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Ahura: A heuristic-based racer for the open
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Abstract—Designing automatic drivers for car racing is
an active field of research in the area of robotics and
artificial intelligence. A controller called Ahura (A HeUristic-
based RAcer) for The Open Racing Car Simulator (TORCS)
is proposed in this paper. Ahura includes five modules,
namely steer controller, speed controller, opponent manager,
dynamic adjuster, and stuck handler. These modules have 23
parameters all together that are tuned using an evolutionary
strategy for a particular car to ensure fast and safe drive on
different tracks. These tuned parameters are further modified
by the dynamic adjuster module during the run according
to the width, friction, and dangerous zones of the track.
The dynamic adjustment enables Ahura to decide on-the-
fly based on the current situation, hence, it eliminates the
need for prior knowledge about the characteristics of the
track. The driving performance of Ahura is compared with
other state-of-the-art controllers on 40 tracks when they drive
identical cars. Our experiments indicate that Ahura performs
significantly better than other controllers in terms of damage
and completion time especially on complex tracks (road
tracks). Also, experiments show that the overtaking strategy
of Ahura is safer and more effective comparing to other
controllers.

I. INTRODUCTION

DESIGNING a controller to drive a car is one of the
most active research areas in the field of robotics

and artificial intelligence. Many well-known companies
such as Audi and Google have been investing in this
topic and have gained some successes [1]. One of the
main issues in this field of research is related to the
difficulty of accessing facilities such as sensors, actuators,
and the vehicle itself mainly due to the expenses. Hence,
a realistic simulator is a good candidate to replace these
resources and enable scientists to conduct research in this
area. One of the most well-known car racing simulators
is The Open Racing Car Simulator (TORCS) [2]. TORCS
provides many different cars (bots) that can be driven
through a controller. Each bot provides all information
about the environment (e.g., the whole track and exact
position of other cars) for the controller and the con-
troller decides on the actuators (e.g., acceleration, brake,
and clutch) accordingly. A more realistic extension of
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TORCS has been designed [3]1 that includes ten more
bots, each of these bots have been equipped by some
limited sensors to provide information about the car’s
environment at a fixed time rate (22ms in version 1.3.4
of TORCS). The bot “listens” for actions such as acceler-
ation, clutch, braking, gear, and steer from the controller.
The provided actions by the controller are applied to the
vehicle and cause the vehicle to act on the track.

In this paper, a new controller called Ahura (A
heuristic-based racer2) is proposed for TORCS. There are
five modules in Ahura: steer controller, speed controller,
opponent manager, dynamic adjuster, and stuck handler.
Each of these modules contain some parameters that
need to be determined. The parameters for the steer
and speed controllers are adjusted for a particular vehi-
cle using the covariance matrix adaptation evolutionary
strategy (CMA-ES) [5] in a way that the controller drives
fast on the track while avoids actions that apply damage
to the car. After setting these parameters, the parameters
for the opponent manager are set for that vehicle using
another CMA-ES. This time, Ahura races against another
controller (called Blocker) that has been designed to
block the vehicle behind. The objective is to overtake
Blocker with the smallest amount of damage in a limited
time. Ahura also uses a dynamic parameter adjustment
module that modifies the parameters of the controller
during the race to perform according to mechanical
specifications of the track.

There are four main features that make Ahura more
successful comparing to the existing controllers (e.g., [6],
[7], [8]):

1) Ahura evaluates the direction of the turn in front
and prepares the vehicle’s position (tentative po-
sition) at the track so that the centrifugal force is
minimized while turning. This in fact increases the
maximum safe speed (the speed that the vehicle can
move with while it still does not leave the track) for
taking the turn,

2) Ahura evaluates the angle of the turn in front and
adjusts its acceleration policies to avoid unnecessary
brakes and dangerous acceleration. This enables the
controller to make a better decision on the safe

1From here on, whenever we refer to TORCS, we refer to this
extension of the software rather than its original version. We used the
version 1.3.4 of this extension of TORCS [4].

2Ahura-Mazda is the name of a higher divine spirit of an old religion
called Zoroastrianism. We picked the name Ahura because of the
relation to the well-known vehicles brand ”Mazda”.
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speed to take a turn,
3) Ahura examines mechanical specifications (e.g., fric-

tion, boundaries, bumps) of the track during the
run to adjust its driving decisions. This enables the
controller to drive on a wide range of tracks,

4) Ahura evaluates all nearby opponents and generates
a spatial map of the opponents so that it can find
appropriate slots to perform overtaking by changing
its tentative position on the track. This enables the
controller to avoid being blocked by the opponents
and overtake effectively,

The rest of this paper has been organized as follows.
In section II we provide background information about
TORCS and existing controllers. section III explains the
proposed controller and its modules. Section IV com-
pares Ahura with other controllers through some exper-
iments, and section V concludes the paper.

II. BACKGROUND

In this section a brief background on The Open Rac-
ing Car Simulator (TORCS) and existing controllers are
given.

A. TORCS

TORCS is a well-known car racing simulator. There are
ten special bots in TORCS [3], [4] that are controllable
through network ports by a client (controller). There
are some (virtual) sensors connected to these bots that
observe the environment and send the information to
the controller (see [3] for the full list and description of
the sensors). There are 19 proximity sensors (the value
of the ith sensor is shown by disti) in front of the
bot with predefined angles that provide the distance
between the vehicle and the edges of the track towards
their angle. The range of these sensors (shown by maxD
in this paper) is 200 meters in the current version of
TORCS. The angle of the proximity sensor i is shown
by anglei and it is a value in [−90, 90] degrees. These
angles can be set at the beginning of the simulation.
The index of the proximity sensor in front of the vehicle
is 0 (called the zero sensor) and the index of the other
sensors is set from −9 to 9. In the rest of this paper we
assume anglex = angle−x. There are 36 opponent sensors
(the value of the ith sensor is shown by oppi) that are
only sensitive to opponents. These sensors are all evenly
distributed around the bot with every 10 degrees (the
index of the sensor in front is 18) and their range is
200 meters. There is a track position sensor (the value
is shown by trackPos) that provides a real value in the
interval [−∞,∞] (∞ refers to the maximum value of the
type double in computer), where −1 represents the right
side and 1 represents the left side of the track and other
values translate to out of the track. There are 4 wheel
spin sensors (one for each wheel) that calculate the speed
of the wheels spin. The value for the wheel i is shown by

vi
3 and it is in m/s. There is a rpm sensor that provides

the rotation per minutes of the engine and provides a
real number in [0, 10000]. The current gear is an integer
in {−1, 0, ..., 6} (−1 is the rear gear and 0 is the neutral)
that is also provided. There are 3 sensors for the current
speed of the vehicle along its front (the value is shown
by xSpeed), sides (the value is shown by ySpeed), and
above (the value is shown by zSpeed). Finally, there is a
sensor that calculates the current damage of the vehicle
that is a real number in [0, 10000].

A controller should provide appropriate values for
the following actuators: acceleration pedal (shown by
accelPedal in this paper), braking pedal (shown by
brakePedal in this paper), and clutch pedal (shown by
clutchV alue in this paper) that are real values in [0, 1],
gear (shown by gearV alue in this paper) that is an
integer in {−1, 0, ..., 6}, and steer (shown by steerV alue
in this paper) that is a real value in [−1, 1], corresponding
to full right and full left. The decision by the controller
should be made within the simulation time interval (set
to 22ms in the version 1.3.4 of TORCS). Hence, if the
designed controller is slow then it might act by some
delays which may cause inappropriate movements.

B. Existing drivers for TORCS

There have been some drivers based on evolutionary
strategies, e.g., [8] and [7], for TORCS.

