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Stability Analysis of the Particle Swarm Optimization
Without Stagnation Assumption

Mohammad Reza Bonyadi and Zbigniew Michalewicz

Abstract—In this letter, we study the first- and second-order stabili-
ties of a stochastic recurrence relation that represents a class of particle
swarm optimization (PSO) algorithms. We assume that the personal and
global best vectors in that relation are random variables (with arbitrary
means and variances) that are updated during the run so that our cal-
culations do not require the stagnation assumption. We prove that the
convergence of expectation and variance of the positions generated by
that relation is independent of the mean and variance of the distribution
of the personal and global best vectors. We also provide convergence
boundaries for that relation and compare them with those of standard
PSO algorithms (as a specific case of the stochastic recurrence relation)
provided in earlier studies.

Index Terms—Convergence, particle swarm optimization (PSO),
stability analysis, stochastic recurrence.

I. INTRODUCTION

Particle swarm optimization (PSO) is a stochastic population-based
optimization algorithm developed by Kennedy and Eberhart [1]. PSO
has been applied to many optimization problems such as artificial
neural network training and pattern classification [2], [3], to name
a few. Since 1995, different theoretical aspects of the original version
of PSO have been investigated (local convergence [4], [5], rotation
invariance [6], [7], stability [8]–[12], etc.). One of the important
aspects related to PSO is to ensure that the generated solutions
by the algorithm converge to a point. Convergence to a point for
a PSO algorithm is usually analyzed to determine the coefficients’
boundaries, for which the generated solutions by the algorithm do
not diverge. These boundaries are known as convergence boundaries.
For such analyses, it is usually considered that the “memories” of
particles (known as personal best and global best) are not updated
during the run, referred to as the stagnation assumption [8], [11].
Because such an assumption is not realistic and only covers one
state that particles might experience in their lifetime, recently some
researchers have investigated the convergence of particles [10], [13]
under the weaker stagnation assumption to determine the boundaries
under more realistic conditions for the PSO variant introduced in [14].

In this letter, we introduce a stochastic recurrence relation that
represents a wide range of PSO variants. Then, we investigate the
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convergence of expectation and variance of the generated points by
this relation to determine its convergence boundaries. We assume
that the memories of particles are stochastic variables (updated dur-
ing the run) and derive the convergence boundaries under such an
assumption. This assumption is indeed more generic and realistic
than the ones made in previous works that allows us to find conver-
gence boundaries to guarantee convergence, taking into account the
update rules for memories.

Without a loss of generality, this letter only considers minimization
problems defined as

find �x ∈ S ⊆ R
d such that ∀�y ∈ S, F(�x) ≤ F(�y) (1)

where S is the search space defined by {x|li ≤ xi ≤ ui for all i}, li and
ui are the lower and upper bounds of the values of the ith dimension
of S, d is the number of dimensions, and F(.) is the objective function.

The rest of this letter is organized as follows. We provide some
background information on the original version of PSO in Section II
and convergence analysis in Section III. We present our proposed
convergence analyses in Section IV and we conclude the letter in
Section V.

II. PARTICLE SWARM OPTIMIZATION

Each particle in the original PSO (OPSO) [1], [15] contains three
vectors, as follows.

1) Position (�xi
t): This is the position of the ith particle in the tth

iteration that is used to evaluate the particle quality.
2) Velocity (�vi

t): This is the direction and length of movement of
the ith particle in the tth iteration.

3) Personal Best (�pi
t): This is the best position (in terms of

objective value) that the particle i has visited until iteration t
(we refer to this vector as “memory” of particles).

The personal best is updated as: �pi
t+1 = �xi

t if F(�xi
t) < F(�pi

t) + ε,
otherwise �pi

t+1 = �pi
t, where ε > 0 is an arbitrarily small value that

represents the precision of the calculations (see [12] for details).
The value of the jth dimension of each of these vectors is repre-

sented by the superscript j throughout the letter. In OPSO, the jth
dimension of the velocity of each particle is updated for the next
iteration (t + 1) by

vi,j
t+1 = vi,j

t + c1

(
pi,j

t − xi,j
t

)
+ c2

(
g j

t − xi,j
t

)
(2)

where c1 and c2 are two random variables uniformly distributed in
[0, φ1] and [0, φ2], respectively; φ1 and φ2 are two real numbers
called acceleration coefficients; pi,j

t is the jth dimension of the per-
sonal best of the particle i at iteration t; and g j

