IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998 1

Modeling of Ship Trajectory in Collision
Situations by an Evolutionary Algorithm

Roman Smierzchalski, Zbigniew Michalewicz, IEEE senior member

Abstract— For a given circumstance (i.e., a collision sit-
uation at sea) a decision support system for navigation
should help the operator to choose a proper maneuver,
teach them good habits, and enhance their general in-
tuition on how to behave in similar situations in the
future. By taking into account certain boundaries of
the maneuvering region along with information on nav-
igation obstacles and other moving ships, the problem
of avoiding collisions is reduced to a dynamic optimiza-
tion task with static and dynamic constraints. This pa-
per presents experiments with a modified version of the
Evolutionary Planner/Navigator (EP/N). Its new ver-
sion, JEP/N+4+, is a major component of a such decision
support system. This new extension of EP/N computes
a safe-optimum path of a ship in given static and dy-
namic environments. A safe trajectory of the ship in
a collision situation is determined on the basis of this
algorithm. The introduction of a time parameter, the
variable speed of the ship, and time-varying constraints
representing movable ships, are the main features of the
new system. Sample results of ship trajectories obtained
for typical navigation situations are presented.

Keywords— Evolutionary algorithms, path planning,
collision avoidance, dynamic environment, Evolutionary
Planner/Navigator.

I. INTRODUCTION

INDING a safe, anti-collision maneuver is tradi-

tionally executed by drawing radar plots based on
the observed echoes of the moving objects. Newly-
built ships are equipped with specialized radar anti-
collision systems, Automatic Radar Plotting Aids
(ARPA), which facilitate the navigator’s work consider-
ably. The International Maritime Organization (IMO)
has worked out a timetable for the installation of the
ARPA systems on ships built since 1984 [5]. Functions
executed by the ARPA system automate the activi-
ties connected with tracking the objects and provide
a graphical presentation of the navigational situation.
The ability to process data and display the navigational
situation on the radar screen allows the navigator to
make reasonable decisions about which maneuver to
take. On the basis of the information obtained from

R. Smierzchalski is with the Department of Ship Automa-
tion, Gdynia Maritime Academy, ul. Morska 83, 81-225 Gdynia,
Poland. Email: roms@wsm.gdynia.pl.

Z. Michalewicz is with the Department of Computer Science
University of North Carolina, Charlotte, NC 28223, USA and
Institute of Computer Science, Polish Academy of Sciences, ul.
Ordona 21, 01-237 Warsaw, Poland. Email: zbyszek@uncc.edu.

the ARPA system (as well as navigator’s seamanship
and intuition), the final decision on how to act in order
to avoid the collision must still be made individually
by the navigator.

Apart from adequate preparation for its operation,
proper use of the anti-collision system also requires ad-
ditional algorithms that help the responsible navigator
to make correct decisions. Recent tendencies in the
automation of ship navigation have led to automatic
calculations of the anti-collision maneuver, along with
simultaneous quantitative assessment of the risk of col-
lision based on the obtained data [3], [7], [8], [9]. An ex-
tension of the conventional anti-collision system ARPA
is often desired. Without interfering with the anti-
collision system 1itself, such an extension would both
calculate an anti-collision maneuver and display this
maneuver clearly to the navigator who steers the ship.
The data that describe the moving objects are avail-
able as the output from the ARPA system, and can be
used as input for computing procedures of a such deci-
sion support system. The system should find a set of
effective solutions with respect to the assumed criteria
and suggest some of them. The final acceptance of the
decision suggested by the system (or the selection of an
alternative decision from a set of the effective solutions)
is made, of course, by the navigator.

A detailed analysis of models and the synthesis of
algorithms for safe, optimum steering has been com-
pleted by Lisowski and Smierzchalski [10]. The prob-
lem of determining a safe trajectory as a nonlinear pro-
gramming task was formulated in [10], [19], where a
kinematics model of the own-ship was applied.! An-
other possible approach to this problem relies on re-
ducing the solution space to one of finite dimension
by creating a so-called digitized matrix of permissible
maneuvers for a given collision situation and a certain
instant of time [11]. Tn [15], [16], [17] the problem of
avoiding collisions was formulated as a multicriterion
optimization task (three separate criteria were used).
An attempt to estimate the safe trajectory using ge-

1This paper uses the following terminology: the term ‘own-
ship’ means the ship for which the path must be generated, and
the terms ‘strange-ship’ or ‘target’ mean other vessels in the en-
vironment that must be avoided. This is a standard terminology

(1], [2], [6]-

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

netic algorithms was presented in [4]. The collision
situation was modeled as a fuzzy process with many
inputs, while steering rules were selected by a fuzzy
classifier system.

The main goal of this paper is to discuss the problem
of avoiding collisions at sea from the perspective of an
evolutionary process. It seems that this problem is, in a
sense, similar to the problem of steering a mobile robot.
An evolutionary method (EP/N system) for generating
paths for a robot in partially-known environments was
presented in [20]. A modified version of the system has
now been developed that takes into account specific
characteristics of the collision avoiding process.

The new system YEP/N++ represents a significant
extension of its earlier version, EP/N, that was tested
in various environments as an approach for robot path
planning. EP/N assumes static obstacles (whether
known or unknown); consequently the speed of the
robot (i.e., the speed of the navigated object) is not
relevant to the problem of path finding (i.e., of finding
an anti-collision trajectory). In contrast, JEP/N++
also handles also dynamic obstacles. This allows an
anti-collision trajectory to consist of several segments,
where each segment is traversed with a particular
speed. The main innovation of this extended version
is the existence of different types of static and dy-
namic constraints, which reflect the real environment
with moving strange-ships (targets) and their dynamic
characteristics. In addition, the speed of the own-ship
need not be constant and the speed parameter can be
utilized to gain additional efficiency. The evolutionary
process searches for a near-optimum trajectory in a col-
lision situation and takes into account a time parameter
and the dynamic constraints, which represent moving
strange-ships (shapes and dimensions of these strange-
ships depend on assumed safety conditions). Also, the
speeds of strange-ships need not be constant.

The paper is organized as follows. The next section
contains a brief discussion on the structure of the steer-
ing system and provides an overview of methods for
planning safe trajectories in collision situations. Sec-
tion Il defines the problem of planning the own-ship
trajectory in collision situations, and discusses the is-
sue of modeling moving targets in an evolutionary sys-
tem. Section IV provides several examples of planning
a safe trajectory. The initial experiments assume that
the own-ships move with a constant speed; however,
varying the speed of the own-ship during the maneu-
ver may result in additional gains. Further experiments
illustrate this point clearly. Section V concludes the

paper.

II. A STRUCTURE OF OWN-SHIP STEERING SYSTEM

The problem of generating a route for a ship voy-
age can be perceived as a set of tasks with various time
horizons and multilevel control processes (see Figure 1).
The most general problem with the longest time hori-
zon (usually of several days) is termed “Route Planning
(Rp)” and covers from the starting position of the ship
up to the destination point. On this level, the route is
selected on the basis of some economic factors, includ-
ing fuel consumption, route length, and ship mainte-
nance cost. Moreover, navigation constraints and ma-
rine weather forecasts are also taken into account.

A problem on a lower level of the planning process
(so-called “Planning Safe Trajectory”) is concerned
with the generation of particular stages of the route. A
safe maneuver must be generated in cases of approach-
ing other targets and should take into account exist-
ing navigational limitations connected with the area’s
geometry (e.g., the existence of restricted zones and
canals). This is the task with a relatively short time
horizon (usually not exceeding one hour).