Cobostar [8] is a driver that maps sensory information
to actual motor behavior. It maps this information by
a function that converts sensory information to desired
steering angle and speed. The parameters of this func-
tion are optimized by the covariance matrix adaptation
evolutionary strategy (CMA-ES). Cobostar incorporates
some other heuristically designed features such as Anti-
lock Braking System (ABS) and Anti-Slip Regulation
(ASR), gear shifting, and recovery when stuck. Cobostar
won the simulated car racing competition at the Genetic
and Evolutionary Computation Conference, GECCO,
2008 (see http://cig.dei.polimi.it/ for the results of sim-
ulated car racing competitions since 2008 at various
conferences).

MrRacer [7] uses an expert system approach for driv-
ing. The basic design concept behind this driver is
to use curvature estimation of a corner for setting a
target speed, and to use two modifiers that reduce the
effect of acceleration and brake in dependence of the
current steering angle. CMA-ES was used to optimize
the parameters of these functions. Additionally, MrRacer
builds a track model during the warm up phase and
uses this information during the race. The later versions
of MrRacer follow a rather offensive opponent handling
strategy that tries to overtake the opponents in front and
blocks the opponents behind. Furthermore, an online

3The radius of the wheels is available in the car dynamics files of the
simulator and, for the mentioned special cars in TORCS, it is 0.3179
meters for the front wheels and 0.3276 meters for the rear wheels.

http://cig.dei.polimi.it/
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adaptation is used by MrRacer to further adjust the pa-
rameters (previously tuned in off-line mode) during the
warm up phase. MrRacer won the simulated car racing
competition at the IEEE Computational intelligence and
games (CIG) conference, 2011.

Similar to MrRacer, EVOR [9] is a driver that makes
use of a track model built during the warm up phase.
However, in contrast to the off-line parameter optimiza-
tion strategy (e.g., in Cobostar and MrRacer), EVOR uses
a dynamic optimization strategy to decide the actuator
values. A dynamic optimization process optimizes the
actuator outputs based on the static track model and
the dynamic sensory information received during the
race. The fitness function is based on how well the car
trajectory resultant from the current status information
suits the track model. The opponent handing is also
considered implicitly within this strategy that if oppo-
nents intersect with the estimated trajectory they are
considered as obstacles and the speed is adjusted to
avoid any collision.

Autopia [6] is also an expert system quite similar to
MrRacer and Cobostar. The significant difference be-
tween this driver and the others mentioned before is
that it uses fuzzy inferencing to determine the target
speed [10]. The parameters related to the driving func-
tions are tuned using CMA-ES. Furthermore, Autopia
performs online parameter adaptation during the warm
up phase where the target speed is adapted based on
the damage. For example if the car is off the track at a
position then the target speed at this position is reduced.
Autopia has rather a defensive opponent handling strat-
egy that is designed heuristically. Autopia has won the
simulated car racing competition at various conferences,
including CIG and GECCO 2010.

These four controllers are considered for the experi-
ments in this study because they have shown good per-
formance in the literature [8], [7], [6], [9] and they have
been successful in several car racing competitions (see
http://cig.dei.polimi.it/ for the results of simulated car
racing competitions since 2008 at various conferences).
There are also other controllers for TORCS based on
expert systems [11], [12], artificial neural networks [13],
[14], fuzzy expert systems [15], [16], and genetic pro-
gramming [17], [18], however, their performances are not
as competitive as those four controllers.

Despite their competitive performance, these drivers
exhibit various drawbacks. For example, Cobostar and
Autopia use the index of the proximity sensor that has
the maximum value for the steer calculation, ignoring
the forces that the car experiences during the turn.
However, these forces enforce the vehicle to move slower
during the turn to avoid leaving the track. Also, none
of these controllers consider mechanical specifications of
the track, such as friction, to adjust their driving style.
However, such mechanical specifications of the track
significantly affect the safe speed as well as acceleration
and braking performances of the vehicle. Although some
of these information (e.g., friction) are not available

by sensors in TORCS, many of them can be estimated
readily (see subsection III-E). Further, the fact that the
proximity sensors have 200 meters of range has not been
used by any of these drivers while such information can
be useful to make better decisions on the speed and
steer of the vehicle. As an example, this range can be
effectively used to evaluate the turn in front and make
better decisions. Finally, none of these controllers imple-
ment effective overtaking strategy, e.g., Autpia tries to
avoid the opponent and Cobostar just simply ignores the
opponents. However, opponent handling is obviously
essential in racing.

III. AHURA: A HEURISTIC-BASED RACER FOR TORCS

In this section we propose a new controller called
Ahura for TORCS. The controller uses five modules:
• Steer controller: this module uses the estimated

angle of the turn in front and the vacant distance in
front to determine the steer angle. The module can
control how smooth or sharp the vehicle is going to
turn.

• Speed controller: this module uses the estimated
turn angle together with the vacant distance in front
to decide the safe speed. In order to accelerate
the vehicle to achieve that speed, the controller
uses ASR/ABS technologies to avoid loosing the
controller of the car.

• Opponent manager: this module creates a map
of opponents around and finds the vacant slot to
overtake. This action may entail modification of the
speed and steer calculated by the speed and steer
controller modules.

• Dynamic adjuster: this module uses the mechanical
specifications of the track (friction, bumps) as well
as recorded difficulties the controller has experi-
enced during the earlier laps and adjusts the current
driving style.

• Stuck manager: this module uses the idea proposed
in [8] to control the vehicle when it is out of the track
or it has stuck somewhere.

These modules are described in detail in the following
subsections.

A. Steer controller

Steer controller determines the value for the steer of
the vehicle without considering opponents. The main
idea behind calculation of the steer angle is to find the
proximity sensor that has the maximum empty space in
front (called the base sensor), i.e., base sensor = {j|distj <
disti, for any proximity sensor i}. The angle of the
base sensor (the value of anglebase sensor) is then used
to set the angle of the steer. However, moving exactly
towards the base sensor might cause some issues (see
subsection III-A2). Thus, the steer angle is calculated
according to the base sensor and some sensors around it,
called auxiliary sensors. Although the steer angle should

http://cig.dei.polimi.it/
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Fig. 1: The angle of the turn in front is estimated based
on dist−1,0,1 sensors.

Algorithm 1 Estimate the turn in front
Input: dist
Output: estimatedTurn (estimated turn in front)

1: if dist1 > dist0 then
2: k = sin(θ)dist1

dist0−cos(θ)dist1
3: else
4: k = sin(θ)dist0

dist−1−cos(θ)dist0
5: end if
6: estimatedTurn = tan−1(k)

be determined when the vehicle arrives to a turn, the
action before arriving to the turn is also important. Thus,
the vehicle is prepared as soon as a turn was detected in
front to take the turn with maximum speed and safety
(see subsection III-A3). The preparation for turn involves
estimation of the angle of the turn in front. Hence, we
describe the algorithm to estimate the angle of a turn in
subsection III-A1.

1) Estimation of the angle of a turn: To estimate the angle
of the turn in front we use three proximity sensors −1,
0, and 1. Let us assume that the angle between these
sensors is θ (angle−1 = angle1 = θ). The angle of the
turn (ϕ in Fig. 1) in front is calculated by tan−1( q2q1 ). The
value of q1 and q2 are calculated by dist−1 − cos(θ)dist0
and sin(θ)dist0. Thus, Algorithm 1 is used to estimate
the turn in front.

Smaller values for θ lead to better estimations for the
value of ϕ. The reason is that the proposed estimation
procedure uses two sample points on the edges of the
track (provided by dist−1 and dist0 or dist1 and dist0) to
estimate the angle of the turn. Thus, closer samples lead
to more accurate calculation of the turn angle. Hence,
we set θ = 1 in our experiments.