t is the jth dimension
of the best personal best among all particles in the swarm, known
as the global best of the swarm. In the case of local best topologies,
g j

t is selected among the particles in the neighbor (depending on how
the topology is defined) of the particle i. The position of the particles
is updated by

xi,j
t+1 = xi,j

t + vi,j
t+1. (3)
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OPSO has been studied by many researchers and many variants
have been developed. One of these variants [14], called the inertia
PSO (IPSO), proposed to multiply the previous velocity (vi,j

t ) by an
inertia weight (ω) to control the impact of vi,j

t on the movement of
particles. The velocity update rule for IPSO was written as

vi,j
t+1 = ωvi,j

t + c1

(
pi,j

t − xi,j
t

)
+ c2

(
g j

t − xi,j
t

)
(4)

where ω is a constant value called inertia weight. IPSO is usually
used by researchers for theoretical analysis. Throughout this letter,
c1(pi,j

t − xi,j
t ) is called the cognitive component and c2(g j

t − xi,j
t ) is

called the social component of velocity.

III. BACKGROUND

In this section, we outline some theorems and studies related to
the convergence and stability analysis of PSO.

A. Convergence and Stability of Linear Recurrence Relations

A linear recurrence relation is written as

�zt+1 = M�zt + �b (5)

where �zt, �zt+1, and �b are d dimensional vectors and M is a d × d
matrix. In the case of linear recurrence relations, the following lemma
is useful for convergence analysis.

Lemma 1: The sequence {�z1, �z2, . . .}, generated by the recurrence
in (5), is convergent if and only if ρ(M) = maxi∈{1...d}(|γi|) < 1,
where γi is the ith eigenvalue of M. ρ(M) is known as the spectral
radius of M.

Proof: See [16] for proof.
We define the fixed point of a linear recurrence as follows.
Definition 1: ẑ, the fixed point of the linear recurrence in (5) is

defined by lim
t→∞�zt = ẑ.

Lemma 1 introduces a necessary and sufficient condition for con-
vergence. It is, however, not always trivial to calculate and simplify
the eigenvalues of the matrix M. The following lemma introduces a
necessary condition for convergence of a linear recurrence relation.

Lemma 2: If the sequence {�z1, �z2, . . .} generated by the recurrence
in (5) is convergent, then there exists ẑ ∈ R

d as a fixed point for the
sequence.

Proof: See [16] for proof.
This lemma indicates that the existence1 of the fixed point ẑ is a

necessary condition for the convergence of the sequence �zt. Therefore,
if ẑ does not exist (it is infinite) for a given M and �b then ρ(M) ≥ 1.
To calculate this fixed point we can write ẑ = Mẑ + �b, which results
in ẑ = (I − M)−1�b, where I is the identity matrix. If M and �b are
given then ẑ can be calculated.

The first-order stability for a 1-D stochastic sequence {x1, x2, . . .}
(xt is a random variable for all t) is defined as follows.

Definition 2: A sequence {x1, x2, . . .} is called “first-order stable”
if and only if the sequence {E(x1), E(x2), . . .}, where E(.) is the
expectation operator, is convergent.

The second-order stability for this sequence is defined as follows.
Definition 3: A sequence {x1, x2, . . .} is called “second-order

stable” if and only if the sequence {V(x1), V(x2), . . .}, where V(.)

is the variance operator, is convergent and Vx, the fixed point of the
variance, is zero.

Sometimes a stochastic sequence {x1, x2, . . .} is analyzed through
a deterministic model, i.e., its stochastic components are replaced
by constants. Then, the convergence and stability of the resulted

1Note that the existence of this limit entails ẑ is finite.

deterministic sequence is investigated. Such analysis is called the
“deterministic model stability analysis” throughout this letter.

B. Stability of PSO With Stagnation Assumption

Convergence and stability of IPSO have been investigated
through the deterministic model stability analysis [9], [17], first-
order stability analysis [10], [11], [18], and second-order stability
analysis [8], [13], [19].

One of the earliest attempts to analyze the convergence behavior
of IPSO to find convergence boundaries was performed in [9]. In that
paper, in order to simplify the formulation of update rules, stochas-
tic components from the system were omitted (deterministic model
analysis) and it was assumed that p and g are not updated during the
run (stagnation assumption). This analysis led to a relation between
acceleration coefficients and inertia weight to guarantee stability of
particles.