To generate a sequence of steering decisions, one can
use various models of the problem (static, kinetic, dy-
namic, model of matrix, etc. [9]) and various methods
for solving them (linear or nonlinear programming, dy-
namic optimization [10], [11], [16], [17], or as offered
here, an evolutionary algorithm). The required tra-
jectory is generated in two stages: “off line” and “on
line.” The “off line” stage assumes that all parame-
ters involved (e.g., speeds and courses of targets) are
constant. The ARPA system, however, monitors the
values of all parameters on a continuous basis while
the own-ship executes the trajectory. In the case of
any change (course and/or speed of any target) during
the “on line” stage, necessary corrections (imposed by
safety requirements) to the trajectory are made. Dur-
ing this process the trajectory determined in the “off
line” stage 1s taken as an initial solution for the “on
line” stage and the ARPA information about naviga-
tion situation (including the prediction of target’s po-
sitions) is used.

A new, corrected trajectory 1s passed to the “Adap-
tive Control” unit (see Figure 1), where the steering
process takes place (this process includes many addi-
tional parameters like currents, winds, and the shape
of the bottom of the sea) and is “adaptive” in the sense
that the values of these parameters change continually.
The unit “min Cost Criterion” (Figure 1) minimizes the
effort of the main engine, taking into account overload
of the torque and thrust of the propeller.

The last and lowest level of the steering system is
connected with the direct control of the ship’s move-
ments in real time. Here, the control instruments (e.g.,

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 3

main engine governor and autopilot) are used to follow
the trajectory selected earlier.

Route Planning
R_o\
\' Predictior)
Evolutionary e gkéENING
Computation TRAJECTORY
7\Idenﬂl‘kxlﬂon,
[Offline] [Online] [by ARPA
e ComL,
T Adaptiive on
L [Confrol TRAJEGTORY
Criterion
: DIRECT
Govemor Autopliot CONTROL
of COURSE and SPEED
|
Environment -
Steering Gear Z ;
% Main Engine _X B: §

Fig. 1. Structure of an own-ship steering system in a colli-
sion situation with an evolutionary component. The system
is divided into several parts: (1) route planning from the
starting position of the ship up to the destination point (by
evolutionary algorithm, where existing navigational limita-
tions are taken into account; (2) adaptive control, where the
steering process includes additional parameters (e.g., cur-
rents, winds, etc), (3) the minimization of the cost of main
engine work, and (4) the steering of the ship movements in
real time

The material presented in this paper concerns the
process of planning a safe trajectory, i.e., estimating
the optimum trajectory in a well-known environment
modeled by navigation constraints and moving targets
on the basis of the data recorded by the ARPA system.
The resulting trajectory (that represents the passing
path) consists of a number of line segments between the
assumed starting and ending states. The formulation of
the task of estimating the optimum safe trajectory in a
well-known environment involves defining the steering
goal and conditions at which this goal is to be reached.

The problem of safe steering of the own-ship in a
collision situation is usually divided into three phases.
In the first phase, the optimum safe trajectory of the
ship is estimated (“off line” stage) for certain naviga-
tion conditions [5]; as indicated earlier, the navigation
data are obtained from the ARPA system. These data
constitute the input data for procedures computing the
trajectory. In the next phase, the ship is steered along
the estimated trajectory, following the distance and
time preservation rule (i.e., the ship should arrive at
particular locations at particular times to avoid colli-

sion). Due to the safety conditions related to the pres-
ence of other moving targets, the actual locations of
the ship on the estimated trajectory must be corre-
lated with the time of the maneuver. In the third and
final phase (“on line” stage), the development of the
situation is controlled in an online manner and in the
case of changes in the parameters of motion of other
targets, the actual trajectory is corrected. When es-
timating a corrected trajectory, the current location
of the own-ship and current parameters of motion of
the targets comprise the starting configuration. Such
structure of an own-ship steering makes it possible to
steer the own-ship in a well-known environment with
both static and dynamic constraints, as well as to make
adaptive corrections of the ship trajectory in order to
follow unforeseeable changes in the situation at sea.

A. Methods for planning safe trajectories

Several methods for finding safe trajectories have
been proposed [4], [10], [11], [19], [15], [16], [17]. They
model the problem in different ways but most of them
share common assumptions: (1) the encounter occurs
at open sea (i.e., there is no land involved in the pro-
cess of finding a trajectory), and (2) the strange-ships
do not change their speed and course. The methods
differ in the way they model the problem and the re-
sults and the computational effort of these methods
vary significantly.

For experimental comparison of these methods we
have used a set of typical collision situations, which is a
standard collection of test cases for navigators (during
a course on ARPA) at the Department of Navigation
of Gdynia Maritime Academy.? For 12 test cases we
report the average computational time of the method.?
We discuss these approaches in turn:

Indispensable maneuver: This algorithm [18] pre-
scribes the kinematic maneuver (single change of the
course and/or the speed of the own-ship) for avoid-
ing collision in a multitarget encounter. A geometric
analysis of the vectors of velocity of the ships yields a
prescription of the necessary changes of course and/or
speed of own-ship in a situation of encountering a tar-
get. On this basis, a relation is derived for the minimal
change of the course of own-ship to the left and to the
right side of the ship at a given speed and at a given
safe distance. The average computational time was 15
seconds.

Utilization of potential collision threat area: This algo-
rithm [11] also returns a recommendation for a single
change of the course and/or the speed of the own-ship.

2These test cases are solved on the radar simulator built by
Norcontrol.

3All calculations were done on a Pentium Pro 200 MHz PC
computer.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

The algorithm determines the potential collision threat
areas (PCTA). Geometrically, the safe condition is sat-
isfied when the end of the vector of the own-ship is
found outside of the PCTA danger area. The average
computational time was 35 seconds.

Indispensable trajectory: The method [11] returns a se-
quence of changes for the course and/or speed of the
own-ship. Inserting a subprocedure for the indispens-
able maneuver inside a program loop offers the possi-
bility for describing the safe trajectory as a series of
maneuvers. The durations of individual maneuvers are
determined by the time of realization of the real ma-
neuver considering the dynamical characteristics of the
own-ship. The computational time was b minutes.
Optimal trajectory: The method [10], [19] also returns
a sequence of changes for the course of the own-ship.
The method models the problem as a nonlinear pro-
gramming task with constraints, where a kinetic model
of the own-ship 1s applied. The criterion was defined
as the deviation from a given course. The safety condi-
tions were modeled as moving areas with nonlinear ad-
mittance restriction. By digitizing the trajectory, the
problem was reduced to a finite-dimension nonlinear
programming task and solved using gradient methods
with a penalty function. The computational time av-
eraged 10 minutes. It is also the only listed algorithm
that can be applied not only to “open sea” scenarios,
but can include static navigational constraints (e.g.,
shore line).

The above comparison shows clear limitations of the
existing methods and the need for a more general ap-
proach that:

o returns a sequence of changes for the course and/or
speed of the own-ship

o 18 applicable in situations where targets may change
their strategies (i.e., their courses and/or speeds)

o is applicable in all scenarios (with and without static
navigational constraints)

s the average computational time remains reasonable
(e.g., does not exceed 1 minute)

This was the main motivation for building a
new version of the Evolutionary Planner/Navigator
(VEP/N++) as a method for finding safe trajectories in
collision situations. The experimental results discussed
here indicate that the evolutionary system outperforms
other methods and satisfies all the above requirements.
Moreover, the evolutionary algorithm JEP/N++ is ap-
plicable to “off line” and “on line” stages of the process
of safe steering in a collision situation.

I1I. EVOLUTIONARY ALGORITHM AND COLLISION
AVOIDANCE

This section defines the problem (environment and
constraints), describes the problem of planning the

own-ship trajectory in collision situations, and dis-
cusses the i1ssue of modeling moving targets in an evo-
lutionary system. We also describe the developed sys-
tem, 9EP/N++, and provide two simple examples of
its actions.

A. Definition of environment and constraints

The ship sails in an environment with some natural
constraints (e.g., land, canals, shallow waters) as well
as other constraints resulting from formal regulations
(e.g., traffic restricted zones, fairways). It is assumed
that these constraints are stationary and that they can
be defined by polygons — the very way these con-
straints are represented on the electronic maps. When
sailing in an environment, the own-ship meets other
sailing strange-ships. Some of these targets constitute
a collision threat, while the others do not influence the
safety of the own-ship.