2) Taking a turn: The angle of the steer is set ac-
cording to the angle of the base sensor (the value of
anglebase sensor). The trajectory towards the base sensor,
however, might be very close to the edges of the track
that might cause the vehicle to move out of the track.
Also, if the angle between the base sensor and the
direction of movement is very large (a sharp turn) then
setting the steer angle to this large value might cause
losing the control of the vehicle and slipping to the sides
of the track. To avoid these situations, the steer angle is
calculated according to a weighted average of the base
sensor and some other sensors around it (see Fig. 2). We

Fig. 2: The red vector, the yellow vector, green vectors,
and the blue vector represent the zero sensor, the base
sensor, auxiliary sensors, and the final angle to take the
turn, respectively.

call these extra sensors as auxiliary sensors.
Because a weighted average over all auxiliary sensors

and the base sensor is used for calculation of the steer
angle, the smoothness of the changes of the steer angle
is a function of the number of auxiliary sensors. If the
distance in front of the vehicle is too small (dist0 is
small) then the vehicle needs to turn immediately and
sharply. Thus, smaller number of sensors are preferred to
enable the vehicle to change the direction more rapidly.
However, if this distance is large then there is no need
for large and sudden changes of the steer angle. Hence,
the number of auxiliary sensors is a function of dist0.
We used a logarithm sigmoid function to map the value
of dist0 to the number of auxiliary sensors.

y = logSig(x1, x2, y1, y2, x) =
a

1 + eb(x+c)
+ d (1)

where x = dist0 and a, b, c, and d are defined as

a = y2 − y1

d = y1

b =
ln( a

1.01y1−d−1)−ln( a
0.99y2−d−1)

x1−x2

c =
ln( a

1.01y1−d−1)

b − x1

(2)

With these settings4, the logarithm sigmoid function
generates 0.99y1 for dist0 = x1 and 0.99y2 for dist0 =

4There might be different ways to design a function to map dist0 to
the number of sensors, we designed this function manually. We need a
function f that maps the distance in front (x) to the number of sensors
(y), i.e., y = f(x). The number of sensors should remain constant if
the distance in front is larger than a value y2 or smaller than another
y1 (assuming y1 < y2). The reason is that the maximum number of
sensors is constant and the minimum number of sensors can not be
smaller than 1. Hence, the function f has two asymptotes at y = y1
and y = y2. If we assume that the minimum and maximum number of
auxiliary sensors are x1 and x2, respectively, then f(x1) should become
very close to y1 and f(x2) should become very close to y2. Of course
one option for such function is a line that connects the points (x1, y1)
and (x2, y2) when x ∈ [x1, x2] while has a constant value outside of
the interval [x1, x2]. However, we experimentally found that the f(x)
is not linear in the interval [x1, x2], hence, a logarithm sigmoid function
was used. We assumed that f(x1) = y1 + 0.01y1 and f(x2) = y2 −
0.01y2 (closer than 99% to y1 and y2 for x = x1 or x2, respectively).
We then derived the values for a, b, c, and d accordingly.
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Algorithm 2 Weighted average of the sensors
Inputs: angle, dist, base sensor, α (a tentative position)
Output: SteeringAnle (steer angle)

1: given x = dist0, calculate y by Eq. 1
2: L = {base sensor− y, ...base sensor, ..., base sensor+
y}

3: h = g = 0
4: for each i in L do
5: if i is the base sensor then
6: d = 2disti
7: else
8: if anglei > anglebase sensor then
9: d = disti

α
10: else
11: d = α× disti
12: end if
13: end if
14: h = h+ d× cos(anglei)
15: g = g + d× sin(anglei)
16: end for
17: steeringAngle = tan−1( gh )

x2. The total number of auxiliary sensors is 2y because
the value y refers to the number of auxiliary sensors at
one side of the base sensor (in our implementation, the
number of auxiliary sensors is set to 2round(y) where
round(y) is the closest natural number to y). The values
of y1, y2, x1, and x2 are the parameters that are tuned
by an evolutionary strategy in section III-D.

During the run, x is substituted by dist0 in Eq.
1 to calculate y. The value of y is then used
to generate a list L defined by {base sensor −
y, ...base sensor, ..., base sensor+y} (see section III-A for
the calculation of the base sensor). The list L is used to
determine the steer angle by the algorithm 2.

The value of α in Algorithm 2 is the tentative position
of the vehicle at the track while moving. If α = 1.0 then
the vehicle tends to stay in the middle of the track. If
0.0 ≤ α ≤ 1.0 the distances that are at the left hand side
of the base sensor become larger (as they are divided by
0.0 < α < 1.0) and the distances at the right hand side of
the base sensor become smaller (as they are multiplied
by 0.0 < α < 1.0). This multiplication/division results
in more attraction towards the left hand side of the
track. Also, if α > 1.0 the distances that are at the
right hand side of the base sensor become larger and
the distances on the left hand side of the base sensor
become smaller, resulting in more attraction towards the
right hand side of the track. The value of distbase sensor
has been multiplied by 2 in the algorithm to increase the
effect of this sensor on the calculation of the steer angle.

3) Preparation for a turn: Although the steer angle
should be determined to take a turn, the action before
taking the turn is also important because of the forces
that the vehicle experiences during the turn. The vehicle
experiences a force during the turn outwards of the track

Fig. 3: Opposite sliding before the turn (red vector) in
comparison to no sliding before the turn (white vector)

perpendicular to its body, called centrifugal force. The
centrifugal force is proportional to the velocity, mass,
and the angle of the steer (a small angle refers to a
smooth turn and a large angle refers to a sharp turn),
i.e., for a constant mass, the smaller the steer angle
is, the smaller the force will be. Hence, for a constant
mass and a constant centrifugal force, a smaller angle
of steer allows larger velocity. Therefore, during a turn,
if a smaller angle for the steer is selected then the
vehicle is able to move faster while the centrifugal force
remains constant. In order to minimize the angle of the
steer (and consequently maximize the velocity) to take
a turn the vehicle needs to take the largest curve that in
fact requires starting the turn from the further edge of
the track (the red trajectory in Fig. 3). Thus, a strategy
is needed to enable the vehicle to move towards the
opposite side of the track before arriving to the turn and
then takes the turn. We call this strategy opposite sliding
(see also [19]). Although a longer distance should the
vehicle travel if this strategy is used (comparing to the
other strategy in Fig. 3, shown by a white trajectory),
the velocity that the vehicle can move by using this
strategy is considerably larger than the other’s that not
only compensates for the larger distance, but also causes
saving more time 5.

The opposite sliding in Ahura is implemented by
setting the value of α in Algorithm 2. Let us assume
that α = hsβ (h > 0)6, where s ∈ {−1, 1} determines
the tentative position towards right/left side of the track
and β >= 0 determines the amplitude of the position
towards the sides of the track. The value of s can be
determined according to the estimated turn angle in
front: if the turn is to the left (estimatedTurn < 0 in
Algorithm 1) then s = −1 to slide the vehicle to the
right hand side of the track and vice versa.