The first-order stability of particles was analyzed in [11] and [18].
In these studies, the stochastic components (c1 and c2) were replaced
by their expected values, φ1/2 and φ2/2. It was found in [18] that
the expected value of the position of particles is convergent if ω < 1,
φ > 0, and 4ω − φ + 4 > 0, where φ = φ1 + φ2. This condition
guarantees that the expected value of the positions converge at least
at 50% of iterations. However, if convergence of expected position
of particles at every iteration is required, then ω < 1, φ > 0, and
2ω − φ + 2 > 0, where φ = φ1 + φ2 [11]. Also, the positions of
particles converge to ((φ2g + φ1p)/(φ1 + φ2)).

Particles positions can still move to infinity even though their
expected position is convergent. Hence, some researchers [8], [19]
studied the convergence of variance2 of positions of particles during
the run. These studies proved that if the variance of positions of a
particle converge to fixed point, then φ < ((12(ω2 − 1))/(5ω − 7)),
where φ = φ1 = φ2. Also, the fixed point for the variance of
particles is ((φ(ω + 1)(g − p)2)/(4(φ(5ω − 7) − 12ω2 + 12))). This
condition guarantees convergence of variance and not necessarily the
second-order stability. The particles are second-order stable if this
fixed point is zero, which occurs only if g = p [8].

The first- and second-order stabilities were investigated in [20] for
IPSO when a generic distribution for the inertia weight and accelera-
tion coefficients was considered, i.e., inertia weight and acceleration
coefficients are random variables from an arbitrary probability dis-
tribution with expected values μω and μc and variances σ 2

ω and σ 2
c ,

where c = c1 + c2. It was proven that IPSO is first-order stable if
and only if −1 < μω < 1 and 0 < μc < 2(μω + 1). Also, it was
found that the upper limit of the values of coefficients to guaran-
tee convergence of variance of the algorithm (ρ(M) = 1) is defined
by −a < μω < a and 0 < μc < b, where a = (1/

√
q2 + 1),

b = ((2(1 − (1 + q)μ2
ω))/(1 + d2 + (d2 − 1)μω), q = σω/μω, and

d = σc/μc. This is a necessary condition for convergence of vari-
ance. Also, the assumption for the analysis was that the personal and
global bests remain constant during the run (stagnation).

C. Weakening the Stagnation Assumption

Recently, some studies have tried to weaken the stagnation assump-
tion to find the convergence regions under more general conditions.
For example, it was assumed [10] that the personal best of particles
and the global best of the swarm are allowed to move and can occupy
an arbitrarily large finite number of unique positions during the run.
The main finding of that study was that IPSO is first-order stable
if −1 < ω < 1 and 0 < θ < 2(1 + ω), where θ = θ1 + θ2 < 4

2Note that [8] studied the second moment and standard deviation of
positions (rather than the variance itself), which are closely related to variance.
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and θi ∈ [0, φi], under this more general assumption. This is indeed
the same as what was found by van den Bergh and Engelbrecht [11]
when θi = φi and the same as what was found by Trelea [18] when
θi = φi/2. Hence, one can conclude that the stagnation assumption
does not affect the convergence boundaries for first-order stability
in IPSO.

The second-order stability of IPSO under a weaker stagnation
assumption was investigated by [13]. The assumption in that study
was that the personal best is constant from an iteration k to k + k0,
where k0 ≥ 3. It was proven that, for the global best particle (the
particle that its personal best is equal to the global best, pt = gt
for all t), the convergence boundaries found by Jiang et al. [19] as
well as by Poli [8] are valid under this assumption, i.e., the variance
converges. Also, it was proven that the global best particle in IPSO
is second-order stable if and only if its variance is convergent.

IV. PROPOSED STABILITY ANALYSIS

The present study extends the findings of previous works from
different perspectives. We investigate a stochastic recurrence relation
that represents a wide range of PSO variants. We analyze the conver-
gence of expectation and variance for this recurrence relation and find
necessary and sufficient conditions to guarantee these convergence
properties. We also investigate the first- and second-order stability
and find conditions to guarantee these types of stability for that recur-
rence relation. In all of these calculations, we consider p and g as
random variables that are updated during the run with an arbitrary
mean and variance. This in fact weakens the stagnation assumption
considered by earlier studies.