The degree of the collision threat with dangerous
targets is not constant and depends on the approach
parameters: Depa (Distance at Closest Point of Ap-
proach) and T¢pa (Time of Closest Point of Ap-
proach), as well as on the speed ratio of the both ships,
and the distance and bearing of the target.

It is assumed that a dangerous target is one that has
appeared in the area of observation? and can cross the
estimated course of the own-ship at a dangerous dis-
tance. In the evolutionary system, the targets threat-
ening a collision are interpreted as moving dangerous
areas having speeds that correspond to speeds of mov-
ing targets, which are determined by the ARPA sys-
tem. The shapes of these dangerous areas, on the other
hand, depend of the safety conditions: an assumed safe
distance, Dyqpe,” speed ratio, and bearing.

Figures 2 and 3 display models of the environment
where:

¢ fixed navigation constraints are modeled using con-
vex and concave polygons

¢ moving targets are modeled as moving hexagons

o the dimensions of the own-ship are neglected due to
small length of the own-ship with respect to the max-
imum length of the areas representing the moving tar-
gets

B. Planning the trajectory in a collision situation

According to transport plans, the own-ship should
cover a given route Ry in some assumed time. On the

4Ranges of 5-8 nautical miles in front of the bow, and 2-4
nautical miles behind the stern of the ship are assumed. Their
actual values depend of the assumed time horizon.

5A safe distance is selected by the operator depending on the
weather conditions, the sailing area, and the speed of the own-
ship.

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 5

100

L FOLKEST

51 A

50

DOVER: STRAIT

Own Ship
Beginning

Fig. 2. Navigation situation in Dover Straits. There is an own-
ship, four strange-ships, and several navigational constraints

End

y=135
(course)
y=225

(course)

Target 1
Target 2

Potential points)
of collision

w= 000

(course)

Own Ship

Beginning

Fig. 3. Approaching two moving targets with hexagonal con-
straint shapes

other hand, it has to move safely down a given trajec-
tory, i.e., it must avoid navigation obstacles and cannot
come too close to other moving targets. Estimation of
a ship’s trajectory in a collision situation represents a
difficult trade-off between a necessary deviation from
a given course and the safety of sailing. Hence it is
a multicriterion planning problem that takes into ac-
count the safety and economy of the ship motion.

The estimation of the own-ship trajectory in the col-
lision situation consists of determining a path, S, as the
part of the given route Ry, from the present location
(starting point) (zo,y0) € Ro to the actual end point

(Ze,ye) € Ry. This path has the form of a sequence of
elementary line segments s; (i = 1,...,n), linked with
each other in turning points (#;, y;). The choice of the
actual starting and end point depends on an assumed
sensible horizon and is made by the operator. The
boundaries of the environment are defined as

E={(r,y) €R? : a<a<b c<y<d}; (1)
Ostat; (j = 1,...k) and Odyn;(t) (j = k +
1,...,1) represent the sets of static and dynamic con-

straints, respectively. Note that each dynamic con-
straint, O_dyn;(t), is time-dependent; i.e., it de-
fines different subareas of E for different values of ¢.
Clearly, static constraints represent time-independent
constraints (e.g., lands, canals, restricted zones, etc),
whereas dynamic constraints represent strange-ships.

The space SF(t) of safe (anti-collision) paths is de-
fined as

SF(t) = E — U§:1 O stat; — Uﬁ:;m O_dynj(t). (2)

In other words, a path S is safe (i.e., it belongs to
the set of safe paths SF(¢)) if any segment s; (¢ =
1,...,n) of S stays within the limits of environment
F, does not cross static constraints O_stat;, and at the
time instances ¢ determined by the current locations of
the own-ship, does not come in contact with moving
areas O_dyn;(t) representing targets. Paths that cross
the restricted areas generated by static and dynamic
constrains are called unsafe, or dangerous paths.

The task of estimating the own-ship trajectory in a
collision situation (so-called the steering goal) is per-
formed as an evolutionary search for safe paths in the
permissible space F, with subsequent selection of a
near-optimum path S* from the set SF with respect
to the fitness function (defined by the path cost).

C. Evolutionary system: 9EP/N++

Evolutionary algorithms [13], [14] have received con-
siderable attention regarding their potential as opti-
mization techniques for complex real-world problems.
These techniques, based on the important principle of
“survival of the fittest,” model some natural phenom-
ena of genetic and phenotypic inheritance and Dar-
winian strife for survival. They also constitute an in-
teresting category of modern heuristic search. They
constitute a class of adaptive algorithms with opera-
tions based on probabilistic methods for creating new
individuals in a population of solutions. In the dis-
cussed method of the safe trajectory estimation, they
are used for creating and maintaining a population of
passing paths, and through a process of variation and
selection, finding a near-optimum solution.

In [20] a description of an evolutionary algorithm,
Evolutionary Planner/Navigator (EP/N) was provided

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

as a novel approach to path planning and navigation.
The system unified offline planning and online plan-
ning/navigation processes in the same evolutionary al-
gorithm that (1) accommodated different optimization
criteria and changes in these criteria, (2) incorporated
various types of problem-specific domain knowledge,
and (3) enabled good trade-offs among near-optimality
of paths, high planning efficiency, and effective han-
dling of unknown obstacles. All reported experiments
were limited, however, to static obstacles. Conse-
quently, the speed of the controlled robot was of no
significance.

Based on the EP/N planning concepts presented in
[20], a modified version of the system (JEP/N++) has
been developed which takes into account the specific
character of the collision avoiding process. The new
system preserves the original structure of the EP/N
(e.g., it is also a steady-state system where two popu-
lations separated by one generation differ at most by
a single individual, it has the same set of eight vari-
ation operators). The main innovation of the mod-
ified version is that it processes both static and dy-
namic constraints, which reflect the real environment of
fixed navigation constraints as well as moving strange-
ships, whose shapes and dimensions depend on as-
sumed safety conditions (the safe distance between the
passing targets, their speed ratio, and bearing).

There are several consequences of this modification
and the new system, JEP/N++ differs from the orig-
inal EP/N in several aspects:

o 1t processes dynamic as well as static constraints

o it introduces the concept of time, which is essential
while dealing with movable obstacles

o 1t allows the own-ship to change its speed
Consequently, some changes were made with respect to
path representation (e.g., each path segment includes
a value for speed for this segment) and operators. The
evaluation function was changed as well: The concept
of the best path, apart from distance, smoothness and
clearance, also includes a component corresponding to
the time needed to traverse the path. It was also neces-
sary to develop new procedures for modeling dynamic
obstacles for a given path and calculating a position
of the own-ship with respect to these obstacles. The
outline of the algorithm is shown in Figure 4.

A path S is represented by a single individual (chro-
mosome). In the original EP/N [20], each individ-
ual consisted of variable-length sequence of genes that
specified co-ordinates (#;, y;) of turning points between
line segments s; and s;41. The starting point (zg, yo)
and the end point (z., y.) were the same for all individ-
uals. Each gene also contained a link to the next gene
of the same chromosome and a state variable b, pro-
viding information such as whether or not (1) the knot

Evolutionary Navigator EP/N++
T=0;
input_data_for_parametrizing_operation();
input_data_for_defining_environment();
P(T) = creation_of-initial_chrom_population();
building_dynamic_obstacles();
population_evaluation(P(T));
while (# termination_condition)

T=T+41;

Op = operator_selection();

Par = selection_of_parents_or_parent();
offspring_creation(Op, Par);
building_dynamic_obstacles();
population_evaluation(P(T));
introduction_of-new_individual();
selection_of_best_individual(P(T));

}
}

Fig.4. A high-level description of the structure of the JEP /N++
algorithm.

point was feasible (i.e., outside obstacles), and (2) the
path segment connecting the knot point to the next
knot point was feasible (i.e., without intersecting ob-
stacles). Thus, a path (or chromosome) could be either
feasible or infeasible. A feasible path was collision-free,
i.e., has only feasible nodes and path segments. In the
JEP/N++ version, this representation was extended:
the gene ¢ includes the speed v of the own-ship for
traversing segment ¢ (see Figure 5).