The value of β is a function of the distance in front
(dist0). The reason is that if dist0 is too large or too small
then it is better to set α = 1.0 that entails setting β = 0.
If dist0 is in the mid range then it is better to conduct
the opposite sliding that needs α > 1.0 or α < 1.0
(depending on the turn direction in front) that entails

5This strategy is also used by professional human drivers in racing.
6Any positive value for h can be considered, however, we set this

value to 4 in our experiments.
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β = 1.0 (note that the direction of the slide is determined
by s while β is only used to determine the amplitude of
the slide). Hence, we used a trapezoidal function (Eq.
3) to calculate appropriate value for β as a function of
dist0.

y = trap(a, b, c, d, x) =


0 x ≤ a
x−a
b−a a < x ≤ b
1.0 b < x ≤ c
c−x
d−c + 1.0 c < x ≤ d
0 x > d

(3)

where x = dist0, y = β, a is the distance where the
vehicle should focus on taking the turn with no opposite
sliding (β = 0 for x ≤ a), b is the distance where the
vehicle should begin taking the turn and ending the
opposite sliding (β drops from 1 to 0 for a < x ≤ b),
c is the distance where the vehicle should be in the
opposite sliding stage (β = 1 for any b < x ≤ c), and
d is the distance where the opposite sliding stage begins
(β grows from 0 to 1 for c < x ≤ d). The parameters a, b,
c, and d are determined by an evolutionary strategy in
section III-D.

As the opposite sliding procedure is not useful for
wide angle turns, the value of β is set to zero if the
estimated turn (determined by the Algorithm 1) is small.
The threshold for the estimated angle of the turn to use
the opposite sliding is set to 0.1 in our experiments.

B. Speed controller

The aim of the speed controller is to determine the
speed that the vehicle can move by according to the
current situation without considering opponents. This
decision then is translated to the acceleration/breaking
pedals.

1) Target speed calculation: A human driver decides
the best speed according to the vacant distance and the
angle of the turn in front of the vehicle. The target speed
of the vehicle is a monotonically increasing function of
dist0. Also, for a constant dist0, a more cautious policy
is taken if the turn in front is sharper. Thus, we designed
a function (Eq. 4) to calculate the speed that the vehicle
can move by according to dist0 and the angle of the turn
in front.

targetSpeed =

(
dist0
maxD

)λ
(maxS −minS) +minS (4)

where targetSpeed is the speed that the vehicle should
move by, maxS is the maximum speed of the vehicle (set
to 360 as this value is the maximum speed the available
bot in TORCS can move by), and minS is the minimum
speed (set to 25). The value of λ is a function of the
angle of the turn in front that determines how cautious
the speed should be changed, i.e., for smaller values of
λ the targetSpeed grows rapidly (as a function of dist0)
that results in less cautious changes of the speed (see
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Fig. 4: The effects of λ on the target speed calculations.

Fig. 4). Also, for larger values of λ the target speed only
grows when dist0 is large that results in more cautious
changes of the speed.

We considered that the value of λ is a function of the
estimated turn in front (estimated turn is calculated by
Algorithm 1). For a sharp turn, the value of λ should be
large so that the vehicle is more cautious and vice versa.
We relate λ to the estimated turn through a logarithm
sigmoid (Eq. 1) function. Let us assume that for e1, an
estimated angle of a turn, the value of λ is λ1 and for
e2, an estimated angle for another turn, the value of λ is
λ2. We replaced the values of x1, x2, y1, and y2 in Eq. 1
by e1, e2, λ1, and λ2, respectively. The values of λ1, λ2,
e1, and e2 are the parameters that are determined by an
evolutionary strategy described in subsection III-D7.

The target speed generated by Eq. 4 is translated to
a value in the interval [−1, 1], where negative values
represent brake action and positive values represent ac-
celeration action. We used the function proposed in [20]
for this translation (see Eq. 5).

p =
2.0

1.0 + eb(xSpeed−targetSpeed)
− 1.0 (5)

If p < 0 then brakePedal = |p| and accePedal = 0.0
and if p ≥ 0 then brakePedal = 0 and accePedall = p.
The value of b is set to 1.0 unless the vehicle is stuck (see
section III-E).

2) Anti-lock Braking system and Anti-slip regulation:
After calculation of the accelPedal and brakPedal, it is
necessary to make sure that these values are applied in
an appropriate way. As an example, in a low friction
road a sudden lock of the brakes is not as efficient as
pulsing the brake pedal [21]. This is also the same for the
acceleration pedal. The ABS and ASR technologies solve
these issues through keeping the speed of the spinning
wheels and the speed of vehicle as close as possible.
During the brake, the spin of the wheels might become
smaller than the speed of the vehicle that means the
wheels are slipping. Also, during the acceleration the

7The value of λ2 significantly impacts the changes of the speed of
the vehicle. This value is further adjusted according to mechanical
specifications of the track in section III-E.
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spin of the wheels might become larger than the speed
of the vehicle that means the vehicle is in traction.

To implement ABS, we calculated the difference be-
tween the speed of the vehicle and the speed that the
wheels by d = |xSpeed−

∑4
i=1 rivi|, ri is the radius of the

wheel i. If d is larger than ABSSlip then the value for the
brake pedal is revised to brakePedal− d−ABSSlip

ABSrange . Also, if∑4
i=1 vi/4 is smaller than ABSMinSpeed then there is no

need to apply ABS as the vehicle is moving slowly. The
parameters ABSSlip, ABSrange, and ABSMinSpeed
are determined to maximize the efficiency of the braking
system (see subsection III-D).

The implementation of ASR is very similar to that
of ABS. If d is larger than the maximum ASR speed
(ASRSlip) then the value for the acceleration pedal is
revised to accelPedal+ ASRSlip−d

ASRrange (note that ASRSlip−d
is negative, thus p becomes smaller). If the value of∑4
i=1 vi/4 is larger than ASRMaxSpeed then p is not

changed. The parameters maxASR, ASRrange, and
ASRMaxSpeed are determined to maximize the effi-
ciency of the acceleration system (see subsection III-D).

3) Gear control and clutch: We use a simple gear
changing procedure that is based on the minimum
and maximum values of the rpm for each gear. We
set two thresholds for the motor’s rpm for each gear
i, one for the gear up (ui) and one for the gear
down (di). The values for u1,...,6 and d1,...,6 were set
to {9500, 9500, 9500, 9500, 9500, 0} (e.g., if gear=2 then
change the gear to 3 if rpm is larger than u1 = 9500)
and {0, 3300, 6200, 7000, 7300, 7700} (e.g., if gear=2 then
change the gear to 1 if rpm is smaller than l2 = 3300)
through some experiments.

The clutch is used to change the gears. However,
clutch for the first gear is used in a special way by
professional human drivers. When the gear is 1, the
clutch is pushed half way through and it is released
slowly in a way that the spin of the wheels remains
as close to the speed of the vehicle as possible. This
prevents the wheels from slipping too much (maximizes
the friction between the wheels and the track surface) so
that the vehicle accelerates faster with less traction.

C. Opponent manager
Ahura’s opponent manager contains two modules,

steer reviser and speed reviser, that are responsible to
revise steer and speed for overtaking. Ahura builds
a spacial map of the position of opponents based on
the information provided by the opp sensors. This map
is used to revise steer and speed of the vehicle for
overtaking purposes.

1) Opponents spacial map: The information about op-
ponents provided by opp sensors contain their distance
and angle from the current position of the vehicle. This
means that the position of opponents is provided in a
polar coordinates system with the center of the measur-
ing vehicle. Ahura builds a spacial map of the opponents
positions according to the given opp sensors. This map is

1

2

2

1

2

1

1d

2d

Fig. 5: Building a spacial map of other opponents using
the opp sensors information.

built using basic conversions from the Polar coordinate
(distance-angle) to the Cartesian coordinate (x-y).

As an example, in Fig. 5 the values for θ1, θ2, d1, and
d2 are provided by opp sensors. Clearly, σ1 = d1cos(θ1),
σ2 = d2cos(θ2), δ1 = d1sin(θ1), and δ1 = d2cos(θ2).
Ahura uses this calculation to determine the position of
opponents (δi and σi for each opponent i). The result is a
spacial map of the position of opponents in the Cartesian
coordinate. According to this map, Ahura is able to find
vacant positions at the track and determine the closest
achievable vacant position that can fit in (this position
is called bestV acant). Also, the generated spacial map is
used to determine the distance between Ahura and the
opponent in front, if there is any.

