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Abstract. In this paper we investigate the usefulness of a new opera-
tor, inver-over, for an evolutionary algorithm for the TSP. Inver-over is
based on simple inversion, however, knowledge taken from other indi-
viduals in the population in
uences its action. Thus, on one hand, the
proposed operator is unary, since the inversion is applied to a segment
of a single individual, however, the selection of a segment to be inverted
is population driven, thus the operator displays some characterictics of
recombination.
This operator outperforms all other `genetic' operators, whether unary or
binary, which have been proposed in the past for the TSP in connection
with evolutionary systems and the resulting evolutionary algorithm is
very fast. For test cases, where the number of cities is around 100, the
algorithm reaches the optimum in every execution in a couple of seconds.
For larger instances (e.g., 10,000 cities) the results stay within 3% from
the estimated optimum.

1 Introduction

The traveling salesman problem (TSP) is one of the most widely studied NP-
hard combinatorial optimization problems. Its statement is deceptively simple,
and yet it remains one of the most challenging problems in Operational Research.

Let G = (V;E) be a graph where V is a set of vertices and E is a set of
edges. Let C = (cij) be a distance (or cost) matrix associated with E. The TSP
requires determination of a minimum distance circuit (Hamiltonian circuit or
cycle) passing through each vertex once and only once. C is said to satisfy the
triangle inequality if and only if cij + cjk � cik for all i; j; k 2 V (in such a case
we talk about 4TSP). Euclidean TSP problems (ETSP), i.e., problems where V
is a set of points in R2 and cij is an Euclidean (straight-line) distance between
i and j, are, of course, special cases of 4TSP.

A lot of algorithms have been proposed to solve TSP. Some of them (based
on dynamic programming or branch and bound methods) provide the global
optimumsolution (the largest nontrivial instance of the TSP solved to optimality
is of 7397 cities [1], however, it required almost 4 years of CPU time on network of
machines). Other algorithms are heuristic ones, which are much faster, but they
do not guarantee the optimal solutions. There are well known algorithms based



on 2-opt or 3-opt change operators, Lin-Kerninghan algorithm (variable change)
as well algorithms based on greedy principles (nearest neighbor, spanning tree,
etc). The TSP was also approached by various \modern heuristic" methods, like
simulated annealing, evolutionary algorithms, tabu search, even neural networks.
However, these techniques were mainly applied to test cases with relatively small
number of cities (usually less than 1000), whereas such problems are now solved
routinely within a few hours [10].

In this paper we investigate a new evolutionary algorithm based on a new
operator inver-over,1 which incorporates the knowledge taken from other indi-
viduals in the population. One can view this operator as a mixture of inversion
and recombination: on one hand, the inversion is applied to a part of a single
individual, however, the selection of a segment to be inverted depends on other
individuals in the population.

It seems that the proposed algorithm still can't compete (at least as far as
computational time is concerned) with e�cient approaches based on local search
[10], however, it has a few adventages. First of all, it is extremely simple and
easy to implement (less than 100 lines of C code). Additionally, experimental
results indicate that this operator outperforms all other evolutionary operators
(whether unary or binary), which have been proposed in the past for the TSP
(PMX, OX, CX, ER, Edge-2, Edge-3, MPX, RAR, GNX, 2-repair, simple inver-
sion, swap, remove and reinsert, and many others). Moreover, the evolutionary
algorithm based on the proposed operator is quite fast (in comparison with other
evolutionary techniques) and the quality of results are very high. For test cases,
where the number of cities is around 100, the algorithm reaches the optimum in
every execution. For larger instances (10,000 cities) the results stay within 3%
from the estimated optimum.

The paper is organized as follows. The next section provides a brief back-
ground information on evolutionary algorithms which have been developed for
the TSP. Section 3 provides a description of the proposed algorithm with a
new adaptive inversion operator. Section 4 reports on experimental results and
section 5 concludes the paper.