[N

Xo‘yo‘vo‘bo > yl‘vl byl T T e Ve Velb

Fig. 5. A linked list chromosome representing a path. Each
node contains z and y coordinates of the turning point to-
gether with a state variable b, which provides information on
feasibility of the knot point and the following segment, and
with a speed variable v, which determines the speed of the
own-ship for traversing the segment starting at this turning
point. The point (z1,y1) is the first turning point after the
starting point and the point (zc,yc) is the end point (note
that the starting and end points are fixed).

The initial population of m individuals is generated
randomly. The maximum length of a chromosome, i.e.,
the number of turning points (genes), is an input pa-
rameter ¢ of the system. Each individual contains a
number of genes selected in a random manner (uniform
distribution over the range [3..q]), and the coordinates
(25, y;) of each gene are randomly selected from the per-
missible space . The speed variable v; takes a random
value selected (again, with uniform distribution) from
a discrete domain of available speeds.

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 7

The experiments (discussed further in Section IV) in-
dicated that the computational time of the algorithm
(or, the number of generations required to reach a qual-
ity solution) depends on the number m of individuals
in the population and the maximum length ¢ of chro-
mosomes. However, small values of m and ¢ resulted
in inferior solutions and required larger number of gen-
erations. To resolve the above tradeoff, we have set
m = 30 and ¢ = 10. We have also set the boundaries
of environment £: a = ¢ = 0 and b = d = 7 nautical
miles (see formula (1)), which was a reasonable choice
for ships moving with a speed up to 14 knots.

The original version of EP/N used eight types of
operators to evolve chromosomes. The EP/N was a
steady-state evolutionary system where only one oper-
ator was applied within a single generation to produce
offspring.® The produced offspring (by a selected oper-
ator) replaced the worst individual in the population.
Thus, the populations P(t + 1) and P(t) differed by a
single individual. The process terminated after some
number of generations, which could be either fixed by
the user or determined dynamically by the program
itself, and the best chromosome represented the near-
optimum path found.

This structure was preserved in YEP/N++ version
with two minor changes. First, selection of the op-
erator is performed randomly (mainly to reduce the
number of parameters of the system). As before, an
offspring 1s produced by application of a single opera-
tor (it replaces the worst individual in the population).
Second, the set of operators was extended by an ad-
ditional operator, speed mutation, and now it includes:
soft mutation, mutation, adding a gene, swapping gene
locations, crossing, smoothing, deleting a gene, indi-
vidual repair, and speed mutation. We briefly discuss
these operators in turn.”

Mutate_1 is used for fine tuning node coordinates in a
feasible path for shape adjustment. Given a path, the
operator randomly selects® its nodes for adjusting their
coordinates within some local clearance of the path so
that the path subsequently remains feasible.

Mutate_2is used for imposing a large random change of
node coordinates in a path, which can be either feasible
or infeasible. Given a path, the operator randomly
selects a node and changes the coordinates of this node
randomly.

6The first version of EP/N required fixed probabilities for all
operators. Later, advanced versions of EP /N [20] adapted these
probabilities during the run. This was the main reason for ap-
plying one operator only in a single generation, as it was easier
to evaluate operators’ performance.

"For a full discussion on the first eight operators, see [20].

8Here and in the rest of the descriptions of operators, “ran-
dom selection” means selection with equal probability for all
outcomes.

Insert-Delete operates on an infeasible path by insert-
ing randomly generated new nodes into infeasible path
segments and deleting infeasible nodes (i.e., path nodes
that are inside obstacles).

Delete removes nodes from a path, which can be ei-
ther feasible or infeasible. If the path is infeasible,
nodes for deletion are selected randomly. Otherwise,
the operator decides whether or not a node should be
deleted based on some heuristic knowledge. In the case
where there is no knowledge supporting the deletion of
a node, its selection for deletion is decided randomly
with a small probability.

Crossover recombines two (parent) paths into two new
paths. The parent paths are divided randomly into
two parts respectively and recombined: The first part
of the first path is put together with the second part of
the second path, and the first part of the second path
with the second part of the first path. Note that there
can be a different number of nodes in the two parent
paths.

Swap exchanges the coordinates of selected adjacent
nodes in a path to eliminate two consecutive sharp
turns. The path can be either feasible or infeasible.
The probability for selecting a node n; and the next
node n;y1 is proportional to the sharpness of the two
turns (measured by angles between the path segments)
at the two nodes.

Smooth smooths turns of a feasible path by “cutting
corners,” 1.e., for a selected node, the operator inserts
two new nodes on the two path segments connected to
that node respectively and deletes that selected node.
The nodes with sharper turns are more likely to be
selected.

Repair fixes a randomly selected infeasible segment in
a path by “pulling” the segment around its intersecting
obstacles.

Speed mutation replaces one v value for a randomly
selected path segment by a random value from a pre-
defined finite domain of possible speeds.

Some operators (e.g., “repair”) defined for the origi-
nal EP/N [20] modify the path by selecting an infeasi-
ble segment and then pulling the segment around the
intersecting obstacles, thus repairing the selected seg-
ment. Note, that the action of the counterpart operator
in YEP/N++ is the same, however, it repairs infeasi-
ble segments in the presence of dynamic constraints (it
pulls the segment around static and dynamic obsta-
cles).

Although “change of the trajectory” is considered as
the basic anti-collision maneuver [11], in some cases an
additional “change of speed” might be beneficial. For

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

example, if the trajectory of the own-ship passes close
to the stern of some strange-ship, it might be desirable
to reduce the speed of the own-ship to minimize the
total length of the trajectory and to increase safety of
the passage. The YEP/N++ system can be run in two
modes: with a constant or variable speed of the own-
ship (i.e., the speed mutation operator may be switched

off).

As in any evolutionary algorithm, the evaluation
function should distinguish between better and worse
solutions (paths) for the actual steering goal in the
examined environment. Thus the evaluation function
Path_Cost(S) must include both the safety conditions
Safe_Cond(S) of sailing along the path S, and the
economic conditions Fcon_Cond(S) resulting from the
shape of the own-ship’s route. The safety conditions
are satisfied for a given path S if it does not cross the
boundaries of constraints (such a path S is called a safe
path). As with the original EP/N| there are two differ-
ent evaluation functions for safe and dangerous (unsafe)
paths. For a dangerous (i.e., unsafe) path, a number of
border crossings i1s examined together with the length
of the penetration distance inside the restricted dan-
gerous area. On the other hand, in the case of a safe
path, the quality of the path is estimated using the
total past cost (Path_Cost(S)):

Path_Cost(S) = Safe_Cond(S) + Econ_Cond(S); (3)

where

Safe_Cond(S) = w, - clear(S); (4)
Econ_Cond(S) =

wq - dist(S) + ws - smooth(S) + wy - time(S); (5)

All functions, clear(S), dist(S), and smooth(S), have
the same meaning as in EP/N (see [20]); however, the
procedure to calculate the clearance 1s more complex
now as dynamic obstacles are considered. Additionally,
time(S) returns the total time of the own-ship to pass
the path S.

Note that safety and economics are combined into
one objective function. The constants w.=1, wy=1,
ws=3, and w;=1, which were used as weight coefficients
in all experiments, were tuned on the basis of several
experiments (i.e., we tried to minimize the deviation
between the best trajectory found by the evolutionary
algorithm and the trajectory recommended by an ex-
perienced navigator). These values are likely far from
being optimal, but they demonstrate the workings of
the YEP/N++ system well.

