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Analysis of Stability, Local Convergence, and
Transformation Sensitivity of a Variant of the
Particle Swarm Optimization Algorithm

Mohammad Reza Bonyadi and Zbigniew Michalewicz

Abstract—In this paper, we investigate three important proper-
ties (stability, local convergence, and transformation invariance)
of a variant of particle swarm optimization (PSO) called standard
PSO 2011 (SPSO2011). Through some experiments, we identify
boundaries of coefficients for this algorithm that ensure particles
converge to their equilibrium. Our experiments show that these
convergence boundaries for this algorithm are: 1) dependent on
the number of dimensions of the problem; 2) different from that
of some other PSO variants; and 3) not affected by the stagnation
assumption. We also determine boundaries for coefficients associ-
ated with different behaviors, e.g., nonoscillatory and zigzagging,
of particles before convergence through analysis of particle posi-
tions in the frequency domain. In addition, we investigate the
local convergence property of this algorithm and we prove that
it is not locally convergent. We provide a sufficient condition and
related proofs for local convergence for a formulation that repre-
sents updating rules of a large class of PSO variants. We modify
the SPS0O2011 in such a way that it satisfies that sufficient condi-
tion; hence, the modified algorithm is locally convergent. Also, we
prove that the original standard PSO algorithm is not sensitive
to rotation, scaling, and translation of the search space.

Index Terms—Local convergence, particle swarm optimization
(PSO), stability analysis, transformation invariance.

I. INTRODUCTION

ARTICLE swarm optimization (PSO) is a stochastic
Ppopulation-based optimization algorithm developed by
Kennedy and Eberhart [1]. PSO has been applied to many
optimization problems such as artificial neural network train-
ing and pattern classification [2], [3], to name a few. Since
1995, different aspects of the original version of PSO have
been investigated and many variants of the algorithm have
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been proposed. Due to the emergence of many PSO variants,
standard versions for the algorithm [4]-[6] were introduced
that were updated according to new advances every few years.
Standard PSO 2011 (SPSO2011) is the most recent standard
version for PSO [6]. A variant of SPSO2011 was applied to
some continuous space benchmark problems and its results
were reported to set a baseline for further research [7]. Most
existing studies on SPSO2011 are related to its application [7]
to continuous space optimization benchmarks and there is only
one article [8] (presented by the authors of this paper) that
investigates theoretical aspects of SPSO2011 that include sta-
bility of particles [9], [10], local convergence [11], [12], and
transformation sensitivity [13].

In our earlier paper [8], the stability of particles in a
SPSO2011 variant proposed by [7] was investigated under
the stagnation assumptions through an experimental approach
called estimation of convergence boundaries (ECB). Also, it
was proven that the algorithm is not locally convergent and a
modification was proposed to resolve the issue. However, no
proof was provided to illustrate that the modified algorithm is
locally convergent. In addition, the transformation invariance
of the algorithm was investigated in [8].

In this paper, stability of particles, local convergence, and
transformation sensitivity of SPSO2011 (proposed in [6]) are
analyzed in more detail. We modify the ECB algorithm [the
new algorithm is called estimation of variance convergence
boundaries (EVCB)] and apply it to a PSO variant for which
these boundaries are known. Results indicate that the esti-
mated convergence boundaries are in good agreement with
those that were found through theoretical analyses. EVCB is
applied to estimate the convergence boundaries for SPSO2011
under stagnation as well as general conditions. The behav-
ior of the positions of particles before convergence is also
analyzed and the boundaries associated with different behav-
iors such as harmonic and zigzagging are identified for the
algorithm. Furthermore, the local convergence property of
SPS0O2011 is investigated and it is proven that this algorithm
is not locally convergent. We introduce a sufficient condition
together with related proofs for local convergence of a recur-
sive equation that formulates a large class of PSO algorithms.
We propose a simple modification to SPSO2011 and prove
that the modified version satisfies the sufficient condition to
address the local convergence issue. Finally, it is proven that
the algorithm is invariant from rotation, scaling, and transla-
tion (RST). Note that the aim of this paper is to understand
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different behaviors of particles and to address potential the-
oretical issues (e.g., local convergence) in SPSO2011 and it
does not try to improve the algorithm to find better solutions.

This paper is an extension of our earlier paper [8]. There

are significant differences between these two papers, as this
paper investigates:

1) A different variant of SPSO2011 than the one investi-
gated in [8].

2) The algorithm with and without stagnation while our
earlier paper only investigated the algorithm with stag-
nation.

3) The behavior of particles before they converge that was
not done in our earlier paper.

4) A recursion equation that represents a large class of PSO
algorithms and provides sufficient conditions for local
convergence of that recursion.

5) The local convergence of SPSO2011 in more detail than
it was done in [8].

6) The transformation invariance of SPSO2011 through
more formal definitions and analyses from what was
done in [8].

Without loss of generality, this paper considers only mini-

mization problems defined as

find X € S € R? such that ¥y € S, FX) < F(H) (1)

where § is the search space defined by {x|/;
u; for all i}, /; and u; are the lower bound and upper bound of
the values of the ith dimension of S, d is the number of dimen-
sions, and F(.) is the objective function. The set of points that
are generated by F(x) for all x € S is called the landscape.

The rest of this paper is organized as follows. We briefly
discuss earlier variants of PSO in Section II. Section III
reviews existing approaches for stability analysis of PSO vari-
ants and provides analysis of stability for SPSO2011. Local
convergence properties for some PSO variants are outlined in
Section IV and this property for SPSO2011 is investigated. In
Section V, an overview of existing transformation sensitivity
analyses for different PSO variants is given. Also, we prove
that SPSO2011 is invariant from RST of the search space.
Section VI concludes this paper.

< x =

II. PARTICLE SWARM OPTIMIZATION

Each particle in the original PSO (OPSO) [1], [14] contains

three vectors.

1) Position (?cf ): This is the position of the ith particle in the
tth iteration. This is used to evaluate the particle quality.

2) Velocity ( \7; ): This is the direction and length of move-
ment of the ith particle in the tth iteration.

3) Personal Best ( 1_5; ): This is the best position (in terms of
objective value) that the particle i has visited until iter-
ation 7. The role of this vector is to store the knowledge
of best found solutions [14].

In OPSO, the velocity of each particle is updated for the

next iteration (¢ + 1) by

Vi1 = Vi + ¢1Ru(p) — X) + $2Roi (3 — ¥) @

where ¢ and ¢, are the two real numbers called acceleration
coefficients, ﬁ; is the personal best of the particle i at iteration ¢,
and g; is the best personal best in the swarm.
The vector f); for each particle i is updated by
B = {ic;iﬂ F(x;H) <F(p;)—eand X, €S
Di otherwise

3)

where €( is an arbitrarily small real value that represents the
precision of the calculations. This constant can be set to the
smallest possible value in the simulations (see Section IV).

Particles are attracted by PI = p! — ¥ (personal influ-
ence) and SI = g — X/ (social influence) to move toward
known quality solutions found until iteration ¢, i.e., [3; and g;.
Furthermore, Rj; and Ry; are two randomly (a uniform dis-
tribution in the interval [0, 1]) generated d x d diagonal
matrices [15], [16]. These two matrices are generated for each
particle i at every iteration ¢ separately. The position of the
particles is updated by

Xp1 =%+ Vi 4)

OPSO was studied by many researchers since 1995 and
many new variants were proposed. As an example, it was
proposed [17] to multiply the previous velocity (\7,i) by an
inertia weight (w) to control the impact of \7; on the move-
ment of particles (we call this PSO variant as inertia PSO,

IPSO, in this paper). The velocity update rule for IPSO was
written as

Vi = oV + 1R — %) + haRu(@ X)) )
where w is the inertia weight.