2 TSP and evolutionary approach

Initially, main e�ort of researchers was directed at discovery of an appropriate
recombination operator, which would produce an o�spring by preserving partial
tours from the parents. For example, partially matched crossover (PMX) builds
an o�spring by choosing a subsequence of a tour from one parent and preserving
the order and position of as many cities as possible from the other parent. A
subsequence of a tour is selected by choosing two random cut points, which serve
as boundaries for swapping operations. Order crossover (OX) builds o�spring by
choosing a subsequence of a tour from one parent and preserving the relative
order of cities from the other parent. Cycle crossover (CX) builds o�spring in

1 The name for this operator was invented by Bob Reynolds during the EP'98
conference.



such a way that each city (and its position) comes from one of the parents. Of
course, many other binary operators (and variants of the above operators) for
the path representation have been de�ned. On the other hand, unary operators
were usually de�ned as a swap (of two cities) or as inversion of a segment of
cities. Simple inversion selects two points along the length of the chromosome,
which is cut at these points, and the substring between these points is reversed.
Such simple inversion guarantees that the resulting o�spring is a legal tour. It
is reported [27] that in a 50-city TSP, a system with inversion outperformed a
system with a \cross and correct" operator. However, an increase in the number
of cut points decreases the performance of the system.

The operators listed above take into account cities (i.e., their positions and
order) as opposed to edges | links between cities. Clearly, the linkage of this
city with other cities might be more important than the particular position of
a city in a tour. Consequently, Grefenstette [8] developed a class of heuristic
operators that emphasizes edges. However, as reported in [8], such operators
transfer around 60% of the edges from parents | which means that 40% of edges
are selected randomly.Whitley, Starkweather, and Fuquay [27] have developed a
new crossover operator: the edge recombination crossover (ER), which transfers
more than 95% of the edges from the parents to the single o�spring. Later,
the edge recombination crossover was further enhanced [23, 16]. In [17] a new
local search operator was developed, which makes a use of both crossover and
mutation. In [15] a new selection method was introduced as well as new crossovers
(edge exchange crossover EEX and subtour exchange crossover SXX). Similarly, a
new crossover (edge assembly crossover EAX) was investigated in [20]. However,
these new operators were tested on relatively small instances of TSP; in many
cases the reported computational time was not encouraging (few minutes for 100
city problems).

Several researchers investigated the combination of local search heuristics and
evolutionary systems. Probably this is the most popular trend and the state-
of-the-art in the evolutionary �eld: most researchers believe that the e�cient
implementation of quality local optimizer is crucial for the e�ciency of any
evolutionary algorithm. Many researchers have been applying various crossover
operators (e.g., MPX operator [19]) to locally optimal individuals [2,7, 19, 16,
25,5], i.e., individuals after improvement made by a local search.2 Evolutionary
techniques, extended by a local search algorithm, perform very well (better then
multistart local search algorithm by itself); in many experiments such systems
returned a near-optimum solution (for many test cases with e.g., 442, 532, 666
cities, the deviation from the optimal tour length was less than 1%).

There were attempts to solve the TSP by evolutionary algorithms based on
paradigm of evolution strategies [9, 21] or evolutionary programming [6]; there

2 A term memetic algorithm refers to an evolutionary algorithm where local optimiza-
tion is applied to all solutions before evaluation. This can be thought of as evolu-
tionary algorithm is applied in the subspace of local optima, with local optimization
acting as a repair mechanism for children luing outside this subspace (i.e., not being
locally optimal).



were also attempts to build evolutionary systems based on non-standard repre-
sentations (e.g., matrix representations). In [26] an evolutionary system is used
to improve a simple heuristic algorithms for the TSP by perturbing city coordi-
nates; results for problem sizes up to 500 cities were reported.

Very few reports provide the computational time required for solving some
instances of TSP; rather the number of function evaluations are reported. Thus
it is quite hard to compare di�erent approaches, as various proposed operators
have di�erent time complexity. Eshelman reports [5] 2.5 hours (single processor
Sun SPARKstation), for a 532 city problem; Gorges-Schleuter [7]: between 1 and
2 hours on the same problem (parallel implementation, 64 T800 transputers);
Braun [2]: around half an hour for a 431 city problem (SUN woirkstation). All
these times indicate that evolutionary algorithm might be too slow for solving
larger instances (say, 10,000 cities) of the TSP.