A. Generalization of PSO Formulation

We assume that the positions of particles are updated for each
dimension independently. We also investigate an arbitrary particle
in the swarm. In the 1-D space, the position of a particle can be
considered as a random variable. In this letter, we study the position
update rule of IPSO with generic distribution for its coefficients

xt+1 = lxt − ωxt−1 + c1p + c2g (6)

where l = (1+ω−c1 −c2), c1, c2, p, g, and ω are random variables
with expected values (μ) and standard deviations (σ ). This formula-
tion allows movement of p and g through a distribution with a mean
and variance.

If an arbitrary precision ε for the objective value is considered (that
is the case for simulations, see Section II), the set of all possible
positions for p and g is arbitrarily large but finite (this was also
assumed by [10], see Section III-C). Hence, as the search space is
bounded, the variance of p and g is finite for any ε.

In a simulation, it is usually the case that the locations of pt (gt)
for each particle show chaotic behavior all over the search space
when t is small (exploration). In an extreme case for such behavior,
pt (gt) samples the search space through a uniform random distri-
bution. However, as t grows, pt (gt) becomes more concentrated on
a smaller area; hence, the density of the samples picked by pt (gt)
becomes larger in that specific area. This means that the mean of
the distribution of the generated pt (gt) converges to a point in that
specific area and the variance of the generated pt (gt) becomes closer
to zero.3 This can be observed in the convergence curves reported
in [6] and [21] where the location of p (g) is updated less frequently

3Note that pt (gt) cannot be always updated as for some iterations, such as
t, when there is no other point in the search space that is better than pt (gt)
by at least ε.

when the iteration number grows. Therefore, the distribution of p (g)
becomes closer to a gamma distribution with a shrinking variance
as t grows.

One should note that, as p and g move through a distribution with
a mean and variance, (6) is independent of the topology as it does not
matter which other particle updates g. Nevertheless, this formulation
does not model fully informed topologies introduced in [22].

B. First Order Stability Analysis

In order to guarantee first-order stability, we need to guarantee
convergence of the expectation of the positions (see Definition 2).
We calculate the expected position of a particle by applying the
expectation operator to both sides of (6)

E(xt+1) = E(l)E(xt) − μωE(xt−1) + μc1μp + μc2μg (7)

where μω, μc1 , μc2 , μp, and μg, are the expected values of ω,
c1, c2, p, and g, respectively, and E(l) = 1 + μω − μc1 − μc2 .
Alternatively, one can rewrite this equation in a matrix form intro-

duced in (5), where �zt = [E(xt) E(xt−1)]T , M =
[

E(l) − μω

1 0

]
,

and �b = [μc1μp + μc2μg 0]T . The eigen values of M are
((E(l) ±

√
E(l)2 − 4μω)/2). According to Lemma 1, in order to

guarantee convergence of expectation we need to ensure that the mag-
nitude of these eigenvalues are smaller than 1. After simplifications,
we found that the expectation of xt is convergent (spectral radius is
smaller than 1) if and only if

− 1 < μω < 1 and 0 < μc1 + μc2 < 2(μω + 1). (8)

This is called the expectation convergence boundaries. It is clear
that the convergence of expectation is independent of the mean and
variance of p and g. Therefore, the first-order stability is guaranteed
if and only if the conditions in (8) are satisfied, no matter how p
and g are updated. Also, this equation suggests that the first-order
stability of a PSO variant that follows the recurrence in (6) with any
distribution for c1, c2, and ω is only dependent on the expectation
of these variables.

Let us assume that the expected value of the position of particles
is convergent and it converges to a value Ex. If the fixed point of the
recurrence �zt = [E(xt) E(xt−1)]T is ẑ then Ex = ẑ1, where ẑ1 the
first element of ẑ. After simplifications, Ex is calculated as

Ex = μc1μp + μc2μg

μc1 + μc2

. (9)

If particles are first-order stable, then their expected position
converges to this point after a long run.

For example, in IPSO, because μc1 = (c1/2), μc2 = (c2/2), and
μω = ω, the relation to ensure the convergence of expectation of the
algorithm is written as

− 1 < ω < 1 and 0 < c1 + c2 < 4(ω + 1). (10)

This equation is aligned with what was found based on the stagna-
tion assumption [9], [11], [18] and the weakened stagnation assump-
tion [10]. Hence, it seems that the stagnation assumption does not
affect the convergence boundaries to guarantee first-order stability.
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Also, the fixed point of the expectation for IPSO is calculated as
((φ1μp + φ2μg)/(φ1 + φ2)), which is also aligned with previous
studies. Note the stagnation assumption results in μp = p and
μg = g.