Because of the fast growth of number of PSO variants
(see [18] for a review paper on some variants), the lack of
a standard version to compare the results with became more
apparent. Therefore, some researchers set a standard version
for PSO and updated that frequently (every couple of years).!
New findings in the PSO area, including new values for coef-
ficients, topology,? velocity update rule, and adaptations, were
incorporated into the standard PSOs to keep the standard
version up-to-date (see for example [5]).

The most recent standard PSO algorithm is called
SPSO2011 [6]. The algorithm was applied to some stan-
dard continuous optimization benchmarks [7]. The velocity
updating rule for SPSO2011 was written as

) -3 (©)

where H(éi, ||é§ — fcill) is a spherical distribution with the
center G} and radius |G} —X|| and ||.|| is the Euclidean norm.
Also

Vi, =V +H(z;;', G -3

G; — 1 t 1 (7)

3
where Pi = % + ¢ (pl — %), Ll = ¥ + ¢ (I — Xi), and I is the
best personal best among all particles connected to particle i

ISome source codes and documentation for these standard PSOs can be
found in http://www.particleswarm.info/Programs.html.

2If a particle i uses the personal best position of a particle j to update
its velocity then we say these two particles are connected. The way that all
particles are connected to each other in the swarm is called topology.
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Algorithm 1 Generate H(a, b)

1: Input a, b

2: Output y

3: 7 =< Ni(0,1),N2(0, 1), ...,N4(0,1) > where N;(0, 1)
(for all i) generates a random value according to the
normal distribution with mean equal to 0 and standard
deviation equal to 1

4: v = T:ﬂ where ||.|| is the Euclidean norm operator

5:y = a+ v U(0, b) where U(0, b) generates a uniform
random scalar in [0, b]

Qmowp as local best). Also, in [6], it was suggested that if
I} = p; then calculate

L Py

Gi="t erx’. (8)

Algorithm 1 was used’® to generate the spherical distri-
bution H(a, b). Step 4 of the algorithm, inspired by [19],
generates a point that is uniformly distributed on the sur-
face of the unit hypersphere. The radius of the hypersphere
is then altered in Step 5 randomly so that the point has the
chance to be generated on any hypersphere inside the hyper-
sphere with the radius b (this algorithm was also used in [6]).
Step 5 also shifts the generated point by the vector d. One
should note that the distribution of the points generated by this
method is more dense toward the center of the hypersphere,
hence, not uniform in the hypersphere. However, we have
used this setting to be consistent with the original SPSO2011
proposed in [6].4

In this paper, we assume that all particles are connected
(a global best topology) and, consequently, replace lf by g;.
The values for ¢ and ¢ were considered as constants equal
to ¢; and ¢y, respectively. The term SPSO2011 refers to
the variant which was described in [6] throughout this paper
unless specified. It was claimed that SPSO2011 is rota-
tion invariant; however, no proper proof for this claim was
provided.

In [7], SPSO2011 was modified in a way the values of
c1 and ¢ were set to ¢1Ry; and ¢rRy,, respectively, where
Ry, and Ry; are random diagonal matrices and ¢ and ¢, are
constant values.

III. STABILITY ANALYSIS

Perhaps one of the first analyses of convergence for stochas-
tic optimization algorithms was conducted by [20], which was
later followed by [21] and [22]. An iterative stochastic opti-
mization algorithm (optimization algorithm in short) is said to

3In our earlier paper [8], N(0, b) was used rather than U(0, b) in Step 5
of Algorithm 1, that might cause some dissimilarities between the results of
that paper and this paper.

4One can replace U(0, b) with U(0, b)l/ d to ensure that the generated
points are uniformly distributed in the hypersphere. The probability that a
generated point inside a hypersphere with the radius b and it is also inside a
hypersphere with the radius r (i.e., P(D < r), where D is the distance of the
point from the center of coordinates system) is calculated by (ar?) / (ab?),
where ab? is the volume of a hypersphere with the radius b. Hence, P(D < r)
is uniform if r = bU(0, b)'/%.,

converge in probability (to converge in short)® if
Ve > 0, lim P(|% — X[ <€) =1 ©)
—00

where P is the probability measure, X; is a generated solution
by the optimization algorithm (a point in the search space)
at iteration ¢, € is a small positive value, and Xisa point in
the search space. This type of convergence is usually inves-
tigated for an iterative stochastic optimization algorithm to
find the boundaries for coefficients in the algorithm so that
the sequence of the generated solutions by the algorithm is
convergent. This analysis is also known as stability analysis.

In this section, we analyze the stability and behavior of
particles in IPSO and SPSO2011.

A. Stability Analysis for IPSO

Stability analysis for IPSO was performed by many
researchers [9], [23]-[25], to name a few. One of the aims
of the stability analysis for IPSO was to find boundaries for
the coefficients of velocity update rule (i.e., inertia weight and
acceleration) so that positions of particles converge to a point
in the search space. The set of all boundaries for all coeffi-
cients of a PSO variant that guarantee convergence to a point
is called convergence boundaries in this paper.

In order to simplify the analysis of stability for IPSO, some
researchers [9], [26] assumed that the stochastic values in the
velocity update rule are set to constant values (1 for IPSO).
This simplification enabled researchers to study particles
behaviors through dynamic systems methodologies (analyses
with consideration of this simplification is called deterministic
model stability analysis). A more realistic view point, how-
ever, is to study the algorithm with the presence of stochastic
components. Some researchers [10], [23] studied the behavior
of particles in expectation, i.e., if lim;— o E(x;) is a constant
value, where E(.) is the expectation operator (this analysis is
called first-order stability analysis). These studies found that if
the personal best and global best vectors are not updated dur-
ing the run then the expectation of the position of each particle
converges to a point (first-order stability analysis) between the
personal and global best vector ((p2¢ + ¢1p)/(¢1 + ¢2)) if and
onlyif -1 <w < 1 and 0 < ¢ < 4(1+w) where ¢ = ¢1+¢>.
Recently, it has been proven [27] that this relation results in
first-order stability under more general conditions, i.e., when
personal best and global best can be updated while they can
occupy an arbitrarily large finite number of unique positions in
the search space.

Although first-order stability analysis is more realistic than
deterministic model stability analysis, it is still not the most
comprehensive analysis possible to ensure particle conver-
gence. The reason is that, even if the expected position of
a particle converges to a single value, it does not mean that
the particle is steady at that point as it may oscillate on a
line such that its expected value remains constant. Hence,
some researchers [24], [25], [28] studied the variance (rather
than expectation) of the position of the particles. The aim
was to study the behavior of variance of particle positions

SNote that there are many other types of convergence such as almost surely
convergence, sure convergence, and nth mean convergence.



BONYADI AND MICHALEWICZ: ANALYSIS OF STABILITY, LOCAL CONVERGENCE, AND TRANSFORMATION SENSITIVITY 373

Inertia weight (®)
=)

-2 -1 0 1 2 3 4 5
Accelaration coefficients (¢ = ¢, = ¢,)

Fig. 1. Convergence boundaries for IPSO (dark area) that were reported
in [24] through theoretical analysis.

when iteration number grows to infinity (this analysis is called
second-order stability analysis). These studies found that the
expectation of the positions of particles converges to a point
and the variance of the positions converges to a constant
value if ¢ < (12(w? — 1))/Sw —7) where ¢ = ¢1 = ¢
and —1 < w < 1 (see Fig. 1). It was shown [25] that
the variance of positions converges to h(¢di, ¢z, w)|g — p|
where h(.,.,.) is a function of inertia weight and accel-
eration coefficients (see [25] for details on this function).
Hence, if h(¢1, ¢p2, w) # 0 is guaranteed then particles do
not stop moving (nonzero variance) until p = g. It has been
recently proven [28] that IPSO is second-order stable when
¢ < (12(w* — 1))/(50 — 7) even if personal best is updated
during the run.