As there are two independent evaluation functions
(for feasible and infeasible paths), it is necessary to
have a mechanism for comparing safe (feasible) with
unsafe (infeasible) paths. Here we assumed that any

safe trajectory has a better fitness than any unsafe tra-
jectory. It is quite easy to implement this mechanism:
It 1s sufficient to add an appropriate penalty constant to
the evaluation scores of all infeasible paths. This mech-
anism, together with the “repair” operator, drives the
population (which initially consists of infeasible trajec-
tories) into a feasible area of the search space. It might
be difficult to argue, however, that the 9EP/N++ sys-
tem guarantees a feasible solution. Some environments
(e.g., a narrow harbor with over 100 ships moving in
cycles) may require sophisticated trajectories that in-
volve many small turns; for some other environments,
a safe trajectory may not exist. On the other hand, in
normal circumstances (e.g., the standard test cases con-
sidered in this paper), the system always finds feasible
trajectory (in the first few generations).” The termina-
tion condition of the evolutionary loop (while loop in
Figure 4) was “lack of progress in 100 iterations.”

D. Modeling of moving targets in evolutionary environ-
ment

In our initial experiments (section IV) the own-ship
moves with a speed ¢ (along the a safe path S) from
the starting point (zo,yo) to the end point (z.,y.),
and at the initial instant {g, the motion of the strange-
ships is defined as uniform. For each target, its motion
is represented by the following parameters: bearing,
distance, speed, and course, estimated by the ARPA
system. The path of the own-ship has the form of a
sequence of elementary line segments s; (i = 1,...,n),
linked with each other in turning points (z;, y;).

These initial experiments considered the speed of the
own-ship constant; however, it is possible to gain addi-
tional efficiency while varying the speed. We return to
this issue later in the paper (section TV-A).

It is relatively easy to initialize the population of
paths: Each path (individual) can be generated ran-
domly. Next, each path is evaluated. To determine
whether or not a path is safe, the path is examined with
respect to the set of static and dynamic constraints.
The instantaneous locations of the dynamic areas with
respect to the evaluated path depend on time t., deter-
mined by the first crossing point (¢, y.) between the
own-ship’s path S and the trajectory of the target. For
example, in the Figure 6, these crossing points are the
points of the biggest collision threat for paths 1, 2, and
3. Having known the length of the line segment from
the starting point (2o, yo) to the crossing point (z, ¥.)
and assuming that the own-ship will keep moving with
a uniform speed ¥, it is possible to determine the time

9The system found feasible solutions in scenarios up to 20 tar-
gets, as required by the International Maritime Organization
rules.

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 9

t. that the own-ship needs in order to cover this dis-
tance.

End

b (XYsh), t Target 1
) . .

(T <>,, >"<“E‘

O Gent))

Pathd . Path 2 Path1

ﬂ Own Ship
Beginning

Fig. 6. Crossing paths and the corresponding dangerous areas

After time t., the instantaneous location of the tar-
get with respect to the own-ship is modeled as a dan-
gerous area of hexagonal shape. Referring again to
Figure 6, three locations of the target (at times ¢;, ¢,
and t3) are given for three paths. Note that the path
segment of path 1 between the own-ship and the inter-
section with the trajectory of the target is the longest
one (i.e., longer than similar path segments of paths 2
and 3). Consequently, ¢; is larger than ¢ and ¢, and
the hexagonal shape of the target for ¢; is the leftmost
one. Of course, as explained earlier, the detailed shape
and dimensions of the hexagon depend on the safety
conditions given by the operator.

After the paths are evaluated, selected paths are
modified by a specialized set of operators (for details,
see [20]).

The values assumed in the paper are the following:
o the distance in front of the bow that guarantees
avoidance of the collision is equal to 3 Dyqyc (in prac-
tice, safe distance D,,¢. is taken from the range be-
tween 0.5 and 3.0 nautical miles)

o the distance behind the stern is equal to D,y

o the width of the dangerous area on each side of the
own-ship is chosen with the preference of the ship’s
passage behind the stern of the target, which depends
on the course and bearing of the target

E. Two simple examples

Before we present the results of the evolutionary sys-
tem on several test cases, we provide two simple exam-
ples where the set of static constraints is empty and the

dynamic constraints are defined by one or two strange-
ships, respectively.

The first example (Figure 7) shows the situation
when the own-ship approaches a single target on its
right side.!® The population consisted of 10 individu-
als (paths), and the system converged after 300 gener-
ations (3 seconds!! of CPU time). It is clear that the
own-ship, steering along the developed trajectory, will
pass the target safely, passing it behind the stern. It is
interesting to note that initially (see Generation = 50)
the own-ship tried to move “left” (somewhat along the
target), but clearly, a much better maneuver is to go
slightly right (as it is the case for Generation = 300).

Generation = 0

I J k':

Y

Environment = End

Target 1
speed = 10 knots
Potential paint caurse = 270

of collision
Dangerous Area
apead = 10 knots

course = 000
Eeg\nnlng@ Own Ship

(eneration = 50 Generation = 300

Best path Best path

Fig. 7. Evolution of paths for the case of approachingone moving
target

The second example (Figure 8) is similar to the first
except that there are two moving targets sailing in op-
posite directions on the right and left sides of the own-
ship. The population consisted of 10 paths, and the
system converged after 450 generations (5 seconds of
CPU time). The optimal trajectory secures the pas-
sage of the own-ship behind the sterns of the targets 1
and 2.

Note that in all three motion diagrams of Figures 7
and 8 (as well as in all further figures) the locations
of the dynamic areas are shown (black hexagons) with

10 As usual, time horizons for collision avoidance are around 30
minutes, we assumed z = y = 8 nautical miles.
11 A1l calculations were done on a Sun Ultra-Enterprise 4000

with 2 processors UltraSPARC 167TMHz.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

Generation = 200

Environment +End
Taiget 2 :

Bpeed = 9 knols
course = 090

Target 1
speed = 10 knots
oourse = 270

speed = 10 knots
caurse = 00¢

Own Ship

Beginning-

Generation = 300 Generation = 450

Best path

Fig. 8. Evolution of paths for two targets being approached

respect to the best path (as explained in section III-
D, these locations depend on time determined by the
first crossing point between the own-ship’s path and
the trajectory of the target).

IV. PLANNING A SAFE TRAJECTORY

The operation of the system has been examined for
a number of collision situations. We discuss these en-
vironments in turn. As indicated earlier, we assume
initially that the speed of the own-ship, 9, is constant.
In all the following experiments, the population size
is 30, 1.e., the evolutionary system processes 30 paths.
Twenty independent runs were made for each collision
situation. In each case, all 20 runs converged to al-
most the same trajectory, subjectively, and the progress
made by the algorithm was very much the same. Thus
the following discussion applies to any of the 20 runs.

In some real situations like straits, channels, etc.,
the number of involved ships might be quite significant
(e.g., the system ARPA monitors up to 20 targets).
However, only few of them are present in the potential
collision threat area; a typical number of ships involved
varies between 1 and 3.'? In the same time these sit-

12The only areas where larger numbers of ships might be
present are port entrances. For example, the number of ships en-
tering the port in Rotterdam is approximately 50,000 per year.
In such scenarios special traffic control systems are used (e.g.,
VTS — Vessel Traffic Services), whereas ARPA is used as a sec-

ondary support system.

uations require a higher number & (see formula (2)) of
static navigational constraints; often & > 4. This is
an underlying scenario for experiments reported in this
section.

The first example (Figure 9) is quite characteris-
tic for sailing in narrow passages. It models an envi-
ronment with static navigational constraints and with
three moving targets. These three targets have differ-
ent speeds (10.0, 8.0, and 5.0 knots, respectively) and
they move in different directions (their courses are 225,
135, and 270 degrees, respectively) from different loca-
tions (targets 1 and 3 are initially located in the upper
right corner of the environment, whereas target 2 — in
the upper left corner).

The system converged after 1100 generations (42 sec-
onds). The estimated trajectory secures a safe passage
of the own-ship behind the sterns of the targets 1 and
3, and well in front of target 2.