3 Evolutionary algorithm with the inver-over operator

Most evolutionary algorithms developed so far for the TSP (not extended by a
local search routine) can not compete with other heuristic methods (e.g., Lin-
Kerninghan algorithm) neither in precision of results nor in computational time.
Evolutionary algorithms based on crossover operator usually are quite espensive
(in terms of computational time), whereas algorithms based on mutation only
(whether simple inversions or swaps) do not escape e�ciently local optima. It
is why, as indicated in the Introduction, most recent e�ort aimed at combining
evolutionary engine with a local search method.

What characteristic should a `pure' evolutionary algorithm have for the TSP
to compete with local search methods? It seems that the TSP problem requires a
relatively strong selection pressure, which would move the search to a promising
area of the search space, and an e�cient operator, which produces an o�spring
without a burden of many additional calculations and allows the algorithm to
escape local optima.Clearly, unary operators require much less time (in compari-
son with binary operators), however, they have not produced satisfactory results.
Thus it might be worthwhile to experiment with an operator which combines
adventages of unary and binary operators.

A new evolutionary algorithm developed for the TSP has the following char-
acteristics:

{ each individual competes with its o�spring only,
{ there is only one operator used; however, this inver-over operator is adaptive:
it takes a clue from the current population,

{ the number of times the operator is applied to an individual during a single
generation, is variable.

Such an algorithm can be perceived as a set of parallel hill-climbing procedures,
which preserve the spirit of Lin-Kerninghan algorithm (each hill-climber per-
forms a variable number of edge-swaps). However, the inver-over operator has



adaptive components: (1) the number of inversions applied to a single indiu-
vidual and (2) the segment to be inverted is determined by another (randomly
selected) individual. So it is possible to view this algorithm as an evolutionary
one with a strong selective pressure and with an adaptive operator.

random initialization of the population P

while (not sati�ed termination-condition) do
f
for each individual Si 2 P do

f
S0 = Si

select (randomly) a city c from S0

repeat

f
if (rand() � p)
select the city c0 from the remaining cities in S0

else

f
select (randomly) an individual from P

assign to c0 the `next' city to the city c in the selected individual
g
if (the next city or the previous city of city c in S0 is c0)
exit from repeat loop

inverse the section from the next city of city c to the city c0 in S0

c = c0

g
if (eval(S0) � eval(Si))

Si = S0

g
g

Fig. 1. The outline of the algorithm

Figure 1 provides a more detailed description of the whole algorithm in gen-
eral and of the proposed operator in particular. With a low probability3 p the
second city for inversion is selected randomly. This is necessary: without a pos-
sibility to generate new connections, the algorithm would search only among
connections between cities present in the initial population. If rand() > p, a
randomly selected mate provides a clue for the second marker for inversion. In
that case the inversion operator resembles crossover, as part of the pattern (at
least 2 cities) of the second individual appears in the o�spring.

Let's illustrate a single iteration of this operator on the following example.
Assume that the current individual S0 is

3 Interestingly, experimental results indicated that the value of this parameter was
independent of the number of cities in a test case. Note also, that the function
rand() (Figure 1) generates a random 
oat from the range [0::1].



S0 = (2; 3; 9; 4; 1;5;8; 6; 7),

and the current city c is 3. If the generated random number rand() does not
exceed p, another city c0 from the same individual S0 is selected (say, c0 is 8),
and appropriate segment is inverted, producing the following o�spring

S0  (2; 3; 8; 5; 1;4; 9; 6; 7)

(note the position of the cutting points for the selected segment, which are after
cities 3 and 8). Otherwise (i.e., rand() > p), another individual is (randomly)
selected from the population; assume, it is (1; 6; 4; 3; 5; 7;9;2; 8). This individual
is searched for the city c0 \next" to city 3 (which is 5), thus the segment for
inversion in S0 starts after city 3 and terminates after city 5; consequently, the
new o�spring is

S0  (2; 3; 5; 1; 4;9; 8; 6; 7).