The convergence boundaries for IPSO were investigated
experimentally in [29]. IPSO was applied to a function that
its values were generated randomly for each point indepen-
dently (F(x) = U(—1000, 1000) for all x where U(a, b)
is a uniform random number in [a, b]). For each x € S,
F(x) was generated only once and it was reused afterward
if required. Results showed that the convergence boundaries
found through experiments are almost exactly the same as the
boundaries found through second-order stability analysis. Note
that [29] did not simplify the update rules of particles and also
allowed personal best and global best positions to be updated
during the run.

In these analyses, usually velocity and position update rules
are analyzed for an arbitrary particle 7 in a 1-D space. This
assumption is valid for IPSO because, in this algorithm, all
calculations (including generation of the random values on
the diagonal of Rj; and Ry;) are performed in each dimension
independently. Thus, analyses in a 1-D case is generalizable
to the multidimensional case [25].

B. Stability Analysis for SPSO2011

Because each dimension in IPSO is updated separately, the
outcome of stability analysis in a 1-D space is generalizable to
any number of dimensions. This assumption, however, is not
valid for stability analysis of SPSO2011 because the velocity
vector in SPSO2011 is not updated for each dimension sepa-
rately. In SPSO2011, the operator ¢ = H(a, b) (for an arbitrary
vector a and scalar value b) is responsible for generating a

Algorithm 2 EVCB (Estimate Variance Convergence
Boundaries)

1: Input ¢g, @5, G, w4, s, we, d, r, maxlter

2: Output Yg’w

3: for ¢ = ¢, to ¢, with step size ¢ do

& dr=p=¢
5 for w = w, to w, with step size w; do
6: Run the PSO algorithm for a predefined number of

iterations (maxlIter) and number of runs (r) for the
given ¢; = ¢o = ¢ and w

7: For each run, select a random particle and, for each
dimension, calculate the variance of the particle posi-
tion (a d x r matrix M, where M; ; is the variance of
the dimension i for the run j),

8: For each dimension, calculate the average of vari-
ances over all runs (a d dimensional vector Z, where
Zi = Z;zl M, j for each i),

9: Calculate var,, = ||Z||

10:  end for

11: Y;f,w = var,, for all w in w, : w5 : W,

12: end for

random point in the space with center a and radius b. This
random generation process is not readily decomposable to a
dimension-wise process. In addition, the value of b is depen-
dent on the (Euclidean) distance of the position and personal
best vector of the particle as well as the global best vector.
Calculation of this distance is also not easily decomposable to
dimension-wise calculations. Therefore, analysis of stability
of particles for SPSO2011 should be conducted in the gen-
eral case of d-dimensional space, i.e., ||17§|| = 0, rather than
considering each dimension separately.

In this paper, we conduct an experimental study (called
EVCB), described as Algorithm 2, to estimate the conver-
gence boundaries for PSO variants. As shown in the EVCB
algorithm, we study the variance of 1-D of the position
(second-order stability) of a randomly selected particle dur-
ing a long run (20 000 iteration) for different combinations of
w and ¢.

As EVCB investigates the parameters of PSO variants
through experiments, the value of maxlter needs to be a large
number in the tests. The reason is that there might be circum-
stances that particles velocities start shrinking while they start
to grow afterward.

We consider the following settings for all experiments.

1) Setting 1: pi, = Xi, (the point p/, is sampled by ¥}).

2) Setting 2: The variance of a randomly selected particle

is recorded.

3) Setting 3: The search space S is bounded for all

dimensions in [—10, 10].

4) Setting 4: ¢ = ¢1 = ¢2.

5) Setting 5: ' = 0.

The boundary (setting 3) has been introduced to make the
experiment setups consistent with the general definition men-
tioned in (1). As the SPSO2011 algorithm is invariant under
any scaling and translation (see Section V for the proof),
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Boundaries for @ and ¢ so that IPSO are convergent. The darker the area is, the smaller the value of yd o Thus, the darker the area is, the more

probable that the algorithm is convergent with those coefficients. Experiments were conducted for d = 1 (a) and d =10 (b).

resizing or shifting the boundaries do not affect the conver-
gence behavior of particles. Also, if a particle left the search
space then its personal best is not updated. Usually, some
bound handling techniques are used in PSO variants to prevent
particles from leaving the boundaries of the search space [30].
In our experiments, however, the velocities and positions of
particles are not prevented from growing/leaving the bound-
aries, NOR any strategy is applied to bring the particles back
inside the boundaries. This indeed is necessary as otherwise
it is not possible to claim whether the result of convergence
was purely because of the coefficient values or it was also
because of the strategy used to prevent particles from leaving
the boundaries.

To test the wvalidity of this experimental approach
(EVCB algorithm) for identifying convergence boundaries, we
applied this approach to find the convergence boundaries for
IPSO with ¢, = =2, ¢y = 0.1, ¢, = 6, v, = —1.3, 0y = 0.01,
we = 1.3, r = 10, maxIter = 20000 for d = 1 and d = 10
[see Fig. 2 (a) and (b)]. These parameters were set experi-
mentally in a way that the convergence boundaries are shown
completely. Also, we considered the stagnation assumption,
ie., ﬁ; = g, and g, is not updated for all .

The grayscale level in Fig. 2 (a) and (b) represents the value
of Yg’w for IPSO for different values of inertia weight and
acceleration coefficients. In the boundaries where Yg’ » 18 rel-
atively small (darker areas), the particles have become stable.
Also, as it is clear in Fig. 2 (a) and (b), when w = 0 the stabil-
ity of the particles is very probable for all values of ¢ and d.
This was in fact expected as if w = 0, and because X, = p})
and ﬁ; = g, for all ¢, the value of \7,’ becomes zero for all ¢,
which imposes stability. Of course this case is not interesting
from application point of view. Fig. 2(a) and (b) shows that
the convergence boundaries for IPSO is not affected by the
number of dimensions (the value of Y(‘;’ » ford =1 and 10
is very close for the tested @ and ¢). This indeed confirms
the assumption by earlier analyses, e.g., [10], for IPSO that
the analysis in 1-D space is generalizable to the analysis in
d-dimensional space. Also, these results are very similar to
those reported in [24] and [25] for the stability of particles

[see also Fig. 1 and compare it with Fig. 2 (a)]. This confirms
that EVCB can estimate the convergence boundaries of IPSO.

We conducted two experiments to estimate the convergence
boundaries for SPSO2011: one without the stagnation assump-
tion and the other with the stagnation assumption (pi = g,
and g; is not updated for all 7). The aim of these two tests
was to understand if the movement of the personal best and
global best affects the convergence region. For the exper-
iment without the stagnation assumption, we assumed that
there are 10 particles in the swarm and the objective func-
tion in [27] and [31] was used to investigate convergence of
particles. This objective function prevents particles from stag-
nating. In the case of the stagnation assumption, because the
global best and personal best vectors are not updated, there
is no need to consider any objective function. Also, there is
no need to consider more than one particle in the swarm as
no information is propagated through the swarm (global best
vector is not updated).

