecasting examples taken from the live system are
presented and discussed.

4. System forecast examples
It is worthwhile to provide example time series with varying characteristics and show
how the system reacts to these inputs. The following figures are screen captures from
the system depicting weekly historical product demand series and their corresponding
system-generated forecasts.

In Figure 3, one such historical series is shown. The series given in the figure
contains historical demand spikes that occur during multiple Christmas seasons.

In the figure, historical demand data for each year are overlaid onto each other so that
seasonal effects can be more easily seen. This kind of data plot is called a “seasonal plot”
(Makridakis et al., 1998, p. 26). In the plot, red data points represent the historical demand
from two years previous to the current year, blue data points represent the demand from
one year previous to the current year, and green data points represent the current year’s
demand. Note that spikes in historical demand have occurred in both of the previous two
years during the late December period. The light blue-shaded area on the plot represents
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the future 12-week period of the current year for which forecasts are required.
(No forecasts are displayed in the figure).

Figure 4 shows the same demand series and corresponding forecasts made for the
blue-shaded 12-week period. In the figure, only historical demand data for the current
year and forecasts are displayed to enhance visual clarity. Green data points represent
the current year’s demand and light blue data points represent system forecasts for the
12-week period.

The forecasts given in the figure show a forecasted spike in demand for the late
December time period matching demand spikes seen in the historical demand.

Figures 5 and 6 show a time series with similar characteristics to those of Figures 3
and 4 except that only a single spike in historical demand exists two years previous to
the current year. In the figures, seasonal plots are shown in the same way as given
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in Figures 3 and 4 with Figure 5 shows historical demand data only and Figure 6
shows current year historical demand and 12-week forecasts.

The forecasts shown in Figure 6 ignore the “one-off” historical demand spike and
predict a more level demand over the future 12-week period.

Figures 7 and 8 show an example of how the system handles time series that exhibit
differing trend levels from year to year.

In Figure 7, a seasonal plot of a time series with a lower demand level in the current
year than is seen for previous years is shown. The time series also contains historical
demand spikes that occur for multiple Christmas seasons. Figure 8 shows the current
year historical demand and system-generated forecasts. As can be seen in the figure,
the lower current trend level is detected and extrapolated into the future. The historical
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seasonal demand spikes are also taken into account and a spike in demand is predicted
for the current season at a lower overall level than seen in previous years.

As mentioned in the previous section, short sudden drops in demand are often a
response to some unusual circumstance such as a power outage or infrastructure failure.
Usually, such situations are corrected quickly and demand returns to its pre-failure level.
An example of such a demand series is shown in Figure 9. Such cases activate the
system’s safety rule 1 which is meant to prevent forecasts from being driven too far
down in the presence of low recent demand.

Figure 10 shows the system-generated forecasts for the demand series of Figure 9.
As can be seen in the figure, predicted demand for the first three weekly forecasts are
adjusted to a safer (higher) level.

Figure 7.
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Figure 8.
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If the circumstance causing the low recent demand is alleviated and demand returns
to a level near its pre-failure level, the system responds appropriately to generate
forecasts at the higher level. Figures 11 and 12 show the time series of the previous two
figures one week into the future after observed demand has returned to a higher level.
As can be seen from the figures, system-generated forecasts rebound back to near
pre-failure levels.

Figure 13 shows a demand series exhibiting a recent unprecedented up-trend in
historical demand. Such cases activate the system’s safety rule 2 which is meant to
minimize the chance of stock out by preventing system-generated forecasts from being
too low if the up-trend in demand continues.

Figure 9.
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Figure 14 shows the system-generated forecasts for the demand series of Figure 13.
As can be seen in the figure, the up-trend is detected and system-generated forecasts
for the first three weeks are adjusted to a level that is as high as the last demand data
observed.

If the up-trend is broken, the system responds by returning forecasts to more
normal lower levels as can be seen in Figures 15 and 16. Note that the forecasts given in
the latter figure are also subject to safety rule 1, and thus are set at least as high as the
four-week average for the first three weekly forecasts.

Figure 17 shows a demand series exhibiting a recent unprecedented down-trend in
historical demand. Such cases activate the system’s safety rule 3. This rule minimizes

Figure 11.
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the chance of stock outs in the presence of a potentially short-lived trend of lower
demand levels.

Figure 18 shows the system-generated forecasts for the demand series of Figure 17.
As can be seen from the figure, the down-trend is detected and system-generated
forecasts for the first three weeks are adjusted to a level that is at least as high as the
four-week average of the most recent historical demand.