Note again, that a substring 3 { 5 arrived from the \second parent". Note also,
that in either case the resulting string is intermediate in the sense that the above
inversion operator is applied several times before an o�spring is evaluated. This
process terminates when the next city c0 (to the current city c) in randomly
selected individual is also \next city" in the original individual. For example,
assume that after a few inversions, the current individual S0 is

S0 = (9; 3; 6; 8; 5;1;4; 2; 7),

and the current city c is 6. If rand() > p, a city `next' to city 6 is recovered
from a (randomly) selected individual from the population; assume, it is city 8
(if rand() � p, a random city is selected, so it may also happen that city 8 was
chosen). Since city 8 already follow city 3, the sequence of inversions terminates.

4 Experiments and results

In this section we present the experimental results of the proposed algorithm.All
experiments are performed on a Pentium Pro 180 machine. The unit of the time
listed in the result tables is one second. The two paramaters of the algorithm
had the following values: population size m = 100 and probability of random
inversion p = 0:02. The termination-condition is satis�ed when the best solution
of the population remains unchanged for the last 10 iterations (of the while loop).

Almost all test cases (except CHN1444) were chosen from TSPLIB [22]. The
optimal solution of each test case is known. The size of these test cases vary from
30 cities to 2,392 cities. We have also created one (random) instance (RAN10000)
of 10,000 cities, and relied on the formula [11] for the expected ratio k of the
Held-Karp bound to

p
n for n-city random ETSP; for n � 100 it is:

k = 0:70805 + 0:52229p
n

+ 1:31572
n
� 3:07474

n
p
n
.

4 See http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.



So, the length of the optimal tour is estimated as L� = k
p
n �R, where n is the

number of cities and R is the area of the square box within which the cities were
randomly placed. For our instance, the number of cities is n = 10; 000 and the
edge length (of the square box) is 400, so the approximate length of the optimum
solution is 28536.3.

We list the test cases and their optimal solutions in table 1. Note that in
calculating the optimal solution, each distance is rounded to integer value (ex-
cept, of course, the last test case, RAN10000, where the exact distances are
calculated). There were ten runs of the algorithm performed for each test case.
The results (listed also in table 1) represent average scores of these ten runs.
For each test case, the table provides the value of the optimum solution, the
average value found by the algorithm, average computational time (seconds),
average total number of inversions and the average total number of iterations
(while loop) performed during a run.

Instance Optimum Result Time Inversions Iterations

EIL30 420 420 0.31 46505 129
EIL51 426 426 1.09 147972 399
EIL76 538 538 2.11 257613 651

EIL101 629 629.2 7.52 787792 2447
ST70 675 675 1.98 239152 643

KROA100 21282 21282 2.94 319182 785

KROC100 20749 20749 3.23 344272 874
KROD100 21294 21294 4.13 432336 1221
LIN105 14379 14379 3.34 350943 876

CHN144 30347 30359.2 16.81 1432780 4839
PCB442 50778 51097.5 172.21 6961960 23265
PR2392 378032 388095 5366.23 38341600 126846

RAN10000 28536.3 29551.4 167501 207775822 676840

Table 1. Results of the algorithm with adaptive inversion

The above results demonstrate clearly the e�ciency of the algorithm. Note
that for the �rst nine test cases the optimum was found in all ten runs (except
the test case EIL101, where the algorithm failed only once in ten runs). The
number of cities in these test cases varies from 30 to 105. For the test case with
144 cities the average solution was only 0.04% above the optimum, for the test
case with 442 cities|0.63% above the optimum, and for the test case with 2392
cities|2.66%. Moreover, for a random test case with 10,000 cities the average
solution stayed within 3.56% from the Held-Karp lower bound (whereas the best
solution found in these ten runs was less than 3% above this lower bound).

Note also, that the running time of the algorithmwas reasonable: few seconds
for problems with up to 105 cities, below 3 minutes for the test case of 442 cities,



below 90 minutes for the test case with 2392 cities. These represent fraction of
time needed by other evolutionary algorithms based on crossover operators.