Environment End. Target3
speed =6 knots
course = 270

Target2 Target 1
speed =8 knots speed =10 knots
course = 135 course= 225,

Generation = 0

speed =10knots
course =065

Generation = 600 Generation = 1100

Best path

Best path

Fig. 9. Path evolution for the case of approaching three mov-
ing targets in the presence of static navigation constraints;
example #1

The second example (Figure 10) represents two tar-
gets moving in parallel in the same direction (from right
to left), however, with different speeds. The environ-
ment has some static navigational constraints. The sys-
tem converged in 800 generations (23 seconds). The
best trajectory secures the passage of the own-ship be-
hind the sterns of targets 1 and 2.

In the third example (Figure 11) there are three mov-
ing targets distributed in three corners of the environ-

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 11

End,

speed =3 knots
course =270
Target 1

Environment Generation = 0.

Target2
speed =2 knots
course =270

K

speed =10knots
@" course =070
Beginning Own Ship

Environment
End,

L/

speed = 2.3 knots|
speed :129knots course = 202.0

Target 3

course = 1:
Target 2

Target 1

speed = .3knots
speed =14.0knots course = 323.7
course =54.0

Ainning

Own Ship

Generation = 400 (eneration = 800

Best

1 Best path

Generation = 100 Generation =200

Fig. 10. Path evolution for the case of approaching two mov-
ing targets in the presence of static navigation constraints;
example #2

ment: upper left, upper right, and lower right. The
starting position of the own-ship is in the fourth cor-
ner: All targets and the own-ship move towards the
center of the environment. There are also two static
navigational constraints. The system converged after
600 generations (28 seconds). The best trajectory se-
cures the passage of the own-ship behind the stern of
target 1, in front of target 2, and along the side of
target 3.

The fourth example also represents the same envi-
ronment as the previous one (example #3), however
the speed of target 2 is changed from 12.9 knots to
16.9 knots. Note, that in such a case the own-ship can-
not secure its passage in front of target 2, thus it is
necessary to pass this target behind its stern (Figure
12). Clearly, the system finds this solution easily.

These four examples illustrate the point that an evo-
lutionary algorithm can be used effectively for solv-
ing the problem of avoiding collisions at sea (“off line”
stage). Note, however, that in all experiments the own-
ship was assumed to move with a uniform speed.

A. The importance of speed of the own-ship

Let us consider an additional example. Assume, the
environment has six static navigational constraints (see
Figure 13) and two targets. The own-ship starts close
to the upper-left corner of the environment and must

Generation = 500 Generation = 600

-,

Best
path

1N

Fig. 11. Path evolution for the case of approaching two mov-
ing targets in the presence of static navigation constraints;
example #3

reach a location on the opposite side of the strait (close
to the lower-right corner). Note that there is a passage
between two narrow islands located in the middle of
the strait, however, the movement of targets 1 and 2
makes this passage difficult. Note also that the speed
of the own-ship is ¥ = 8.6 knots.

Since the targets 1 and 2 are blocking the passage
of the own-ship between two islands, the system devel-
oped a trajectory (Figure 13) that is “going around”
the islands rather than between them. In that case,
target 1 does not pose any collision threat; however, it
is still necessary to avoid target 2. This task is ac-
complished by a tiny maneuver at the upper tip of
the upper island: By making a sharp right turn and
shortly afterwards, a left turn, the own-ship can avoid
the hexagon of target 2.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

Generation =200

Environment
Target 1

speed = 10.6 knots
course = 225

Own ship
speed = 8.6 knots
course = 165

Target 2
speed = 8.9knots
course = 55.4

Generation = 800

Fig. 12. Path evolution for the case of approaching two mov-
ing targets in the presence of static navigation constraints;
example #4

It is interesting to repeat the same experiment, where
the speed of the own-ship is reduced: ¥ = 5.6 knots.
In such circumstances the own-ship would approach the
gap between islands at a slower rate. Consequently, it
would pay off to develop some “waiting maneuvers”
to let the target 1 pass the gap area. This was pre-
cisely the outcome of such an experiment (see Figure
14) where the best trajectory, after several tiny maneu-
vers at the beginning of the path, finds its way between
islands and avoids both targets: It passes behind the
sterns of targets 1 and 2.

The last two examples demonstrate that the speed
of the own-ship can have an enormous influence on
the final shape of the trajectory. So let us examine
then the most interesting possibility when the own-ship
can change its speed during the maneuver. In reality,
these changes are quite limited due to the fact that
“change of the trajectory” is considered as the primary
anti-collision maneuver [11]. Of course, anti-collision
maneuvers also allow changing the speed of the own-
ship, but only when such a change decreases probability
of collision (note that the unwillingness to change the
speed of a ship is considered as one of the reasons for
the Titanic disaster [12]).

In the following example we assume that the speed of
the own-ship can vary, and that it can be either 3.6, 8.6,
or 13.6 knots (slow ahead, half ahead, and full ahead).

Generation = 1600

{

Generation = 700

Fig. 13. Path evolution for the case of approaching two moving
targets in the presence of static navigation constraints; the
speed of the own-ship is ¢ = 8.6 knots

Note that this simple change triggers many important
changes in the code of the evolutionary system. First,
the speed of the ship is represented in a chromosome for
every segment of a path. Further, it was also necessary
to develop operators that were responsible for chang-
ing the speed values. If speed takes one value from a
predefined (and relatively small) set of values, a binary
representation of the speed (together with a binary flip-
bit mutation) is appropriate (this is the current state of
development in our system, YEP/N++). However, if
the changes in speed are arbitrary, it can be represented
as a floating-point number (together with a Gaussian
mutation, for example). Also, it is possible to represent
rather a change in speed as opposed to speed itself —
this is the area for further studies. Figure 15 displays
the result of such an experiment. Again, we have used

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 13

Generation = 200 Generation = 400

Environment

Generation = 100

speed = 10.6 knots
course = 225

p!
Own ship
speed =8.6 knots

(#/-5 knots)
course = 165

speed = 8.9knots
course = 55.4

Generation = 500

Generation = 600

Fig. 14. Path evolution for the case of approaching two moving
targets in the presence of static navigation constraints; the
speed of the own-ship is ¢ = 5.6 knots

the same environment as in the previous experiments
(reported in Figures 13 — 14). In accordance with the
“common sense” for a such environment, the initial seg-
ments of the best trajectory are covered with a mini-
mum speed of 3.6 knots, whereas the final two segments
are covered with maximum speed of 13.6 knots.

B. Further experiments with 9EP/N++

Consider an additional scenario, in which a target
changes its speed. This corresponds to “on line” stage
of the steering process, where any changes are taken
into account. It would be interesting to check the per-
formance of the JEP/N++ system when, for example,
the moving target 3 reduces its speed at some time #;
(the environment and three targets are these of Figure
9). Note that the initial speed of the target 3 is 5.0
knots.

Now, let us consider two cases:

o at time ¢ target 3 reduces its speed to 3.0 knots

o at time ¢ target 3 reduces its speed to 4.0 knots

In the experiment, until time ¢1, the own-ship has been
traversing the near-optimal trajectory, identical to the
one displayed in the lower-right square of Figure 9. Un-
til that time, the speed of the target 3 was constant,
equal to 5.0 knots, and from the time point ¢; there
is a change in the environment: The target reduces its
speed.

Generation = 300

(n 36kn.

)

Generation = 500

Generation = 800

V=136 kn,
(5)

Fig. 15. Path evolution for the case of approaching two moving
targets in the presence of static navigation constraints; the
speed of the own-ship is variable

Figure 16 displays the results of two experiments,
which correspond to the cases of speed reduction to 3.0
or to 4.0 knots, respectively. In the former case (left
part of Figure 16) the system found a safe path for the
own-ship in front of the bow, and, in the latter case
(right part of Figure 16) the path was behind the stern
of the target. Each case took 1100 generations.