2) Steer reviser: In order to overtake, the calculations
in section III-A for the steer angle should be revised to
prevent crashes with opponents and overtake success-
fully. The bestV acant position calculated in section III-C1
is the target position that Ahura tries to go to. To do
so, the value of α in Algorithm 2 is set in a way that
the tentative position of the vehicle is set to bestV acant.
However, it is not safe to slide to the found vacant
position very fast because it might need intense changes
of the steer angle that might result in losing the control
of the vehicle. Hence, the intensity of the changes in the
value of α is set according to the distance between the
current position of the vehicle and the vacant position,
i.e., α = q|trackPos−bestV acant|where q is the maneuver
factor. The value of α (and consequently the steer angle)
changes more intense for larger values of the maneuver
factor. In reality, the faster the vehicle approaches a
vehicle in front, the larger the changes in the value
of steer angle should be. This means that for a large
relative speed (approaching the vehicle in front very
fast) the steer value need to change faster, that entails
a larger value for q. Also, if the relative speed is small
then a small value for q is sufficient. We assumed that
q = ω1v

′ + ω2, where v′ is the relative speed and ω1 and
ω2 are parameters.

Calculation of v′, the relative speed between Ahura
and the car in front, entails estimation of the distance
between the two vehicles in the next time slice. The
distance between Ahura and the opponent in front can
be calculated from the generated spacial map. Ahura
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records the changes of the distance of the opponent in
front and uses the Lagrange interpolation technique with
4 points [22] (set experimentally) to estimate the distance
in the next simulation time slice (next 22ms). This esti-
mation of the distance is then used to estimate the speed
of the vehicle in front using the basic velocity calculation
formula: v = x2−x1

t2−t1 where x2 is the extrapolated distance,
x1 is the current distance, and t2 − t1 is the time slice
duration. If Ahura recognized that there is an opponent
on one of its sides and it is vacant in front then the
tentative position is kept constant until the opponent is
passed by a far enough distance.

Ahura determines the distance to start overtaking
(shown by minDistToOvertake) according to the rela-
tive speed with the vehicle in front. The faster Ahura
is approaching the vehicle in front, the earlier it needs
to overtake. We assumed that there is a linear re-
lationship between minDistToOvertake and v′ , i.e.,
minDistToOvertake = ω3v

′+ω4. If the distance from the
opponent in front is smaller than minDistToOvertake
then Ahura starts changing the steer to overtake, other-
wise, no action is taken. The parameters ω1, ω2, ω3, and
ω4 are set in section III-D.

If an opponent was detected and Ahura started to
overtake, the number of auxiliary sensors (Algorithm 2)
is set to maximum possible (10 in our implementations)
to make the movement as accurate and smooth as possi-
ble. In addition, if Ahura detected an opponent at either
of its sides then the targetSpeed is multiplied by 1.1 to
make the overtaking process faster.

3) Speed reviser: The aim of the speed reviser is to re-
vise targetSpeed to avoid crashes with other opponents.
It is obvious that a vehicle A that is chasing a vehicle B
in front does not crash with B if it is moved at the same
speed or slower than B. Thus, Ahura estimates the speed
of the vehicle in front in the next time slice and sets
its own speed accordingly. To estimate the speed of the
vehicle in front, the value of the current speed of Ahura
(xSpeed) is added to the relative speed v′ (calculated in
section III-C3). The targetSpeed is then set to the speed
of the vehicle in front. The speed is revised only if the
vehicle in front is closer than minDistToBrake = ω5,
otherwise, it remains unchanged. The parameter ω5 is
set in section III-D.

Fig. 6 summarizes the speed calculation, steer calcula-
tion, and opponent management and their relation.

D. Optimization of parameters
The parameters for steer and speed controllers as well

as the opponent manager give Ahura the flexibility to
be able to drive a large range of vehicles. In this section,
we use an optimization-based approach to find the best
values for these parameters so that Ahura can drive a
specific bot in TORCS.

There are 23 parameters in Ahura that need to be
determined:
• 8 parameters for the steer controller (x1, x2, y1, y2,
a, b, c, and d),
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Fig. 6: How (a) steer and (b) speed are calculated in
Ahura. Dashed lines represent values that are set by
an evolutionary algorithm and solid lines are the values
that are provided by the sensors. The parameter values
indicated by dash (’) are the values revised by the
opponent manager module.

• 10 parameters for the speed controller (e1, e2,
λ1, λ2, minABSSpeed, minASRSpeed, ABSrange,
ASRrange, minABS, and minASR),

• 5 parameters for the opponent manager (ω1, ω2, ω3,
ω4, and ω5).

Eighteen of these parameters are independent from op-
ponents (interaction between the vehicle and the track)
while 5 others are related to handling opponents (depen-
dent parameters). There are four important characteris-
tics in optimizing these parameters that leads us to select
an appropriate optimization algorithm.

1) All parameters are in the continuous space,
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TABLE I: Average and standard deviation of the objec-
tive value over 10 runs (1 lap each) when the optimized
paramters for one track were tested on other tracks. Each
column represents the average objective values (total
time + damage/2) where Ahura used the parameters
optimized for the track specified in the heading of that
column.

PWheel 2 PEroad PStreet 1 PAlpine 2
Wheel 2 118.2 (0.29) 127.2 (1.22) 154.1 (1.41) 144.4 (2.09)

Eroad 69.7 (1.01) 68.2 (0.25) 73.8 (1.29) 79.2 (1.91)
Street 1 130.4 (0.86) 135.3 (1.03) 87.7 (0.19) 109.6 (0.91)

Alpine 2 113.1 (0.92) 151.5 (1.04) 143.0 (1.11) 102.6 (0.24)
Average 107.8 120.55 110.9 112.7

2) The effect of the changes of the value of parameters
on the behavior of the vehicle is non-linear (chang-
ing the value of λ affects the speed in a non-linear
way, see Fig. 4),

3) There is no constraint,
4) Some parameters are non–separable (changing the

value of one parameter changes the best possible
choice for another), e.g., if the parameters are set in
a way that the vehicle moves faster then the best
choice for steering parameters are changed.

We use Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [5] for the optimization purposes
because it has a good performance in continuous space,
works with non-linear systems, no constraint handling
technique is required, and it is appropriate for non-
separable search spaces [23].

CMA-ES was used to set the independent param-
eters of Ahura where each individual represented all
18 independent parameters. We selected four different
tracks, namely Wheel 2, Eraod, Street 1, and Alpine 2
(see these tracks in Fig. 7) to optimize these parameters
for. These tracks were used because, all together, they
could cover a wide range of possible combination of
turns that might exist in a track. For each track, we
run CMA-ES for 20 times for 5000 function evaluations
and selected the parameters combination that had the
best objective value total time + damage/2 for that track
over all 20 trials. This procedure led us to 4 parameters
combinations, each combination represented the best
found parameters for one of the tracks. To select the final
parameters, we run Ahura with each of these parameters
on all 4 tracks and selected the parameters combination
that had the minimum value for total time + damage/2
over all tracks. Table I shows the average and standard
deviation of the results. Note that the standard deviation
of the objective value are small in these tests because
the environment was almost static, hence, the decisions
made by the controller were almost the same at each
run. According to this table, the minimum average of
objective function for these tracks achieved when the
best found parameters for the track Wheel 2 are selected.