C. Second-Order Stability Analysis

In order to guarantee second-order stability of the position of par-
ticles, we need to guarantee the convergence of variance and that
the fixed point of the variance converges to zero (see Definition 3).
We first formulate the variance of positions in the form of (5).
Then we study the convergence of variance and the boundaries to
guarantee convergence of variance (called the variance convergence
boundaries), and, finally, we investigate conditions to guarantee the
second-order stability.

1) Matrix Form of Variance: The variance of a random variable
α is calculated by

V(α) = E
(
α2

)
− E(α)2. (11)

Thus, in order to calculate V(xt) we need to calculate E(x2
t ). Let us

calculate x2
t+1 as

x2
t+1 = (

lxt − ωxt−1 + c1p + c2g
)2 = l2x2

t

+ ω2x2
t−1 − 2lωxtxt−1 + 2lPxt − 2ωPxt−1 + P2 (12)

where l = 1 + ω − c1 − c2 and P = c1p + c2g. Hence, the expected
value for x2

t+1 is given by

E
(

x2
t+1

)
= E

(
l2

)
E
(

x2
t

)
+ E

(
ω2

)
Ex2

t−1

− 2E(lω)E
(
xtxt−1

) + 2E(lP)E(xt)

− 2E(ωP)E(xt−1) + E
(

P2
)
. (13)

We calculate E(l2), E(ω2), E(lω), E(lP), E(ωP), E(P2), and
E(xtxt−1) in turn. The value for E(l2) is calculated as

E
(

l2
)

= 1 + E
(
ω2

)
+ E

(
c2

1

)
+ E

(
c2

2

)
+ 2μω −

− 2
(
μc1 + μc2

) − 2μω(μc1 + μc2) + 2μc1μc2 (14)

where, according to (11), E(ω2) = σ 2
ω +μ2

ω, E(c2
1) = σ 2

c1
+μ2

c1
, and

E(c2
2) = σ 2

c2
+ μ2

c2
, where σ 2

ω, σ 2
c1

, and σ 2
c2

are the variance of the
random variables ω, c1, and c2, respectively.

It is clear that E(lω) = E(ω +ω2 −ωc1 −ωc2) results in E(lω) =
μω + E(ω2) − μω(μc1 − μc2). To calculate E(lP) we expand lP and
we get

E(lP) = E
(

c1p + c2g + ωc1p + ωc2g − c1
2p − c1c2g

− c2c1p − c2
2g

)
= μc1μp + μc2μg + μwμc1μp

+ μωμc2μg − μpE
(

c2
1

)
− μc1μc2

(
μp + μg

) − μgE
(

c2
2

)
.

(15)

Because ω and P are two independent random variables, E(ωP) =
μω(μc1μp + μc2μg). E(P2) is calculated as

E
(

P2
)

= E
(

c2
1p2 + c2

2g2 + 2c1c2pg
)

= E
(

p2
)

E
(

c2
1

)

+ E
(

g2
)

E
(

c2
2

)
+ 2μc1μc2μpμg (16)

where E(p2) = σ 2
p + μ2

p and E(g2) = σ 2
g + μ2

g—in these, σ 2
p and

σ 2
g are the variance of movement of p and g. Finally, we calculate

E(xtxt−1) by multiplying xt+1 by xt and applying the expectation
operator

E
(
xt+1xt

) = E(l)E
(

x2
t

)
− E(ω)E(xtxt−1) + E(P)E(xt). (17)

Now, we can define a recurrence relation in the form of (5), where

M =

⎡
⎢⎢⎢⎢⎣

E(l) −E(ω) 0 0 0
1 0 0 0 0

2E(lP) −2E(wP) E(l2) E(ω2) −2E(lω)

0 0 1 0 0
E(P) 0 E(l) 0 −E(ω)

⎤
⎥⎥⎥⎥⎦

�zt = [E(xt) E(xt−1) E(x2
t ) E(x2

t−1) E(xtxt−1)]T , and �b =
[E(P) 0 E(P2) 0 0]T . The matrix M and the vector �b are gen-
eralizations of the matrix form proposed in [8]. Note that this
matrix can be used to represent the variance of the positions as
V(xt) = E(x2

t ) − E(xt)
2.

2) Convergence of Variance: We calculated γi=1...5 (eigenvalues
of the matrix M)4 and we found that all eigenvalues of M are indepen-
dent of μp, μg, σp, and σg. This means that whether the sequence of
�zt is convergent is independent of the mean and variance of p and g.
As the variance of the sequence is calculated by E(x2

t ) − E(xt)
2, the

convergence of variance is also independent of the mean and vari-
ance of p and g. This was observed in [12] through an experimental
approach for IPSO.