It is also interesting to compare the proposed algorithm to two other algo-
rithms. This �rst one is based on simple inversion and the second one is based
on Lin-Kerninghan algorithm.5 The comparison with the �rst algorithm pro-
vides information on the signi�cance of the proposed adaptive inversion operator
versus blind inversion, whereas the other one|on relative merits of the tested
algorithms.

Simple Inversion Lin-Kerninghan

Instances Optimum Result Time Iterations Results Time

EIL30 420 432.6 58.326 74.71 421.8 0.013
EIL51 426 451.7 77.755 93.79 427.4 0.012
EIL76 538 580.9 138.763 149.66 549.7 0.026

EIL101 629 680.6 339.364 325.06 640 0.0.39
ST70 675 720.7 104.756 116.27 684.6 0.034

KROA100 21282 23136.8 253.823 241.18 21380.9 0.04

KROC100 20749 23175.5 319.7 296.88 20961 0.034
KROD100 21294 23746.8 282.806 264.17 21417.3 0.045
LIN105 14379 15627.8 350.96 311.85 14566.5 0.039

CHN144 30347 33156.7 707.033 537.80 30602.1 0.054
PCB442 50778 | | | 51776.5 0.137
PR2392 378032 | | | 389413 0.719

Table 2. Results of the Simple Inversion and Lin-Kerninghan algorithms

Table 2 give the results of such comparisons. The results of the algorithm
based on random inversion were provided by our algorithm with parameter p
set to 1:0. Note that for test cases with around 100 cities, the error (percentage
above the optimum) was much higher (more than 10%). Time of the run in-
creased in a signi�cant way, in some cases more than 100 times (the termination
condition was left without a change). Because of this increase in time, we do
not report the results of this algorithm for the largest test cases. On the other
hand, the Lin-Kerninghan algorithm takes a fraction of time necessary for our
algorithm (e.g., below 1 second for the test case with 2,392 cities). However,
the precision of results is much lower. Table 2 provides averages of ten runs of
the Lin-Kerninghan algorithm: note, that none of the test cases resulted with
the optimum solution in all ten runs. So, the proposed evolutionary algorithm
has much better consistency than the Lin-Kerninghan algorithm. On the other
hand, if Lin-Kerninghan algorithmwas run for the same time as our evolutionary
system (as opposed just to the same number of runs), probably it would win the
competition easily.

5 We have experimented with the implementation provided by Bill Cook, available
from ftp.caam.rice.edu/pub/people/bico/970827/.



5 Conclusions

There are a few interesting observations which can be made on the basis of the
experiments:

{ the proposed system is probably the quickest evolutionary algorithm for the
TSP developed so far. All other algorithms based on crossover operators
provide much worse results in a much longer time (the exact comparison
between various methods will be given in the full version of the paper [24]);

{ the proposed system has only three parameters: population size, the proba-
bility p of generating random inversion, and the number of iterations in the
termination condition; most of the other evolutionary systems have many
additional parameters;

{ it is worthwhile to emphasise the precision and stability of the system for
relatively small test cases (almost 100% accuracy for all considered test cases
up to 105 cities); the computational time was also acceptable (3-4 seconds);

{ the system introduces a new, interesting operator, which combines features
of inversion (or mutation) and crossover. Results of experiments reported in
the previous section indicate clearly that the inver-over operator is signif-
icantly better than random inversion. The probability parameter p (in all
experiments kept constant at 0.02) determines a proportion of blind inver-
sions and guided (adaptive) inversions.

Further research will concentrate on (1) the signi�cance of the selection
method in connection with the inver-over operator (e.g., it would be interest-
ing to experiment with (�; �)-selection and compare it with the current one,
which allows competition between parent and o�spring only), (2) adaptive (or
self-adaptive) change of the parameter p (if successful, the system will have
only one parameter: population size, apart from termination condition), (3) the
signi�cance of the population size and the termination condition (the current
version of the system has �xed population size of 100 and terminates if there is
no improvement in 10 iterations of the while loop), (4) full comparison of the
proposed technique with other algorithms (including other evolutionary systems,
tabu search, simulated annealing, and other heuristic methods), (5) experiments
with larger instances of TSP (up to 1,000,000 cities).
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