One should note that, as these four tracks can rep-
resent a wide variety of situations, we expect that the
parameters which lead to a good performance of the

(a) (b)

(c) (d)

Fig. 7: four tracks used for optimization (a) wheel-2, (b)
eroad, (c) street-1, and (d) Alpine 2.

controller at all of these tracks also show a good perfor-
mance on most other tracks. Of course there might be
some situations that is not experienced by the controller
in these tracks that might take place at other tracks.
However, we experimentally found that such situations
are rare and, if they occur, they can be handled by the
dynamic adjustment procedure described in section III-E.

The final independent parameters were set as follows:

• For the number of auxiliary sensors (section III-A2):
x1 = −0.230, x2 = 95.303, y1 = 2.012, y2 = 6.231,

• For the opposite sliding (section III-A3): a = 50.951,
b = 90.480, c = 164.116, d = 187.908,

• For the target speed (section III-B1): e1 = −5.079,
e2 = 5.382, λ1 = 0.020, λ2 = 6.900,

• For the ABS and ASR parameters (section III-B2):
ABSRange = 3.198, ABSMinSpeed = 3.401,
ABSSlip = 1.018, ASRRange = 1.183,
ASRMinSpeed = 149.190, ASRSlip = 1.190

Fig. 8 shows the convergence curve of CMA-ES for
four selected tracks for parameter setting purposes.

We also used CMA-ES to set 5 dependent parameters
of Ahura. In order to evaluate individuals, we run Ahura
against another bot called Blocker using the values of
parameters in that individual. Blocker is an instance of
Ahura, except for its maxS that is set to 300 to make
it slower and it does not use the opponent sensors at
its front. Blocker uses the opponent sensors at its back
and tries to block the behind vehicle. Using the values in
the CMA-ES individuals for the dependent parameters,
we run Ahura against Blocker to minimize the following
objective: 500×standing+damage, where standing is the
position of Ahura after the race. This was done on
the same tracks and same procedure as for setting the
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Fig. 8: CMA-ES was run for four tracks to set the
independent parameters of Ahura.

independent parameters. The final values for the depen-
dent parameters were set to: ω1 = 0.583, ω2 = 15.007,
ω3 = 0.034, ω4 = 1.001, ω5 = 10.075.

Also, the angles for the proximity sensors were set to
{−90, −75, −50, −35, −20, −15, −10, −5, −1, 0, 1, 5, 10,
15, 20, 35, 50, 75, 90} through trials.

E. Dynamic adjustments and stuck manager
The calculated parameters for the speed and steer

controllers need to be revised based on the specifications
of the track. The reason is that the parameters have been
set for a limited number of tracks while new tracks might
have different specifications. The main characteristics of
tracks that may affect the best choice for parameters are
friction, width, and bumps.

Also, Ahura uses the strategy described in [6] to
handle stuck situation. In fact, if Ahura recognized that
it is out of the track, it reduces the maximum value of
the acceleration pedal to prevent too much traction. It
finds the correct direction first and tries to get back to
the track. If it detects that the car is not moving, the gear
is changed to −1 (rear gear) and the steer is adjusted
accordingly to repair the direction of movement.

1) Adjustment based on friction: We propose a simple
strategy based on a supervised neural network to es-
timate friction of the track during the run. Clearly the
difference between the speed of the spin of wheels and
the speed of the vehicle (d = |xSpeed −

∑4
i=1 rivi|) is

larger if the friction of the surface is low when the power
on the wheels is positive (rpm is non-zero). However,
this difference is also affected by other parameters, e.g.,
lower gears usually cause larger d, larger rpm usually
causes higher d, downhills usually cause a smaller d,
small acceleration pedal usually causes smaller d, etc.
One can assume that friction is a function of d, rpm,
gear, and slope of the current segment of the track. As
the slope is not given by the sensors, the value of zSpeed
was rather used which is directly related to the slope
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Fig. 9: the convergence curve of the neural network to
estimate the friction of the track.

of the track. In order to increase the precision of the
friction calculation based on these four parameters, we
limited the friction estimation process by the following
conditions:
• gear is either 2 or 3,
• rpm is in [7000, 8000],
• the vehicle is not taking a turn (|steer angle| is small,

set to 0.05 in our implementations).
Note that, the angle of the steer also affects the value

of d. Thus, the value of friction is estimated only when
the steer angle is small. These settings reduce the effects
of other potential parameters on the calculation of the
friction.

A multi layer perceptron [24] was used to find the
mapping from < d, gear, rpm, zSpeed > to the friction
value. In order to train the network, we run Ahura on
different tracks with different frictions (including dirt
tracks and snowy tracks) and extracted some sample
points (i.e., < d, gear, rpm, zSpeed >) under the men-
tioned conditions. For each track, the friction was also
extracted (the friction is available in the specification
files for each segment of the track) that was used as
the output of the mapping for the extracted samples.
From this sample pool, we selected 650 samples in a
way that the they included different combinations of < d,
gear, rpm, zSpeed > for different values of frictions. We
used 70% of these samples for training, 15% for test, and
15% for validation (selected randomly). The number of
neurons in the hidden layer of the perceptron was set
experimentally to 10 and the levenberg-marquardt [25]
method was used for the training purposes (Fig. 9 shows
the convergence curve).

During the run, Ahura samples the difference between
the spin speed of the wheels and the speed of the vehicle
(i.e., d) whenever the mentioned conditions are met (gear
is 2 or 3, rpm is in [7000, 8000], and steer angle is smaller
than 0.05). Also, the values for gear, rpm, zSpeed are
available directly from sensors. The sampled values are
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fed into the trained neural network and the estimated
friction is calculated. The calculated friction then is used
to revise the value of λ2 in the following formula: λ2 =
τ/µ2 where τ is a constant for a track that its friction (µ)
is 1.0 and µ is the calculated friction. τ was set to 6.9
as this value for λ2 is appropriate for a track with the
friction 1.0 (Alpine-2 has the friction equal to 1.0 and the
best value of λ2 for that track is 6.9).

2) Adjustment according to width and bumps: The value
of λ2 is revised according to the width of the track in
a way that λ2 decreases when width is larger and vice
versa. The reason is that at a wide track the vehicle has
more space at both sides and, hence, it can move faster
at the turns while still prevent moving out of the track.

In addition, if a vehicle is jumping then it needs to
be controlled in a special way. As an example, when
it gets back on the ground and the steer angle is large
then it losses its control. Thus, we implemented a simple
jump handling strategy for Ahura. As the distance of the
vehicle from the ground is available by a sensor, called
z, if the vehicle is jumping (z > 0.65 set experimentally)
then the steer is set to zero until the vehicle gets back on
the ground (z < 0.35 set experimentally). This prevents
the vehicle from being uncontrollable after landing on
the ground.

3) Adjustment for unknown situations: A human driver
relies on experience in addition to in-line collected infor-
mation. There might be many different reasons behind
it such as the lack of experience on that situation, the
lack of relevant information to handle that situation, or
delay of gathering in-line information (because of the
physical limitations of sensors) to handle that situation.
Ahura uses the same strategy as human to memorize
and handle unknown situations that have difficulties
to handle. During the run, the location of unsuccessful
actions (if the vehicle goes out of the track or seriously
damaged) are stored in a list. In the next lap, the target
speed of the vehicle is multiplied by max(0.9severity, 0.7)
before (set experimentally to 250 meters) it arrives to
that location. Severity of the unsuccessful action is cal-
culated based on the number of times that the action has
been unsuccessful. Every unsuccessful action results in
multiplication of the target speed by 0.9, however, this
coefficient does not reduce to values less than 0.7.