This finding looks counterintuitive. In fact, one may expect that
any changes in the values of p and g in (6) cause a change in the
stability of the variance of the generated sequence. However, as our
theoretical study showed, the changes of p and g through a distribu-
tion with some mean and variance does not affect the convergence
of variance of the positions generated by (6). Accordingly, findings
reported in earlier literature related to the convergence of variance
under stagnation assumption can be generalized to the cases where
p and g are allowed to move through some arbitrary distribution.

3) Variance Convergence Boundaries: In order to find conver-
gence boundaries to guarantee convergence of variance, we need to
find conditions to guarantee ρ(M) < 1 (see Lemma 1). Unfortunately,
simplification of γis is very difficult as they are very complex.5

Hence, we rather investigate the fixed point of this matrix form to find
necessary conditions only for convergent of variance (see Lemma 2).
After that, we further investigate this necessary condition to see if it
is also sufficient for convergence of variance.

According to Lemma 2, if the relation �zt is going to be convergent
then the values in M and �b must ensure the existence of the fixed
point ẑ. One can calculate ẑ trivially (see Section IV-C1) and use
it to calculate Vx (the fixed point of the variance of positions) as
Vx = ẑ3 − ẑ2

1 [see (11)], where ẑi is the ith element of ẑ. Therefore,
we calculate the fixed point of variance as

Vx = − k3 + k4

k1k2
(18)

where
k1 = (μc1 + μc2)

2;
k2 = k1(1−μω)+2(μc1 +μc2)(μ

2
ω+σ 2

ω−1)+(σ 2
c1

+σ 2
c2

)(μω+1);
k3 = k1(μω + 1)(μ2

c1
σ 2

p + μ2
c2

σ 2
g + σ 2

c1
σ 2

p + σ 2
c2

σ 2
g );

k4 = (μ2
c1

σ 2
c2

+ μ2
c2

σ 2
c1

)(μω + 1)(μg − μp)2.

4This calculation involves many simplifications and algebraic operations
that have not been included to this letter for the sake of simplicity. We used
the Symbolic Math toolbox from MATLAB 2013 together with manual pro-
cedures to perform these calculations. Please see the supplementary file for
this publication for the MATLAB program.

5See the MATLAB function provided as a supplementary file for details of
these eigenvalues.
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Based on Lemma 2, a necessary condition for the convergence of
any linear recurrence relation is the existence of its fixed point.
Also, by definition, the variance of any random variable is posi-
tive, i.e., Vx ≥ 0. Moreover, based on the definition of variance (11),
expectation of positions needs to be convergent; otherwise, the vari-
ance of the position would not be convergent. Hence, in order to
guarantee the existence of Vx, we need to guarantee the following.

Criterion 1: Expectation that positions are convergent.
Criterion 2: Vx ≥ 0 (variance is positive by definition).
Criterion 3: Vx is finite (Lemma 2).
Clearly, Criterion 1 is satisfied by selecting appropriate values

for μc and μω according to (8), so let us concentrate on conditions
to satisfy Criteria 2 and 3.

Lemma 3: Let us assume that the expectation of xt is convergent
(Criterion 1) and σp, σg, and (μg − μp) are finite. Vx non-negative
and finite (Criteria 2 and 3) are guaranteed if and only if k2 < 0.

Proof: Let us start with conditions to guarantee that Vx is non-
negative. It is obvious that k3 ≥ 0 (all of its components are squared).
In addition, because μω+1 > 0 (necessary for convergence of expec-
tation), k4 ≥ 0 is guaranteed. Thus, Vx ≥ 0 if and only if k2 is
negative.

A necessary and sufficient condition to guarantee that Vx is finite
is that k1k2 �= 0 and k3 and k4 are finite. As σp, σg, and (μg − μp)

are finite, k3 and k4 are guaranteed to be finite. Also, k1 > 0 because
the expectation is convergent [see (8)]; hence, k1 �= 0. Therefore, a
necessary and sufficient condition to guarantee that Vx is finite is that
k2 �= 0. Therefore, Vx ≥ 0 and finite if and only if k2 < 0.

Note that this proof relies on σp, σg, and (μg − μp) being finite.
As discussed in Section IV-A, (μg − μp), σp, and σg are finite for
any arbitrary precision ε > 0.