The stagnation assumption triggers the velocity update rule
in SPSO2011 that is specific for stagnation [i.e., (8)] only.
Hence, if we consider the stagnation assumption and run the
algorithm, the final convergence region is specific to that for-
mulation while the normal formulation [i.e., (7)] is ignored.
This, however, was not the case for IPSO as the update rule
was the same for stagnation and nonstagnation. Hence, in the
EVCB algorithm for the stagnation assumption for SPSO2011,
we set the value of ng » to the maximum value generated
by (7) and (8) formulations.

The following parameters for EVCB were used: ¢, = —2,
¢s =0.1, ¢ =6, w, = —1.3, wy, = 0.01, w, = 1.3, r = 10,
and maxIter = 20000 for d = 1 and d = 10 (see Fig. 3).
These parameters were set experimentally in a way that the
convergence boundaries appear completely in the graph.

Fig. 3 indicates three points about the convergence bound-
aries for SPSO2011.

1) Point 1: The boundaries under the stagnation are very
similar to those of without the stagnation assump-
tion [compare Fig. 3 (a) with Fig. 3(c) and compare
Fig. 3(b) with Fig. 3(d)].
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Boundaries for @ and ¢ so that SPSO2011 is convergent under (a) and (b) stagnation and (c) and (d) nonstagnation assumptions. The darker the area

is, the smaller the value of Y(‘;.w‘ Thus, the darker the area is, the more probable that the algorithm is convergent with those coefficients. The color spectrum
shows the value of the matrix Yg.w. Experiments were conducted for (a) and (c) d = 1 and (b) and (d) d = 10. Notice the similarity between the two graphs.

2) Point 2: The boundaries look different from those of
IPSO (see Fig. 2 and compare it with Fig. 3).

3) Point 3: The boundaries change when the number of

dimensions varies.

Based on point 1, it seems that the stagnation assump-
tion is not an unrealistic assumption to study the convergence
of particles in SPSO2011. This was also observed for IPSO
in [29] and [31].

Also, based on point 2, it seems that the set of coefficients
that results in convergence (according to the experiment) is
different from that of IPSO. Hence, one should not simply
use the same frequently used parameters in the PSO literature
for SPSO2011.

Based on point 3, the convergence boundaries for
SPSO2011 are affected by the number of dimensions. In order
to examine to what extent the convergence boundaries for
SPSO2011 change when the number of dimensions grows,

Note that these boundaries also look different from that of reported in
our earlier paper [8]. The reason is that in that paper we considered the
SPSO2011 proposed in [7] while here we experimented with the original
version described in [6]. Also, the implementation of the spherical distribution
in [8] was different from what we used in this paper.
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Fig. 4. Maximum value of ¢ for different values of w and number of
dimensions where the particles are still convergent.

we used EVCB to estimate the maximum value of ¢ so
that particles are still convergent for d € {1,2,...,10} and
w € {0.5,0.6,...,0.9} (see Fig. 4). In this test, the maxlIter
was set to 50 000 to ensure that particles are stable toward the
end of the run.

Results indicate that the most significant changes for the
maximum value of ¢ take place between 1-D and 10-D and
the maximum value for ¢ remains almost unchanged for larger
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the positions of particles.

number of dimensions. Hence, a parameter setting that is con-
ducted for a 10-D space is most likely applicable to a wide
range of number of dimensions.

C. Convergence Behavior

If the values of coefficients in a PSO variant are selected in
the convergence boundaries then particles converge to their
equilibrium. During the run, however, particles oscillate in
different ways (e.g., harmonic and zigzagging) around their
equilibrium until they collapse on it (converge). These dif-
ferent oscillations are a consequence of different values of
coefficients of the velocity update rule [10] and, potentially,
impact the final solutions found by the algorithm. Fig. 5 shows
examples of these oscillations for IPSO.

These different behaviors potentially affect the quality of
final solutions found by the particles. As an example, a
nonoscillatory behavior [Fig. 5 (a)] causes particles to search
only one side of each dimension of the equilibrium point. This
behavior can be beneficial when searching boundaries of the
search space (feasible space) is required. Harmonic behavior
[Fig. 5 (b)] is beneficial in the exploitation phase as particles
smoothly oscillate around their equilibrium point (exploita-
tion) and, potentially, higher quality solutions might be found.
This behavior can also be beneficial when the search space is
smooth (not rugged). The zigzagging behavior [Fig. 5 (d)] is
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Examples for (a) nonoscillatory convergence, (b) harmonic oscillation, (c¢) harmonic combined with zigzagging, and (d) zigzagging oscillations of

more beneficial for the exploitation phase as particles jump all
around the space to look for better basins of attraction. This
behavior can be more useful in rugged search spaces. The
combined harmonic with zigzagging behavior [Fig. 5 (¢)] can
be beneficial for the transition from exploration to exploita-
tion phase. If the boundaries of coefficients associated with
these behaviors are known then one can design an adaptive
approach that changes the values of coefficients according to
the most beneficial behavior. Note, however, that designing
such adaptive approach is not a trivial task as it needs strategies
to identify the most beneficial behavior in the first place.

These behaviors were studied by [10] and later by [32] for
IPSO. In those studies, the position update rule of the particles
in IPSO was written as a recursion equation, x;41 = @ (x; —
Xi—1) + ¢1R1.:(pr — x;) + ¢2R2 1 (I; — x;), and was investigated
by ordinary differential equation techniques (this recursion is
correspondence with the following second-order differential
equation: x” = w(x' — x) + 1Ry ;(p; — X) + $2R2 1 (; — X)).
In [10], the characteristic equation of this differential equation
was used to calculate the boundaries associated with differ-
ent behaviors [boundaries calculated in [10] are shown in
Fig. 7(a)]. Fig. 7(a) shows that the behavior of particles for
the frequently used setting of coefficients in IPSO (w = 0.73
and ¢ = 1.5) is harmonic.

As investigation of the characteristic equation of PSO vari-
ants is not always as easy, we propose an estimation approach
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that uses frequency domain information of particle positions in
order to specify these boundaries. Let us have a closer look at
the behavior of some sample particles in the time (see Fig. 5)
and frequency (see Fig. 6) domains (amplitude in the fre-
quency domain). We used the Fourier transform to convert
the first 200 samples of the particle positions from time to
frequency domain. One may observe the following.

1) In Fig. 5(a), the signal (particle position) converges to its
steady point without any oscillation (or with small oscil-
lations). Thus, the maximum amplitude of this signal in
the frequency domain belongs to very low frequencies
[see Fig. 6(a)].

2) In Fig. 5(b), the signal converges to its steady point
with some harmonic oscillations. Thus, the maximum
amplitude in the frequency domain belongs to low to
mid-range frequencies [see Fig. 6(b)].

3) In Fig. 5(c), the signal converges to its steady point
with some zigzag together with harmonic oscillations.
Thus, the maximum amplitude in the frequency domain
belongs to mid-range to high frequencies [see Fig. 6(c)].

4) In Fig. 5(d), the signal converges to its steady point
with some zigzagging oscillations. Thus, the maximum
amplitude in the frequency domain belongs to very high
frequencies [see Fig. 6(d)].

Thus, the boundaries in Fig. 7(a) can be estimated by draw-

ing the contour of the maximum frequency of the positions of
particles for different values of w and ¢. This contour has
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(a) Nonoscillatory convergence. (b) Slow harmonic oscillation. (¢) Harmonic combined with zigzagging. (d) Zigzagging.

been presented in Fig. 7(b). By comparing Fig. 7(a) and (b),
it is clear that the pattern of the maximum amplitude in
the frequency domain of particles position is very similar
to what was found theoretically [10] for the behavior of
particles.