If the down-trend is broken, the system responds by returning forecasts to higher
levels near those seen before the down-trend. This is depicted by the demand series and
system forecasts shown in Figures 19 and 20.

The figures discussed above provide examples of several types of historical demand
time series commonly observed in the live system and show how the system’s

Figure 13.
Product demand time

series – up-trend in
demand

0

250

500

Note: Historical demand data shown only

750

1,000

1,250

1,500

1,750

2,000

2,250

Date

S
al

es

2,500

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Figure 14.
Product demand time

series – up-trend in
demand

0

250

Note: Current year historical demand data and forecasts shown only

500

750

1,000

1,250

1,500

1,750

2,000

2,250

Date

S
al

es

2,500

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Forecasting
multiple time

series

301



three-component model handles these series to produce forecasts that take into account
current demand levels as well as seasonal and “one-off” demand spikes while
minimizing the risk of lost sales revenue due to stock outs resulting from unusual
circumstances such as a power outage or infrastructure failure.

5. Conclusion and future work
In this paper, a real-world forecasting system that automatically models and predicts
thousands of time series per week is presented. The system is used by a large food
distribution company based in Australia to forecast product demand and replenish
warehouse stock for its numerous products distributed out of multiple warehouses

Figure 15.
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Product demand time
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and services a customer base that covers 91 percent of the combined populations of
Australia and New Zealand. The total number of demand time series that the system
must process weekly is on the order of 105.

The system employs a hybrid forecasting model that combines both statistical and
heuristic techniques to accurately capture and predict a wide variety of product
demand time series that are influenced by multiple repeating events with minimal
computation time and without human intervention. A discussion of the algorithm that
underpins the hybrid model and an analysis of its computational efficiency is provided.
System-generated forecasts for several product demand time series taken from the live
system are presented and discussed.

Figure 17.
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The system has been live since November 2009 and has undergone heavy and
sustained use since then. The algorithm discussed in this paper has remained
essentially unchanged during this time, and thus has proven to be robust.

One potential direction for future study might be to apply this system to forecast
multiple demand series for other consumer goods such as electronics or insurance
products. Another direction to investigate could be to replace the linear regression base
model with a non-linear model such as a threshold or GARCH model. This kind of
approach might be able to capture certain non-linear dynamics such as asymmetric
cycles or individual outliers that a linear model cannot capture.

Figure 19.
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series – down-trend in
demand has broken

0

500
400
300
200

Note: Historical demand data shown only

100

800
700
600

Date

S
al

es

1,700
1,600
1,500
1,400
1,300
1,200
1,100
1,000

900

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Figure 20.
Product demand time
series – down-trend in
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Notes

1. These will be cited below.

2. Regression and ARIMA methods can be given a non-linear functional form, however, this is
not common.

3. A Kalman filter is a variation of ARIMA in which the model is expressed in state space form
(Makridakis et al. 1998, p. 429).

4. A diffusion model is an ordinary differential equation that is quadratic in the unknown
function and has constant coefficients (Bass, 1969).

5. A series is stationary if its underlying data-generating process is based on a constant mean
and a constant variance (Makridakis et al. 1998, p. 615).

6. After initial analysis it was observed that while some time series exhibited non-stationarity
in the mean, none exhibited non-stationarity in the variance.

7. See Makridakis et al. (1998, pp. 324-35) for a detailed discussion of stationarity and
differencing of time series data.

8. Domain experts in the company confirm that spikes in historical demand occurring during
Christmas and Easter are particularly common in their industry and were able to define
specific time intervals before and after the holiday dates as the representing the relevant
holiday season.

9. An example of this is December 25 for years 2007 and 2008: in 2007, it falls on a Tuesday and
in 2008 it falls on a Thursday.

10. See Makridakis et al. (1998, pp. 335-47) for a detailed explanation of AR models.

11. See Makridakis et al. (1998, pp. 331-47) for a detailed discussion of seasonal differencing and
Diebold (1998, pp. 108-18) for a detailed discussion of seasonal dummy variables and their
usage.

12. See Hamilton (1994, pp. 200-30) for a detailed discussion of parameter estimation for linear
regression.

13. In this example, we consider only two years of historical data for clarity.

14. See Knuth (1997) for a detailed discussion of the computational complexity of matrix
operations.

15. Undifferencing is the reverse procedure to differencing. For a second-order differenced
series, the undifferencing must be executed twice.
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