Theorem 1: The following conditions are necessary for the con-
vergence of variance.

Condition 1: −1 < μω < 1, and 0 < μc1 + μc2 < 2(μω + 1).
Condition 2: k2 < 0.
Proof: Criteria 1 to 3 are necessary conditions for the convergence

of variance. Criterion 1 is equivalent to Condition 1. Also, according
to Lemma 3, Condition 2 is necessary and sufficient for the existence
of the variance fixed point. As the existence of the fixed point is a
necessary condition for the convergence of variance (Lemma 2), both
Conditions 1 and 2 are necessary for the convergence of variance.

We simplify conditions in Theorem 1 to

− a < μω < a and 0 < μc <
−2

(
μ2

ω + σ 2
ω − 1

)

1 − μω + q(1 + μω)
(19)

where a =
√

1 − σ 2
ω, q = (σ 2

c /μ2
c), σ 2

c = σ 2
c1

+ σ 2
c2

, and μ2
c =

(μc1 + μc2)
2. Note that μω is real, so σ 2

ω ≤ 1, which means a ≤ 1.
Based on Lemma 2 and Theorem 1, (19) is a necessary condi-

tion to ensure ρ(M) < 1. However, it is not possible to claim that
if the conditions in (19) are satisfied, then ρ(M) < 1 [(19) might
not be a sufficient condition for ρ(M) < 1]. We run an experiment
to test whether this necessary condition is also a sufficient condi-
tion for the convergence of variance of xt. The experiment was as
follows: μω was changed in (−1, 1) with the step size 0.001 and,
for each value of μω, 1000 random combinations for < μc1 , μc2 ,
σc1 , σc2 , σω > were generated in a way that the conditions in (19)
were satisfied.6 For each setting, we calculated the value of ρ(M)

and tested if ρ(M) < 1 is true (1 000 000 combinations of settings in
total). Results showed that all tested combinations of parameters that
satisfy conditions in (19) also satisfy ρ(M) < 1. Although this is an

6The random variables p and g were excluded from this experiment as they
do not affect ρ(M) and conditions in (19).

experimental approach, it indicates that the conditions in Theorem 1
are very likely to be sufficient to ensure ρ(M) < 1, i.e., (19) is
necessary and (most likely) sufficient for convergence of variance.

For IPSO, because μc1 = (φ1/2), μc2 = (φ2/2), μω = ω, σc1 =
(φ1/

√
12), σc2 = (φ2/

√
12), and σω = 0, we have the following.

1) k1 = ((φ1/2) + (φ2/2))2.
2) k2 = k1(1−ω)+(φ1+φ2)(ω2−1)+((φ2

1/12)+(φ2
2/12))(ω+1).

3) k3 = k1(ω + 1)((φ2
1/3)σ 2

p + (φ2
2/3)σ 2

g ).
4) k4 = ((φ2

1φ2
2/24))(ω + 1)(μg − μp)2.

The convergence relation calculated by (19) for the IPSO setting
where p and g are allowed to move randomly is then written as

− 1 < ω < 1 and 0 < φ1 + φ2 < 24
ω2 − 1

5ω − 7
(20)

which is exactly aligned with what was found by Poli [8] and
Jiang et al. [19] with stagnation assumption [13] and with a weaker
stagnation assumption. This means that random movement of p and g
does not affect the convergence boundaries to guarantee convergence
of variance.

4) Convergence of Vx to Zero: To guarantee second-order stability
one needs to guarantee the convergence of variance and that the fixed
point of variance (Vx) is zero. Given that Conditions 1 and 2 in
Theorem 1 guarantee convergence of variance, we need to guarantee
Vx = 0 to ensure second-order stability. By using Condition 1 in
Theorem 1, it is easy to see that k1 and k2 are finite; hence, they
do not play a role to ensure Vx = 0. Thus, the value of Vx is zero
if and only if k3 + k4 = 0. Because k3 ≥ 0 and k4 ≥ 0 are always
guaranteed (see the proof for Lemma 3), k3 + k4 = 0 is equivalent
to k3 = k4 = 0. Hence, in order to guarantee second-order stability
we need to guarantee satisfaction of Conditions 1 and 2 (Theorem 1)
together with k3 = k4 = 0 (the fixed point of variance is zero).
k3 = k4 = 0 if and only if at least one of the following cases
are true:

Case 1: σ 2
p = 0, σ 2

g > 0, μ2
c2

= σ 2
c2

= 0, and μ2
c1

�= 0 or;
Case 2: σ 2

p > 0, σ 2
g = 0, μ2

c1
= σ 2

c1
= 0, and μ2

c2
�= 0 or;

Case 3: σ 2
p = σ 2

g = 0 and μg = μp (aka stagnation) or;
Case 4: σ 2

p = σ 2
g = 0 and μg �= μp and

1) μ2
c2

= σ 2
c2

= 0 and μ2
c1

�= 0 or;
2) μ2

c1
= σ 2

c1
= 0 and μ2

c2
�= 0.