According to Fig. 7(b) small values for ¢ and negative
values for w result in low-frequency oscillations. This is in
contradiction with what was observed in Fig. 7(a). The reason
is that the oscillation of particles in that area (w negative and
¢ small) is a combination of zigzagging and nonoscillatory,
which results in large amplitudes in both very high and very
low frequencies. Note also that, according to Fig. 7(b), the
behavior of particles is zigzagging for ¢ = 0 and w < 0. The
reason is that when the value of ¢ is zero, only the inertia
component affects the behavior of movement. As @ < 0, the
sign of the value of each dimension of velocity changes in each
iteration, which implies zigzagging behavior (high-frequency
changes).

We calculated the maximum frequency of particle positions
in SPSO2011 for 1-D space (see Fig. 8). It is clear that the
spectrum of maximum frequencies in SPSO2011 is different
from that of IPSO. For a positive value of w, the behavior
of particles changes from nonoscillatory to harmonic when
¢ increases. If the value of w is negative, however, particles
behave more nonoscillatory for small values of ¢ and more
zigzagging for larger values of ¢. These patterns are almost
consistent in both 1-D and 10-D cases.
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Fig. 7. Different behavior of particles before convergence in IPSO.
(a) Spectrum of different behaviors found in [10], where nonoscillatory con-
vergence (Value 0), harmonic oscillation (Value 1), harmonic combined with
zigzagging (Value 2), and zigzagging (Value 3) have been represented by
integers from O to 3, respectively. (b) Maximum frequency of oscillation of
particles with different coefficient values.
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Fig. 8. Different behavior of particles before convergence in SPSO2011. The
spectrum shows the maximum frequency of position of a particle in a 1-D
space. The results for the 10-D space was similar.

Fig. 8 shows that for ® = 1 and ¢ from O to almost 3,
the oscillation of particles is harmonic while this behavior
is transformed to zigzagging for larger ¢. Furthermore, for
o < 0, the behavior is zigzagging (the reason is the same
as what was explained for IPSO). Also, for small values of
o (0 to 0.5) and small values of ¢ (0 to 1.5) the particles

Fig. 9. Light-gray area represents a search space S and the dark-gray circle
represents ry, (¢1)- Also, an example of the set Vi, (¢>) has been shown in
the figure. np, p, (41, q2) is a random point that is inside the dark-gray areas
with nonzero probability.

are nonoscillatory. The behavior is also nonoscillatory if ¢ is
negative for any w.

These observations are useful for practitioners to pick appro-
priate values for coefficients according to the specifications of
the search space.

IV. LocAL CONVERGENCE

If the point X in (9) is a local optimum and a stochastic
algorithm guarantees the satisfaction of (9) then that algorithm
is said to be locally convergent. In the context of PSO, the local
convergence condition is written as follows [33]:

Ve > 0 Vi, lim P(||p - X|| <€) = L. (10)
1—>00
If the personal bests of all particles in a PSO variant con-
verge to a local optimum’ then that PSO variant is locally
convergent. Alternatively, as the final output of a PSO vari-
ant is the best personal best over the swarm, a PSO variant is
locally convergent if [33]

Ve > 0, lim P(|g —X| <€) =1 (11)

where g; is the best found solution over the swarm.

Local convergence is an important characteristic of an opti-
mization algorithm. If an optimization algorithm is not locally
convergent, the final solution of the algorithm might be a
point that can be improved further, i.e., the gradient at the
final point is nonzero, while the algorithm has stopped search-
ing. There might be different approaches to solve this issue.
At the meta-algorithmic level, one can hybridize the algo-
rithm with another algorithm that is locally convergent and
ensure that the locally convergent algorithm is applied at
appropriate time (see [34] for example). Another approach
at the meta-algorithmic level is to restart some (or all) of
the particles whenever they stagnate and initialize them ran-
domly (see [35], [36] for example). The issue can also be
addressed at the algorithmic level, i.e., guarantee that the gen-
erated solutions by the algorithm converge to a local optimum
(see [12], [33], [37] for examples).

In this section, some earlier analyses on the local conver-
gence property of IPSO at the algorithmic level are described

and the local convergence for SPSO2011 is investigated.

7¢; is a local minimum of an objective function F over the search space S
if there exists an open interval /; € S such that F(c;) < F(x) for all x € [;
and ¢; € I;.
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A. Local Convergence for IPSO

Local convergence for IPSO has been investigated
in [12], [33], and [37]. A PSO variant is locally conver-
gent if it guarantees ﬁndlng a local optlmum in the search
space. In IPSO, if p P = g = Xi, then X! is moved in the
next step only if wV’ is nonzero. However, if V’ becomes
zero then V 1 =0 and consequently, no movement takes
place in the next step [12]. Also, because V = 0 and
pl=g =x= fc; 41 particles do not move even durlng further
steps, i.e., the particle is in its equilibrium. Note that there is
no guarantee that the equilibrium point is a high quality point
(e.g., a local optimum); hence, there is no guarantee that IPSO
is locally convergent.

It was proposed [12] to mutate the position of the global
best particle (the particle whose personal best is g;) to a ran-
dom point (with some distribution) “around” the current global
best vector to guarantee local convergence. Hence, by using
this strategy, the global best particle continues movement ran-
domly around g, even if all particles stop moving. It was
proven that the algorithm is locally convergent. The general
idea behind the proof was that if there is any better solution
around the global best vector then that solution is found by
the perturbation with nonzero probability. Thus, the algorithm
will converge to a local optimum eventually.

The local convergence for IPSO was investigated in [37]
where the authors proved that IPSO is locally convergent in a
1-D space if n > 1 and coefficients are set in the convergence
boundaries. However, this conclusion is not generalizable to a
multidimensional spaces. To address this issue, it was proposed
to regenerate the velocity vector if ||\7; I+ llg: —7c§|| is smaller
than a constant §. It was proven that this approach guarantees
local convergence.

A PSO variant called Locally convergent Rotationally
invariant Particle Swarm Optimization (LcRiPSO) was pro-
posed in [33]. The velocity update rule for LcRiPSO was
written as

t+l = wvl + Z t¢/( /t pt - 55;) (12)

JEE!

where ”,l:z is a uniform random scalar in the interval [0, 1] and
]3’[ is a function and f : R — R?, E; is the set of all neighbors
of the particle i that contribute into its velocity update rule. It
was proven that LcRiPSO is locally convergent if the function
f satisfies the following condition:

vy eS3A, CSVzeA, V6> 0,P(lfO) -2l <8) >0

where y is an arbitrary point in the search space S, A is an
open set that contains y, Z is an arbitrary point in A, and § is a
positive value. In other words, LcRiPSO is locally convergent
if the function f is designed in such a way that for any input
vector y in the search space, there exists an open region A
which contains y and f(¥) can be located anywhere in A. To
the best of our knowledge, this variant is the only PSO variant
that guarantees both local convergence and rotation invariance
at the same time.

B. Local Convergence for SPSO2011
SPSO2011 in its or1gma1 form is not locally convergent.
Assume that pi = l’ = X, in SPSO2011. The value of Gt
in (6) is then calculated by
Gi — ﬁ““f’l(f’i_}i)"‘}i — 5
r 2 - 't

13)

Thus 1n this case, ||G’ — xt|| is zero, which implies that
H(G ||G’ — X = G’ = X; for all 7. Hence, the value of
velocity for ¢ + 1 is V’ = a)V’ This is exactly the same
as the case we discussed in Sectlon IV-A for TIPSO (.e., if
\7; = (0, the particle does not move in further iterations). Using
the same analysis as in Section IV-A, SPSO2011 is not locally
convergent in general.

There is also another condition for which SPSO2011 is not
locally convergent that can be found in [8].