This example demonstrates the flexibility of the
JEP/N++ system, which can easily incorporate the
concept of variable speed of the targets. This is impor-
tant since such a model (which includes variable speed
of the own-ship and variable speed of the targets) more
faithfully represents the real environment.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

Generation=1100 -*End . Target3 Generation =1100 * End

Target3
for time t y

speed = d knots
course = 270

for time t9

speed = 3 knots
course =270

k
\

Fig. 16. Near-optimum paths of the own-ship when the target
3 reduces its speed (a) from 5.0 to 3.0 knots, and (b) from
5.0 to 4.0 knots

V. COMPARISONS AND CONCLUSIONS

The evolutionary method of estimating the safe and
optimum passing path, being the own-ship’s trajec-
tory in the environment with static and dynamic con-
straints, represents a new approach to the problem of
avoiding collisions at sea. A number of preliminary
tests, presented in the paper, allows us to formulate
the following conclusions:
¢ evolutionary algorithms can be used effectively for
solving the problem of avoiding collisions at sea, where
an environment is modeled as a set of polygons repre-
senting navigation constraints and moving targets (the
detailed shape and dimensions of the hexagon depend
on safety conditions and parameters of motion entered
by the operator)
¢ an evolutionary algorithm can be used to adapt the
speed of the own-ship to optimize the maneuver even
further
o the task of evolutionary estimation of the own-ship
trajectory in a collision situation is reduced to an adap-
tive search for a set of safe paths S in a permissible
space F/, with subsequent selection of the optimum tra-
jectory with respect to the fitness function
o 1t 1s quite easy to extend the model to include vari-
able speed of the targets
o the average computational time (on the standard
twelve test cases; see section II-A) was 55 seconds
¢ the running time of the algorithm is a linear function
of the number of dynamic and static constraints. For
example, the computational time for typical environ-
ment with two static and two dynamic constraints was
around 30 seconds (approx. 800 generations), whereas
an addition of one or two extra targets increases the
time to 40 or 50 seconds, respectively. On the other
hand, the addition of one or two extra static constraints
increases the time to 33 and 36 seconds, respectively.

It is interesting to compare various algorithms for
planning safe trajectories in collision situations (see

Section I1-A). In the following study for each method
we considered (1) required computational effort, (2) the
scope of the problem being solved, (3) feasibility of us-
ing the algorithm in real navigational situations, (4)
type of allowed maneuvers (e.g., course or/and speed),
(5) assumed safe distance between ships, (6) number
of targets, and (7) type of constraints. The following
algorithms were included in the study:

o Indispensable maneuver. The algorithm returns a
single change of the course and/or the speed of the own-
ship for avoiding collision in a multitarget encounter.
Some assumptions made by the method include con-
stant course and speed of all targets. The algorithm
does not include any static constraints, i.e., it assumes
an open sea scenario: The maximum number of targets
is 20. The algorithm introduces an additional parame-
ter, the so-called delay time, which allows approximat-
ing the dynamic behavior of the own-ship. The method
was tested by executing computer simulations (the av-
erage computational time was ¢4, = 15 seconds) and
in a real environment (instruction ship of Gdynia Mar-
itime Academy; area: Bay of Gdansk, Poland).

o Utilization of potential collision threat area. Due to
simple graphic of the potential collision threat area
(PCTA), it is possible to display it on a monitor of
the anti-collision system in a real time. Thus the oper-
ator can make the decision on the basis of the simula-
tion process (which assumes also constant course and
speed of all targets). The size of the PCTA area de-
pends on the assumed safe passage distance between
ships. A large number of targets may complicate the
displayed output, as a PCTA area is displayed for each
target. As in the previous method, the algorithm re-
turns a single change of the course and/or the speed of
the own-ship. It also assumes open seas scenario. The
method was tested by executing computer simulations.
The average computational time was t,, = 35 seconds.
This method was included as an option in the system
ARPA 2000 produced by Radwar in Warsaw, Poland
(1989-1991).

o Indispensable trajectory. The algorithm returns a
safe trajectory as a series of maneuvers (changes of the
course and/or the speed of the own-ship). As with the
previous algorithms, it assumes an open seas scenario.
The algorithm can be perceived as extension of the “In-
dispensable maneuver” method, as it generates (apart
from collision-free trajectory) an additional trajectory
for returning to the ship’s original course. A safe dis-
tance D,,z. 1s another parameter of this method; usu-
ally 0.5Nm < Dyqpe < 3Nm (it depends on the sail-
ing conditions: weather, number of targets, etc). The
method was tested by executing computer simulations
(the average computational time of the method was
tey = 4 minutes) and during a test trip on the ship

R. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 15

m/v Inowroclaw.

o Optimal trajectory. The algorithm returns a safe tra-
jectory as a series of maneuvers (changes only of the
course of the own-ship). As opposed to the previous
three algorithms, 1t can be applied not only to “open
sea” scenarios, but can include static navigational con-
straints (e.g., shore line). The method models the
problem as a nonlinear programming task with con-
straints; the solution trajectory is optimal with respect
to moving targets and static constraints (a safe dis-
tance is preserved and minimal deviation from the orig-
inal trajectory is guaranteed). The targets are mod-
elled as moving circles; their radii depend on the safe
distance D,sf.. The method was tested by executing
computer simulations (the average computational time
was 14y = 10 minutes) and on Norcontrol simulator.

o Puvolutionary trajectory. The algorithm returns a safe
trajectory as a series of maneuvers and it can be applied
to scenarios with static and dynamic constraints. Each
change of a course segment may have its own speed:
The computed trajectory may take into account tar-
gets’ changes of course and/or speed. Safety conditions
are defined by shape and size of ship’s safety area. The
method was tested by executing computer simulations
(the average computational time was ¢4, = 40 seconds)
and on a Norcontrol simulator.

The evolutionary method is a clear winner because
of its generality and a reasonable computational time.
Recently this evolutionary method was applied in real
scenarios. An interesting comparison was made be-
tween the recommendations of evolutionary algorithm
and actions of an experienced captain. This compari-
son test indicated that the solutions were almost iden-
tical. However, it appeared also that evolutionary sys-
tem was more flexible: It controlled the movement pa-
rameters of targets online, constantly adapting the so-
lution trajectory to the current situation. Figures 17,
18, and 19 display how a collision situation was handled
by a captain and evolutionary algorithm, respectively.

The introduction of additional elements to the cur-
rent version of the system (to include other environ-
ment changes) does not impose any significant prob-
lems in the evolutionary path planning, and, undoubt-
edly, makes the process more similar to real navigation
situations. Also, newly unfolding situations can be, in
a natural way, incorporated into the evaluation func-
tion, and the solutions adapt to the changes. Further
research in this area is directed at estimating the ship
trajectory when the moving strange-ships change the
parameters of their motion in an unforeseen manner
while the own-ship moves along its trajectory.

It seems also that construction of a hybrid decision
support system for choosing a proper maneuver may

be a step in the right direction. In such a system, the
problem of avoiding collisions might be divided into
two stages. During the first stage, a collection of safe
maneuvers can be found quickly (for example, by the
indispensable maneuver algorithm; see section II-A).
These imperfect (but feasible) solutions can constitute
the initial population for the evolutionary dEP/N++
system, which would return a near-optimum solution.
The influence of the initial population (e.g., its feasi-
bility) on the computational complexity of this evolu-
tionary algorithm and the quality of the results, is also
the subject of further studies.

Note also that the current version of YEP/N++ as-
sumes that a constant speed is assigned to each seg-
ment of a trajectory, and that the own-ship can change
speeds instantly when it moves from one segment to
the next. Thus it is necessary to address the issue of
realizability of a given trajectory, taking into account
specific characteristic of the own-ship (this problem is
common to all planning methods). An algorithm for
checking the realizability of a trajectory was discussed
in [11], [18], where a real trajectory is generated on the
basis of a given one and the characteristics of the own-
ship. This algorithm will be incorporated into the next
version of the system. An additional issue that was not
discussed in the paper is connected with the precision
of control equipment and the sensitivity of a solution
on measurement errors.