IV. EXPERIMENTAL RESULTS

In this section the performance of Ahura is compared
with other controllers (Cobostar, EVOR, Autopia, and
MrRacer) when they are run at different tracks. These
controllers were used for comparison purposes because
they have shown good performance in the literature [8],
[7], [6], [9] and each of them has ranked first in several
car racing competitions (Car racing competitions in IEEE
CEC 2008-2010, ACM GECCO 2009-2015, and IEEE CIG
2009-2012).

All controllers were tested under Windows 7 envi-

ronment, at 40 different tracks8 with different specifica-
tions. All controllers were run on a warm-up session for
100,000 ticks of the game (almost 36 minutes) on each
track before the actual races. During the warm-up, the
controllers evaluate the track and tune their parameters
if necessary (Ahura and Cobostar do not need the warm
up session as they make decisions during the run). The
results of testing the controllers under different runs
(individual run, race, etc) are reported and compared in
the next subsections. In order to discuss the results, we
introduce five parameters for the tracks and investigate
their impacts on the performance of the controllers using
a decision tree [26]. This analysis helps us to determine
advantages/disadvantages of different controllers under
different specifications of the tracks.

A. Tracks specifications

Friction, rolling resistance, roughness, width, and com-
plexity of tracks are used to study the performance
of the controllers. The values for friction, roughness,
rolling resistance, and width were extracted from the
specification files of each track 9. We use a simple method
to calculate the complexity of the tracks as follows.
We run an instance of Ahura with 10 auxiliary sensors
(constant during the run), α = 1 (remains in the middle
of the track during the run), and targetSpeed = 50. This
setting causes the vehicle to stay in the middle of the
track and move slowly. The vehicle records the value of
dist0 every 1 second for each track under this setting. We
expect that the numerical difference ( ∆dist0

∆t = xi − xi−1)
of this recorded data fluctuates more for a complex track
with many turns comparing to a track with few turns.
The reason is that the distance in front starts dropping
as the vehicle approaches a turn while it starts growing
when the turn is finished. As the first order difference of
a signal represents changes of that signal, we expect that
the numerical difference calculated by ∆dist0

∆t = xi−xi−1

also estimates such changes.
Fig. 11(a) shows the recorded data for two tracks called

Aalborg (a complex road track, shown in Fig. 10(a)) and
Michigan (a simple oval track, shown in Fig. 10(b)). It is
obvious that the fluctuation of the recorded data (dist0
vs time) for the Aalborg track is much higher than that
of Michigan track. Hence, if we calculate the numerical
difference ( ∆dist0

∆t = xi−xi−1) then the resulted signal for
more complex tracks should be fluctuating more (see Fig.
11(b)). Hence, the variance of this numeric difference can
measure the complexity of the tracks. As an example, the
complexity of the track Michigan is measured as 42.16
by using this method while the complexity of Aalborg
is measured as 524.69.

8Tracks, driver codes, detailed results, and videos are avail-
able online at https://sites.google.com/site/mohammadrezabonyadi/
standarddatabases/simulated-car-racing.

9Some tracks include different segments with different mechanical
specifications such as friction and rolling resistance. For those tracks,
the average of the parameter over all segments was used.

 https://sites.google.com/site/mohammadrezabonyadi/standarddatabases/simulated-car-racing
 https://sites.google.com/site/mohammadrezabonyadi/standarddatabases/simulated-car-racing
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(a) (b)

Fig. 10: Two sample tracks from TORCS, (a) Aalborg (a
complex track), and (b) Michigan (a simple track).
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Fig. 11: Complexity of two example tracks measured by
Ahura, Michigan: 42.16 and Aalborg: 524.69.

The friction of tracks was in [0.85, 1.4], the rolling
resistance was in [0.001, 0.03], the roughness was in [0,
0.5], the width was in [10, 30], and complexity in [12,
735].

B. Qualification results

After a warm-up session, each controller was run on
each track for 25 runs where each run consisted of 5
laps. Table II shows the results. In the qualification phase
(row: Qualification), we averaged the total time each
controller needed to finish 5 laps over all 25 runs on
each track (in total, 40 numbers for each controller, each
number represents the average of time the controller
needs to finish 5 laps on a track). These average times
were used to determine the rank (Rank (First) column in
the table) and assign scores (F1 score)10 to the controllers.

In order to calculate the average rank (Rank (Avr)
in the table), we considered all runs on all tracks for
each controller (40x25 values for each controller, each
value represents the rank of the controller in 5 laps
on one of the tracks) and averaged those values. The
Wilcoxon test was used to determine if the difference
between the Ahura’s results (difference of the median
of these values) is significant (p < 0.05) comparing to
other controllers’ results. Asterisked values in the table
in front of a controller (row) for a specific performance
measure (column) indicate that the result of Ahura was
significantly different from the result of that controller
in that specified performance measure. The Rank (Avr)
performance measure in the qualification run shows
that Ahura could achieve significantly better rank in
comparison to the tested controllers.

The time per lap column in table II for qualification
has been calculated by dividing the total time to finish
all runs on all tracks by 40x25x5 laps (average time
per lap). The table indicates that Ahura’s time per lap
on all tracks is significantly (Wilcoxon test) better than
other controllers. The reported damage in the table is
the average over all runs. Again, based on the Wilcoxon
test, the damage that Ahura has applied to the car is
significantly lower than the damage other controllers
applied to the car.

The classification of the results in the qualification
stage using a decision tree (Fig. 12) shows that friction
(F) and complexity (C) of the tracks play a role in the
achieved results. According to the decision tree, Evor
performs better than other bots in simple oval tracks
where C < 31.48 (this category included 5 tracks). In
more complex tracks with small friction, where F <
1.3 and C ≥ 31.48 (this branch included 34 tracks)
Ahura shows a better performance. This category in fact
refers to most usual road tracks (high complexity with
moderate friction). For very high friction, Autopia has
performed the best over all other bots. However, the

10The Formula 1, F1, scoring system assigns scores to the drivers in
order with following numbers: 25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0.
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TABLE II: Comparison results for different algorithms
for qualification, race, and race∗ stages. The best results
have been shown by bold face. All results are averages
over all 5 trials.

Alg.
name

F1
score

Rank
(First)

Rank
(Avr)

Time
lap

Damage

Q
ua

lifi
ca

ti
on Ahura 820 23 1.69 80.41 407.12

Cobostar 675 6 2.73* 92.38* 893.12*
Autopia 578 3 3.37* 89.6* 1620.34*
EVOR 644 8 3.05* 95.13* 1121.57*

MrRacer 478 0 4.42* 103.01* 1892.03*

R
ac

e

Ahura 877 26 1.53 82.52 1733.3
Cobostar 670 7 2.51* 91.23* 3332.8*
Autopia 513 1 3.825* 94.99* 3114.2*
EVOR 660 6 2.65* 88.97* 4147.2*

MrRacer 485 0 4.1* 100.77* 5913.21*

R
ac

e*

Ahura 782 16 2.025 84.18 3010.2
Cobostar 673 8 2.495 92.11* 4572.55*
Autopia 520 0 3.75* 98.93* 2409.1
EVOR 703 13 2.52* 92.19* 5926.32*

MrRacer 525 3 3.85* 110.33* 6574.3*

31.48C  31.48C 

31.48C 

1.3F  1.3F 

Ahu.: 0
Cob.: 1
Aut.: 0
Evo.: 0

31.48C 

Ahu.: 22
Cob.: 5
Aut.: 3
Evo.: 4

31.48C 

1.3F  1.3F Ahu.: 1
Cob.: 0
Aut.: 0
Evo.: 4

Ahu.: 0
Cob.: 1
Aut.: 0
Evo.: 0

Fig. 12: Decision tree for classification of controllers on
different tracks in the qualification stage. C represents
Complexity and F represents Friction. The values in the
graph have been calculated by the decision tree. The
values are the number of times each controller won
within that group of tracks.

latter results are not reliable as the number of tracks with
these specifications was only 1.