C. Locally Convergent SPS0O2011

A simple modification of SPSO2011 to guarantee local con-
vergence is to bound ||é§ — };H to a small nonzero value
8 > 0 [8]. Before we prove that this strategy actually fixes
the local convergence issue, we introduce some definitions,
notations, and lemmas.

We define three notations, r1,(g), ¥n(q), and np, n, (41, q2)
as follows.

Notation 1: r;(q) is the set of all points in a hyper-ball with
the center ¢ and radius & > 0.

Notation 2: yr,(g) is a connected set such that yy,(g) C S,

q € ¥u(@), ¥n(q) — {g} is nonempty, and
VZeyn(@),lIZ—qll <h

i.e., any point in v;,(q) is closer (Euclidean distance) than or
as far as h to gq.

Notation 3: np, p,(q1,q2) is a random point generated by a
probability distribution in rp, (g1) U ¥4,(¢2) and

Y41, q» € S 3hi, hy > 0 ¥z € 1, (§1) U Y, (¢2) Ve > 0,
P(np ny @1, G2) € re(2)) > 0

where P is the probability measure.

According to Notation 1 any point in r4(g) can be written
as ¢ + a where ||a| < h.

According to Notation 2 any point in ¥(g) can be written
as g + a where ||a|| < h.

According to Notation 3 any point generated by
nn, 1, (q1, g2) has nonzero probability to be in 4, (¢1) and also
nonzero probability to be in ¥y, (g2).

Fig. 9 shows examples of the areas
Notations 1, 2, and 3.

We define a local minimizer and an optimality region of the
objective function F over the search space S as follows.

Definition 1: c; is a local minimizer of an objective function
F over the search space S if there exists an open set [; C S
such that F(c¢;) < F(x) for all x € I; and ¢; € ;.

Definition 2: The optimality region of the objective func-
tion F is defined as Re = | J; Re,; where Re ; = {x € [; : F(x) <
F(c;) + €} and € is an arbitrarily small positive value.

defined in
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The aim of a local search algorithm is to find a
point in the search space that is within the optimality
region [12], [22], [33].

We define a general form of stochastic algorithms (General
Stochastic Algorithm, GSA) as follows.

Definition 3: GSA has following three steps.

1) Initialize py from the search space S and set ¢t = 1.

2) Generate a random sample X; from S.

3) Generate the candidate solution p; = D(p;—1, X;), set

t =1+ 1, and go to 2 where D(a, b) is defined by

b F(b) < F(a) — ¢
D(a,b) = {a otherwise
and € is a positive value that is smaller than or equal
to € (e in the definition of R ;).

The operator D updates p; if and only if the new solution
X, is better than p;_1 by at least the constant €y. The constant
€o specifies the precision of the calculations and can be con-
sidered arbitrarily small. This value needs to be considered in
the calculations as numerical methods are simulated on phys-
ically limited computers, hence, the lack of this consideration
can affect the generality of the proofs and statements. One can
set €p to the smallest possible float/double value [20], [33] in
computer simulations to achieve maximum precision.

Lemma 1: If a GSA guarantees

Je>0TI>035€(0,1]Vt>03 >0,

P(F(pryr) < F(p) —n) = 8 or py€ R (14)
then that GSA is locally convergent.

Proof: This has been proven as Lemma 1 in [33]. [ |

In fact, if the probability that F(p,.,) is smaller than F(p;)
by at least n is larger than § unless p, is already in the
optimality region then GSA is locally convergent.

Lemma 2: If a GSA guarantees

V> 03z, >0Vuery@) Yeg > 0,
P(| X4z — ull < €0) > 0

then the condition in Lemma 1 is satisfied, i.e., if there exists
an iteration z that X,, has nonzero probability to be arbitrarily
close to any point in ry(p;) then the condition in Lemma 1 is
satisfied.

Proof: There are two cases: 1) there exists a set A C ry (p;)
such that all points in A are better than p; by at least €y or,
2) there is no point inside ry (p;) that is better than p, by
at least €. In the first case, because X,4, can be arbitrarily
close to any point in 7y (p;) with nonzero probability, and A C
i (Py), the point X,, has nonzero probability to be inside
A, that satisfies the condition in Lemma 1 with setting €9 =
n. In the second case, p; is already in the optimality region
that also satisfies the condition in Lemma 1. Thus, in both
cases the condition in Lemma 1 is satisfied, that completes the

proof. |
Lemma 3: Any recursion in the form of Xy = w (X —
Xi—1) + R ny (Pr. Xi), where p; = D(p;—1,X), is locally

convergent for any w € (0, 1), Xo € S, and py € S.

Proof: The recursion X;41 = (X — Xi—1) + Ny .y Py X0)s
where p, = D(p,_1,X;), is an instance of GSA. Thus, if we
prove that

Je>03n>038e(0,1]Ve>03 >0,
P(F(piyr) < F(pr) —1n) = 8 or p; € Re

then, according to Lemma 1, this recursion is locally
convergent.

For any z > 0, two cases might take place until iteration
t+z>0.

1) Case 1: F(pi1;) < F(Py).
2) Case 2: F(pryy) = F(py).

In Case 1, because the operator D updates p; if the new
found solution is better than p, by at least €y, condition in
Lemma 1 is satisfied for § = 1 if we set ¢y = n because p,
has been already updated. We continue with Case 2. Note that,
from here on we always write p; as p,i, = p; for all z. For
Case 2, we prove that for all ¢+ > 0, there exists z > 0 and
K > 0 such that for any point u in 7y (p;), P(||Xe; — ul| <
€p) > 0, that, according to Lemma 2, satisfies the condition in
Lemma 1 and completes the proof for the local convergence.

One can write Xi4+2 = @ (X+1—%;)+7h, 1, (Pr, Xe+1) that indi-
cates ;Cz+2 = w(a)(}t_}t—l)"i'”hl,hz (Z’z» Xr) —}z)”hl,hz (Z’z» )_5[+1).
According to Notation 3, np, p,(Ps, X;) can sample a point
in Y, (x;) with nonzero probability, thus can be written as
X; + a where a is a random vector and |a|| < hy. Hence,
with nonzero probability, ;12 = @ (@ X — X—1) + X +dj —
X0) + gy (Prs X 1) = @Ry — Xi—1) + @1 + iy o (Prs Xe1)
where aj is a random vector and ||a}|| < h». Also, one can
write X143 = @2 — Xe1) + My Pr, ¥i42) = 0 (@R —
Xi—1) +@d1 4ty jy (Brs Xi41) = Xi41) + My by (Br, X142). Again,
according to Notation 3, X3 = @’ (¥ —Xi_1) + w?d| + wa> +
N, 1y (Drs Xr42) With nonzero probability, where a is a random
vector and ||az|| < hy. If we continue the same strategy, we
can write X1, as

z—1
Rrye = G — %) + Y @ a4 my iy (Br K1) (15)
j=1
where d; are random vectors and ||a;|| < hy for all j.
If we prove that

Yhy > 03z, ho, B > 0, riy(Pr) S Yooy

where Y, 5, n, is the set of all possible points that can be
sampled by w*(X; — X;—1) + ij;ll wz_jd}- + npy oy Pty Xegz—1),
then X,r, can be arbitrarily close to any point in ry (p;)
with nonzero probability, that satisfies the condition in
Lemma 2. Clearly, the maximum length of ij;ll W a; is
(@ — %) /(1 —w)hy. Let us assume /' = hy — [0*(|X; —
Xr—1D+(w — @) /(1 — w)h;]. Thus, we need to guarantee that