Case 1 refers to when p stops moving while g is always updated,7

Case 2 refers to when g stops moving and p is always updated, Case 3
refers to when p and g stop moving at the same location, and Case 4
refers to when p and g stop moving but at different locations. Note
that, as the fixed point Vx is met in limit when t → ∞, the movement
of p and g can also be investigated in limit so that σ 2

p = 0 and σ 2
g = 0

can be replaced by σ 2
p → 0 and σ 2

g → 0, respectively.
One should note that these cases are very generic and, under some

assumptions, they can be simplified. For example, μg = μp and
σg = σp are always true for the global best particle. Hence, if σp
converges to zero and its coefficients are in the variance convergence
boundaries, then this particle is second-order stable. As discussed in
Section IV-A, σp converges to zero for any arbitrary precision ε > 0
as the number of iterations grows. Hence, for any arbitrary precision
ε > 0, the convergence of variance is equivalent to the second-order
stability for the global best particle.

To summarize, a recurrence relation in the form of (6), under
assumptions p and g are random variables, is second-order stable
if and only if Conditions 1 and 2 in Theorem 1 are satisfied and one
of the four cases mentioned before is true.

7Note that this does not mean that g moves in every iteration, but it means
that, for any iteration t, there exists an iteration t0 > t that g is updated.
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For IPSO, we calculate Vx as [see (18)]

Vx =
φ(ω + 1)

[
8
(
σ 2

p + σ 2
g

)
+ (μg − μp)2

]

4
(
φ(5ω − 7) − 12ω2 + 12

) (21)

where φ = φ1 = φ2. Under this setting and in stagnation (Case 3),

p and g are constants that result in σ 2
p + σ 2

g = 0; hence, (21)
becomes exactly the same as what was found in [8]. The algo-
rithm becomes second-order stable only if μp = μg (p and g
are at the same location) that is the same as what was found by
Poli [8].

V. CONCLUSION

In this letter, we introduced a stochastic recurrence relation that
represents a wide class of PSO algorithms. We investigated the con-
vergence boundaries for this relation to guarantee convergence of
expectation and variance as well as first-order and second-order sta-
bility. Our study assumed that the memories of particles (i.e., personal
bests of particles) are random variables that are updated during the
run with a mean and a variance. This assumption simulates the
movement of those memories and, hence, the convergence bound-
aries are not specific to stagnation. Also, this assumption makes
the calculations independent of the topology as the global best
(local best) vector is assumed to be updated randomly no matter
which particle updates it.8 We determined (Section IV-B) neces-
sary and sufficient condition to guarantee convergence of expectation
and first-order stability of this recurrence relation. Interestingly, this
condition was independent of the mean and variance of memories,
meaning that whether the expectation of the position of particles is
convergent or the particles are first-order stable is independent of
the mean and variance of the movement of memories. We found
that the convergence boundaries for the first-order stability of IPSO
calculated by our proposed model are exactly the same as the bound-
aries provided in earlier studies under stagnation and weakened
stagnation assumptions. We also proved (Section IV-C2) that the
necessary and sufficient condition for convergence of the variance
of the recurrence relation is independent of the mean and vari-
ance of the movement of the memories (i.e., personal best and
global best). We determined (Section IV-C3) convergence bound-
aries that guarantee convergence of variance for that recurrence
relation. We showed that, for a particular case of that recurrence
relation that is equivalent to IPSO, these boundaries are the same
as what was found in earlier studies for this algorithm. We also
found (Section IV-C4) that, to guarantee second-order stability under
the assumption of p and g are random variables in a general
case, either p or g or both need to stop movement. As a future
direction, one can extend our proposed model to more complex
topologies (see [22]) and study their effects on the stability and
convergence of particles. In addition, as many PSO variants con-
sider an upper limit for the velocity (vmax), one can study how
such limit can influence convergence of variance and stability of
particles.

8Note that the formulation models the impact of one other particle only
and does not model fully informed topologies.
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