The better performance of Ahura on low to mid
friction tracks is the result of adjusting the driving
style according to the estimated friction. Also, the rather
complex steer controller of Ahura has led the controller
to drive effectively at complex tracks. However, Evor has
shown a better performance at oval tracks. Our results
showed that the average (standard deviation) of stand-
ing for Evor for this group of tracks (included 5 tracks)
was 1.2 (0.45) while it was 2.2 (1.1) for Ahura (Ahura was
in the second place after Evor in this group of tracks).
This difference comes from the steer controlling style for
Evor. Evor usually prefers to take the smallest curve to
take a turn that is more effective in oval tracks (small
complexity and wide) than Ahura’s strategy (opposite
sliding).

Aut.: 0
Evo.: 0

31.48C  31.48C 

17W 
Ahu.: 1
Cob.: 0
Aut.: 0
Evo.: 4

Ahu.: 1
Cob.: 4
Aut.: 0
Evo.: 1

Ahu.: 24
Cob.: 2
Aut.: 1
Evo.: 1

1.3F  1.3F 

Ahu.: 0
Cob.: 1
Aut.: 0
Evo.: 0

17W 

Fig. 13: Decision tree for classification of controllers on
different tracks in the race stage. W is the width of the
track. The results are the average number of standing
first over 5 runs.

C. Race results

The bots were placed on the tracks to compete with
each other based on the average time to complete those
tracks recorded in the qualification run (25 runs for each
track, 5 laps each). Results in table II (row: Race) show
that Ahura is the best controller in terms of the F1 score,
the average number of times that won the races, the
average of rank over all runs (Wilcoxon test), the average
of the time per lap (Wilcoxon test), and average of the
damage (Wilcoxon test) among all controllers.

The decision tree based on the tracks specifications in
the race stage (Fig. 13) shows that EVOR is the best
controller when the complexity of the track is smaller
than 31.48 (simple oval tracks). At higher complexity
tracks, if the track width is W ≥ 17 (very wide tracks)
then Cobostar is the best choice among other controllers.
However, if the track width is tighter than 17 meters then
Ahura is usually the winner. Although Cobostar shows
a better performance for very high friction tracks, the
data points in that category is very small that makes
the results unreliable. This result is aligned with what
was discussed for qualification test. Ahura was in the
second place (after Evor) when C < 31.48 and in the
third place (after Cobostar and Evor) when C >= 31.48
and W >= 17.

D. Overtaking test

This section compares overtaking strategies of con-
trollers. The results of two tests are reported here. The
first test focuses on the overtaking ability of Ahura
against other tested bots in a competition where Ahura
was placed the last at all tracks. The second test is the
result of competing different controllers against Blocker
(see section III-D).
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Fig. 14: Results for overtaking the Blocker.

1) Against other bots (Race∗): In the Race∗ stage, all
bots were placed on the track based on their achieved
results in the qualification stage except for Ahura that
was always placed at the last position. The bots compete
with each other on 40 tracks, 25 repetition of each track,
5 laps each. Results (table II, row: Race∗) indicate that
Ahura is still the best controller in terms of the F1 score,
Rank (First), and time per lap (Wilcoxon test). However,
at this stage Ahura has received the second place in
terms of damage (Autopia outperforms Ahura in terms
of damage). This was expected as the bot that is placed
in the last position at the beginning of the race needs to
overtake 4 other bots that usually involves more damage.
Ahura received significantly less damage (Wilcoxon test)
than Cobostar, EVOR, and MrRacer. Also, in terms of
the Rank (Avr), Ahura was significantly better (Wilcoxon
test) than Autopia, EVOR, and MrRacer while was statis-
tically similar to Cobostar (although better in average).

2) Against Blocker: All controllers (Ahura, Cobostar,
Autopia, EVOR, and MrRacer) plus four other con-
trollers that are available with TORCS (called bt 3,
Inferno 3, Olethros 3, and Berniw 3) were run against
Blocker (see section III-D) on all tracks, 5 runs for each
track and each run consisted of 5 laps. As Blocker is
significantly slower than its opponents, if a vehicle is un-
successful in overtaking Blocker then one can conclude
that its overtaking strategy is not effective.

Results (Fig. 14) show that Ahura’s overtaking strategy
is more effective than other controllers against Blocker
(successful in 92% of tracks with 13.48 percent of dam-
age). Although Ahura damaged slightly more than bt
3, Inferno 3, Olethros 3, and Berniw 3, the percentage
of successful overtakes for Ahura is higher than that
of those controllers. Comparing to Cobostar, EVOR, and
MrRacer, despite the aggressive overtaking policy taken
by these controllers (evident by gaining more damage
during the overtaking process), none of these controllers
could overtake Blocker as effective as (lower damage and

higher success percentage) Ahura.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a high performing controller called
Ahura for TORCS was presented. The parameters for
Ahura were set using a CMA-ES to drive a particular car
and it was run against other state-of-the-art controllers.
Results showed that Ahura performs better than other
controllers in many instances in terms of driving and
overtaking. Also, results from the decision tree on the
qualification stage showed that Ahura is effective on
tracks with wide range of frictions (from 0.85 to 1.3).
The reason is that Ahura adjusts its driving style ac-
cording to the friction of the road. The test on very
large friction tracks included only on track that does not
really indicate that Ahura is not effective on high friction
tracks. However, it seems that Ahura can be improved
to drive on tracks with low complexity. This can be done
through a procedure that recognizes the low complexity
tracks and adjusts the driving style accordingly. Further,
results from decision tree on the race stage indicated that
Ahura outperforms other controllers at most tracks with
low/mid range friction and high complexity that refer
to usual road tracks. This again suggests that Ahura is
effective on road tracks but needs improvement on oval
tracks. Other tests showed that Ahura is very effective
at overtaking against other bots and Blocker (a bot that
blocks the vehicle behind). One should note that Ahura
is able to drive any other bots in TORCS, i.e., Ahura
is vehicle independent. However, the parameters of the
controller have been optimized only for one particular
type of bot in this paper.

There are several different areas that can be further
enhanced in Ahura. One potential enhancement is to
enable the controller to generate a map of the track in
the warm-up session and use this information to make
better decisions. As an example, this map can be useful
to decide the best tentative position before arriving to
turns and make better decisions for the preparation
phase for taking a turn. Another potential enhancement
is to enable the controller to handle noisy sensors.
One can use the strategies described in [27] to enable
Ahura to handle noisy environments. Also, measuring
specifications of the tracks and adjusting the driving
style (e.g., friction estimation in Ahura) can significantly
improve the controller performance. Hence, recognizing
key features that distinguish tracks and designing meth-
ods to estimate them during the run is valuable as these
information can be useful by controllers to adjust their
driving style. Finally, our experiments in section III-D
showed that optimizing Ahuras parameters for a specific
track might result in significant performance impairment
on other tracks. One way to address this issue would be
to perform a single optimization process that evaluates
the performance of Ahura on a set of tracks (rather than
one track) at the same time to find a parameters set
that perform well on that set of tracks. Another way to
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address this issue would be to find optimum parameters
sets for Ahura for a set of tracks (one parameters set
for each track) and design a mechanism that identifies
which of these parameters set is a better fit when the
controller drives on a new track. This can be done by
analyzing the performance of the controller during the
warm-up stage when it uses different parameters set or
by identifying how similar is the current track to other
previously evaluated tracks and use the best parameters
set accordingly.
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