Vhy > 03z hy > 0, hy — [aﬂ@ — o)+ “;_w

v4

hz] > 0.
— @

If we set hy < ((1 — w)(h] — &*(||X; — X1 11)))/ (@ — @) then
hy — 0% — X—1) + (@ — ©%) /(1 — w)hy] > 0 is guaranteed
for large enough z. The reason is that for any /; the term
(1 = @) (h1 — &* (1% = X—11D)) /(@ — @) is positive if z is
large enough. In fact, a large value for z diminishes the
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Fig. 10. Dark-gray area represents ny, j, (Pf , X7 ), see Lemma 4.

effect of o?||X; — X;—1]| and, as @ — &% hy, and 1 — w
are larger than 0, ((1 — w)(hy — &*(||X; — X—111))) /(@ — &°) is
also larger than 0. Hence, for any /1, there exists z and /i, such
that #/ > 0 with nonzero probability. Therefore, X;., can be
arbitrarily close to any point inside a hyper-ball with the cen-
ter p; and radius /' > O with nonzero probability. According
to Lemma 2, in this case, the condition in Lemma 1 is guar-
anteed, which guarantees local convergence of the algorithm
and completes the proof. |

This lemma can be useful to prove local convergence of
any PSO variant that follows the mentioned recursion form. In
order to prove local convergence of the modified SPSO2011,
we first need to find whether the modified SPSO2011 follows
the recursion form in Lemma 3.

Lemma 4: In SPSO2011, if

38 >0V>1V>0, |G —X|>6

where ¢ = ¢; = ¢, then
Vpi. X €S 3hy, hy > 0¥z € ry, (B7) U i, (X7)
Ve > O,P(H(af, GF — X ) € rg(z)) > 0.

In other words, for any [‘51’ ancl )?f ig the search space, there
exist A1, hp > 0 such that H(G}, ||G] — X7||) can be arbi-
trarily close to any point in ry, (pf) U ¥, (XF) with nonzero
probability, where t is the index of the best particle in the
swarm. L

Proof: H(GT, ||GF — XT||) can be arbitrarily close to any
point on the line segment that connects G and xj. As
|GF — X7 || > 8, thus this line segment always exists, and we
can consider 0 < hp < (i Hence, this line segment can be con-
sidered as the set V4, (G7) in Notation 1 and A, > 0 always
exists® (see Fig. 10). If we prove that ||a,’ —pill < ||étf = X7l
with nonzero probability then there exists a h; > 0 such that
H(GT, |IGF — X7||) can generate a point that can be arbitrar-
ily close to any point in rp, (pf) as_well (see Fig. 10), which
completes the proof. We calculate G = X7 + (¢/2)(p; — X[)
[note that for the particle , pf = I} = g, where g, is the best
solution found over the swarm, see (6)]. Thus, |G] — pf| =
17 + (@/2GF — ) — BEll = 1(é/2) — DE — T This
value is obviously smaller than |G =37 || = ||IXF + (¢/2)(p] —
X)) = XF| = (¢/2)(PF — xF)|| for any ¢ > 1. Hence, there

8 Another alternative for this set is the intersection between Thy (XF) and
H(G}, |GF — X7 ), where hy < 8.

¥

Fig. 11. RST of a search space.

exists hy, hy > 0 such that H(é,’, ||é,’ — X7||) can be arbi-
trarily close to any point in rhl(ﬁf) U ¥, (?cf) with nonzero
probability. L . |

This shows that H(GT, |GF — XT||) with ||G] — X || > § is
an instance of ny, j, (Pr, X;) as it is a probability distribution
with the condition in Notation 3.

Now we are ready to prove the following theorem.

Theorem 1: If |G] —X[|| >8> 0,0<w <1, and ¢ > 1
are guaranteed then SPSO2011 is locally convergent, where
T is the index of the particle whose personal best is the best
solution found by the swarm at iteration ¢.

Proof: The position update rule for the best particle in the
swarm in SPSO2011 is written as: X1 = o — 1) +
H(GY, |GF — % )). According to Lemma 4, if |G — %[ >
8§ > 0and ¢ > 1 then H(G}, ||G] — X7|) is an instance of
np, oy (F, XF). Thus, the best particle in SPSO2011 follows
the recursion introduced in Lemma 3. Also, the best particle
in SPSO2011 is updated if the new found solution is better
than the previous best found solution by at least an €. Thus,
SPS0O2011 is locally convergent if |GF —Xf|| > 8§ > 0,0 <
w<1,and ¢ > 1. [ |

This shows that the proposed modification guarantees local
convergence of the algorithm under specified conditions.

V. SENSITIVITY TO TRANSFORMATIONS

Sensitivity to transformations, especially to RST, has been
investigated for optimization algorithms [13], [33]. It is
expected that the performance of an optimization algorithm
does not change if the search space is rotated, scaled, or trans-
lated. The special form of transformation that only includes
RST transformation in this paper (see Fig. 11).

Definition 4: Let §' = {y : sOxX + b, X € S} where s € R,
0 € R? x R is a rotation matrix, and b € R?. Assume that %;
is an arbitrary point in 8’ and X; € S and X, = sQX; + b. An
optimization algorithm is RST invariant if

Vi>0VseRYQeR xR Vb e R?

41 = Q%1 + b (16)

where X1 is the generated point by the algorithm at the
iteration ¢ + 1 in S while X;4| is the generated point by the
algorithm in S.
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This definition means that the algorithm should preserve the
relation between the points in the search space and the trans-
formed space for any RST transformation. Also, based on this
definition, a PSO algorithm is RST invariant if updating the
position of particle 7 and then rotating, scaling, and translating
the search space (sQX, 1| + b) is the same as rotating, scaling,
and translating the search space and then updating the position
(Xe+1) [13], [33], [38].

It is important that an algorithm is transformation invari-
ant. In fact, if an algorithm is invariant of a transformation
T then the performance of the algorithm on any problem
P can be generalized to the complete class of problems C
that are introduced by T and P € C. This in fact enables
researchers to make stronger statements about the perfor-
mance of the algorithm. Although such statement might be
about a bad or a good performance of the algorithm, it is
valuable as one can study the reasons behind the perfor-
mance and also generalize the claims. One well-known set
of transformations is linear transformations (e.g., RST) that
are frequently used in different areas. Hence, it is valuable
to understand if an algorithm is invariant under any linear
transformation.

In terms of real-world optimization, the variables (dimen-
sions) of a problem usually represent physical concepts
(e.g., temperature) that are related to each other through
a function. If such function is nonseparable in its origi-
nal form while becoming separable under a rotation «, then
an algorithm that is sensitive to rotation might struggle to
find an optimum solution of the original function even if
it can find the optimum solution of the rotated function.
However, as the rotation « is not known by the algorithm,
another procedure is needed to find a rotation that enables
the algorithm to find an optimum of the function success-
fully. This procedure might be very time consuming, especially
for large-scale problems (note that the rotation should be
performed along all possible axes). If the algorithm is rota-
tion invariant, however, there is no need for such procedure
that speeds up the optimization process. Of course mak-
ing an algorithm rotationally invariant should not affect its
performance.

A. Transformation Sensitivity for IPSO

It has been proven [13], [33], [39] that IPSO is scaling
and translation invariant while it is rotation variant. It was
proven [13] that the linear PSO (a PSO variant for which all
values on the diagonal of Rj; and Ry; are equal) is RST invari-
ant (this variant is called LPSO). However, LPSO suffers
from another limitation investigated in [40] and [33].
If @ — %)@ — ¥) and V/||p} — *), particle i
oscillates between its personal best and the global
best and it cannot sample other points in the search
space.