ACKNOWLEDGMENTS

The research reported in this paper was partially
supported by the grant 8 T11A 004 14 from the Pol-
ish State Committee for Scientific Research and the
ESPRIT Project 20288 Cooperation Research in In-
formation Technology (CRIT-2): “Evolutionary Real-
time Optimization System for Ecological Power Con-
trol.” The authors wish to thank anonymous reviewers
for their useful comments.

REFERENCES
[1] B.A. Colley, R.G. Curtis, and C.T. Stockel, “Maneuvering

times, domains and arenas,” Journal of Navigation, vol.36,
no.2, pp. 324-328, 1983.

[2] B.A. Colley, R.G. Curtis, and C.T. Stockel, “A marine traffic
flow and collision avoidance computer simulation,” Journal
of Navigation, vol.37, no.2, pp. 232-250, 1984.

[3] P.V. Davis, M.J. Dove, and C.T. Stockel, “A computer sim-
ulation of multi-ship encounters,” Journal of Navigation,
vol.35, no.2, pp. 347-352, 1982.

[4] T. Furuhashi, K. Nakaoka, and Y. Uchikawa, “A study on
classifier system for finding control knowledge of multi-input
systems,” in Genetic Algorithms and Soft Computing, F.
Herrera and J.L. Verdegay (Eds), Physica-Verlag, pp. 489—
502, 1996.

[5] International Maritime Organization Preference Standards
for Automatic Radar Plotting Aids (ARPA), Resolution A.
422 (XI), Nov. 1979.

[6] M.K. James, “Modeling the decision process in computer

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

simulation of ship navigation,” Journal of Navigation, vol.39,
no.l, pp. 76—-84, 1986.

[7] K.D. Jones, “Decision making when using collision avoidance
system,” Journal of Navigation, vol.31, no.2, pp. 173-180,
1978.

[8] W.G.P. Lamb, “The calculation of marine collision risks,”
Journal of Navigation, vol.38, no.3, pp. 365-374, 1985.

[9] J. Lisowski, “A simulation study of various approximate
models of ships dynamics in the collision avoidance prob-
lem,” Foundation of Control Engineering, vol.10, no.2, pp.
176183, 1985.

[10] J. Lisowski and R. $mierzchalski, “Assigning of safe and
optimal trajectory avoiding collision at sea,” in Proceedings
of 3rd IFAC Workshop Control Applications in Marine Sys-
tem, Thor I. Fossen (Ed), Trondheim, Norway, pp. 346—350,
1995.

[11] J. Lisowski and R. Smierzchalski, “Methods to assign the
safe maneuver and trajectory avoiding collision at sea,” in
Proceedings of 1st International Conference Marine Technol-
ogy, T. Graczyk, T. Jarzebski, C.A. Brebbia, and R.S. Burns
(Eds), Szczecin, Poland, pp. 495-502, 1995.

[12] W.Lord, A Night to Remember, Holt, Rinehart, & Winston,
November 1955.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin, 3rd edition,
1996.

[14] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern
Heuristics, Springer-Verlag, Berlin, 1999.

[15] R. émierzchalski7 “The application of the dynamic interac-
tive decision analysis system to the problem of avoiding col-
lisions at the sea,” (in Polish), in Proceedings of the 1st Con-
ference on Awiation, Jawor, Poland 1995, Research Works of
Technical University of Rzeszow no. 135 part 2, pp. 141-147.

[16] R. émierzchalski7 “The decision support system to design
the safe maneuver avoiding collision at sea,” in Proceedings of
the International Conference on Information Sysytems Anal-
ysis and Synthesis, Nagib C. Callaos (Ed), Orlando, USA,
pp. 95-103, 1996.

[17] R. Smierzchalski, “Multi-criterion modeling the collision sit-
uation at sea for application in decision support,” in Proc-
cedings of the 3rd International Symposium on Methods and
Models in Automation and Robotics, S. Banka, S. Domek,
and Z. Emirsajlow (Eds), Miedzyzdroje, Poland, pp. 699—
705, 1996.

[18] R. émierzchalski7 “Analysis and synthesis of navigator de-
cision support algorithms in collision situation at sea,” (in
Polish) submitted for publication, 1999.

[19] R. Smierzchalski and J. Lisowski, “The process avoiding col-
lision at sea as a non-linear programming task,” in Proceed-
ings of 14th International Congress on Cybernetics, Namur,
Belgium, pp. 627-632, 1995.

[20] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanow-
ski, “Adaptive Evolutionary Planner/Navigator for mobile
robots,” IEEE Transactions on Evolutionary Computation,
vol.1, no.1, pp. 18-28, 1997.

Roman Smierzchalski graduated in
1979 from Technical University of Gdansk
in Poland, Electrical Department special-
izing in ship automatics. He received the
PhD degree from Technical University of
Gdansk, Shipbuilding Institute in 1988.
He has worked as lecturer in Gdynia Mar-
itime Academy. He worked as a elec-
tric officer on ships belonging to Polish
Ocean Lines, and also in foreign compa-
nies: Greek and German. Moreover, for a
year he worked on the “Dar Mlodziezy” sailing vessel, also as an
electrical officer. He took part in research connected with the
development of an anti-collision system where, in particular, he
developed algorithms of mathematical estimation of maneuvers.
Recently he was a chief manager of grant entitled “computer
methods of safe control of a ship motion” financed by the Polish
State Committee for Scientific Research. He has the authori-
ties of the naval rank examiner in the range of naval automatics,
conferred by the Marine Office in Gdynia.

Zbigniew Michalewicz is Professor of
Computer Science at the University of
North Carolina at Charlotte. He com-
pleted his MSc degree at Technical Uni-
versity of Warsaw in 1974 and he received
PhD degree from Institute of Computer
Science, Polish Academy of Sciences, in
1981. His current research interests are
in the field of evolutionary computation.
He has published several books, including
a monograph (3 editions), and over 160
technical papers in journals and conference proceedings. He was
the general chairman of the First IEEE International Confer-
ence on Evolutionary Computation held in Orlando, June 1994.
He has been an invited speaker of many international conferences
and a member of 40 various program committees of international
conferences during the last 3 years. He is a current member of
the editorial board and/or serves as associate editor on 9 inter-
national journals (including IEEE Transactions on Evolutionary
Computation). Recently he published (together with David B.
Fogel) a new text on modern heuristic methods [14].

Fig.

B
3min :

1

Range 1

Fiue 00,0300,

EXERCISE

12 8

RANGE
VERe RA = min

9 min |
Range 6 Nm

.

000900,

Time

17. Stages in relative move of a solution of collision sit-
uation (number of targets = 20) proposed by an experi-
enced captain on a Norcontrol simulator (01 corresponds to
the own-ship, targets relative vectors of speed = 9minutes,
D.sf. = 1Nm). The figure in the top shows that the tar-
gets 16, 18, 19, 22, and 26 constitute a collision threat, as
their speed vectors cross the dangerous area of the own-ship
01 defined by a circle of radii D¢ = 1Nm. To avoid a col-
lision, the captain makes a right turn, changing the course
of the own-ship to 025 (figure in the middle). Next stage
(displayed in the bottom figure) demonstrates phase of the
maneuver after 12 minutes. Figure 18 displays further stages
of this collision situation

Fig. 18.

. SMIERZCHALSKI AND Z. MICHALEWICZ: MODELING OF SHIP TRAJECTORY IN COLLISION SITUATIONS ... 17

; 30 min .
. Range 6 Nm g

. 33 min "%
Range

Continuation of Figure 17. These three stages (top,
middle, and botom figures) demonstrate phases of the ma-
neuver after 24, 30, and 33 minutes, respectively;in the last
figure the own-ship is back on its original course

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 1998

Hercontrol HME-30 3 Navigator trajectory
EP\N trajectory

Cwn Ship

Fig. 19. Real-time solutions for a collision situation from Figure
17 proposed by an experienced captain (continuousline) and
by evolutionary algorithm (broken line) (Dsgfe = 1Nm).
Both solutions recommend a “right turn”; they differ only
a little