A PSO variant was proposed in [13] that was proven to
be rotationally invariant. In that variant, the random diag-
onal matrices were replaced by random rotation matrices
to rotate the velocity vector. As generating random rotation
matrices is computationally expensive, an approximation idea

(an exponential map) was used that generated a rotation matrix

M as
ET)>i

where E is a d x d matrix with elements generated randomly
in the interval [-0.5, 0.5], « is a real value representing the
angle, and / is the identity matrix. The generated matrix M is
an approximation of a random rotation matrix with the angle «.
The value of max; determines the accuracy of the estimation of
a rotation matrix with the angle « [see (17)]. The value of max;
was set to 1 in [13] that limits the approximation to one term
only. Thus, the approximation error of the random rotation
matrix method grows with the rotation angle («). The time
complexity for generating the approximated rotation matrix
with max; = 1 is in O(dz). Also, multiplying this matrix into
a vector (SI or PI vectors) is also in O(d?).

It was shown [41] that IPSO performs poorly in comparison
with covariance matrix adaptation evolutionary strategy [42]
and differential evolution [43] when it is applied to non-
separable optimization problems. As rotating a search space
usually makes the problem nonseparable [44], IPSO performs
also poorly when the search space is rotated (it is rotation
variant). This comparison was also conducted in [45] where
it was found that IPSO performs poorly when the problem is
nonseparable. A given explanation for this weak performance
in comparison to other methods is that potential correlation
between the variables is ignored in IPSO as all calculations
in the algorithm are done for each dimension separately [45],
which makes the algorithm rotationally variant.

The impact of rotation matrices on the performance of
several PSO variants was studied by [46], where random
Euclidean rotation matrices were used rather than the ran-
dom diagonal matrices in several PSO variants (this variant is
called RotPSO). A dynamic programming technique was used
to generate Euclidean rotation matrices in low computational
time, i.e., O(d%). A normal distribution was used to generate
the directions of rotations with the mean of current direction
of velocity and the variance that was set experimentally for
different variants. This makes the particles mutate their direc-
tion of movement to find better solutions. Experiments showed
that random rotation matrices can improve the performance of
several PSO variants in most cases on the tested benchmarks.

The rotation variance issue was also investigated by [33]
from theoretical perspective [see (12)]. It was proven [33] that
if sOf (y) + b= f(sOy + b) is true for all scalar s, orthogonal
matrices Q (Q € RY x R¥), and vectors b and ¥ y (b y € RY),
then the PSO variant that uses velocity update rule in (12) is
RST invariant.

max;

_I+§:ﬂ(mo

i=1

a7)

B. Transformation Sensitivity for SPSO2011

In this section, we investigate RST invariance of SPSO2011.

Theorem 2: SPSO2011 is invariant under any scaling s € R,
rotation Q, and translation b of the search space.

Proof: The posmon update rule for SPSO2011 for a par-
ticle i is written as xH_l = a)(x, —xt D +H(G’, ||G’ —xt||)
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Fig. 12.  Application of five PSO variants to an Ellipse function.

This can be rewritten as
)

(@1 (P! — X)) + ¢1(8 — ¥))/3. Let us calcu-

)

= 0(sQF — 5OF|_,) + 50 + b+ T} + H(0,

M=o -3 )+ T +3+H(, |

(18)

where T, =

ot}
late X1

R =@ )+ i1+ H(o, fi

i
Tz

)

19)
where f‘t’ is calculated by

o1(p) — X1) + ¢1 (8 — )
3
P1(Ph — %) + ¢1(3 — X0)
3

T =
=sQ = sQTt".

Hence, (19) is rewritten as

)AC§+1 = a)(sch;' — sQ?c;'_l)

+ sQF + b+ sOT! + H(0, ||sQT!]). (20)

Also, we calculate sQ?ci 41 +b as

sQ?ciH +bh= sQw(?ci — fc:;l)
+ sO¥ + sQT! + sQH (0,

By comparing (20) and (21), it is clear that the algorithm
is RST invariant if

sQH(0. |7i]) = H(0,

Ti]) + 5. 21)

SOT}|).

Rotating the space (matrix Q) preserves the Euclidean dis-
tances. Also, scaling the space and then generating a point
by H(.,.) is the same as generating a point and then scaling
the space. Hence, (22) is true for a spherical distribution, that
completes the proof. |

In order to see the impact of transformation on different
algorithms, we applied SPSO2011, IPSO, RotPSO, LcRiPSO,
and GCPSO to a 2-D Ellipse function proposed in [47]. The
function is rotated in the space from 0 degree to 180 degree
and different PSO variants are applied to the rotated Ellipse
to find an optimum point in the search space (see Fig. 12).

According to Fig. 12 the performances of SPSO2011,
LcRiPSO, and RotPSO are not significantly (we used the
Wilcoxon rank test to compare the results of the algorithm
for each rotation angle with the next) changed by rotating the

(22)

search space with different angles. Slight changes in the per-
formance of these methods are because of the involvement
of random components in their calculations. It is clear, how-
ever, that the performance of IPSO and GCPSO is changed by
rotating the search space.

VI. CONCLUSION

Stability of particles, local convergence, and rotation sensi-
tivity are important characteristics of optimization algorithms
including PSO. In this paper, we investigated these properties
for a variant of PSO called SPSO2011. We analyzed the stabil-
ity of particles through an estimation method (called EVCB)
that uses an exhaustive search with defined step size to find
convergence boundaries. EVCB was used to estimate the con-
vergence boundaries for a particular PSO variant (called IPSO)
for which the convergence boundaries are known. It was
observed that the estimated boundary is in good agreement
with what was found theoretically. EVCB was also used to
estimate the convergence boundaries for SPSO2011. Results
showed that the convergence boundaries for SPSO2011 are
different from that of IPSO. It was observed that the conver-
gence boundaries for SPSO2011 is affected by the number
of dimensions. Further experiments showed, however, that
the convergence boundaries for SPSO2011 for d-dimensional
problems with d > 10 remain almost the same. This enables
practitioners to conduct parameter settings for a large enough
number of dimensions (e.g., d = 10) to make sure their
results are scalable. Also, our experiments showed that the
convergence boundaries under the stagnation assumption are
similar to that of without the stagnation assumption. The
behavior of particles before convergence was also analyzed
through Fourier analysis of the movement of particles ver-
sus iteration numbers. This analysis also showed differences
between the behavior of particles in IPSO with those in
SPSO2011 with same values of coefficients. These results
assist practitioners to select appropriate set of coefficients
according to the specifications of the problem at hand. In
addition, it was proven that SPSO2011 does not guarantee
to locate a local optimum in the search space. We proved
that any algorithm (PSO variant) that follows the form of
X1 = 0 & — X—1) + 1y, (Pr, %), where p; = D(py—1, %), is
locally convergent for all w € (0, 1), Xo, po € S (see Lemma 3
and Notation 3). This lemma is applicable to study the local
convergence property of a large class of PSO variants. We
modified SPSO2011 in a way that this condition is satisfied
so that the modified SPSO2011 is locally convergent. Finally,
we provided a proof for the transformation invariance prop-
erty of SPSO2011. Indeed, it was proven that SPSO2011 is
RST invariant. As potential future work, one can consider a
theoretical analysis of the stability of particles in SPSO2011,
keeping in mind the traditional analyses are not readily appli-
cable to this algorithm. Also, formulating the regions where
particles’ behave differently might be of high value. Another
important area for further research is to investigate the ear-
liest first hitting time of the algorithm [48]. As the local
convergence is a prerequisite for the first hitting time anal-
ysis, it would be interesting to conduct such analysis for
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the modified SPSO2011. In addition, investigations of trans-
formation sensitivity and convergence of other PSO variants
using the methodologies proposed in this paper represent other
potential future directions.
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