
Evolutionary Algorithms

Zbigniew Michalewicz� Robert Hinterdingy

Maciej Michalewiczz

Abstract

Evolutionary algorithms (EAs), which are based on a powerful prin-
ciple of evolution: survival of the �ttest, and which model some natural
phenomena: genetic inheritance and Darwinian strife for survival, consti-
tute an interesting category of modern heuristic search. This introductory
article presents the main paradigms of evolutionary algorithms (genetic
algorithms, evolution strategies, evolutionary programming, genetic pro-
gramming) and discusses other (hybrid) methods of evolutionary compu-
tation. We also discuss the ways an evolutionary algorithm can be tuned
to the problem while it is solving the problem, as this can dramatically
increase e�ciency.

Evolutionary algorithms have been widely used in science and engi-
neering for solving complex problems. An important goal of research on
evolutionary algorithms is to understand the class of problems for which
EAs are most suited, and, in particular, the class of problems on which
they outperform other search algorithms.

1 Introduction

During the last two decades there has been a growing interest in algorithms
which are based on the principle of evolution (survival of the �ttest). A com-
mon term, accepted recently, refers to such techniques as evolutionary compu-
tation (EC) methods. The best known algorithms in this class include genetic
algorithms, evolutionary programming, evolution strategies, and genetic pro-
gramming. There are also many hybrid systems which incorporate various
features of the above paradigms, and consequently are hard to classify; anyway,
we refer to them just as EC methods.

�Department of Computer Science, University of North Carolina, Charlotte, NC 28223,
USA, and Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237
Warsaw, Poland

yDepartment of Computer and Mathematical Sciences, Victoria University of Technology,
PO Box 14428 MMC, Melbourne 3000, Australia

zInstitute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 War-
saw, Poland

1



The �eld of evolutionary computation has reached a stage of some matu-
rity. There are several, well established international conferences that attract
hundreds of participants (International Conferences on Genetic Algorithms|
ICGA [48, 50, 104, 12, 41, 27], Parallel Problem Solving from Nature|PPSN
[112, 69, 14, 121], Annual Conferences on Evolutionary Programming|EP
[35, 36, 113, 70, 37]); new annual conferences are getting started, e.g., IEEE
International Conferences on Evolutionary Computation [91, 92, 93]. Also,
there are many workshops, special sessions, and local conferences every year,
all around the world. A relatively new journal, Evolutionary Computation (MIT
Press) [21], is devoted entirely to evolutionary computation techniques; a new
journal IEEE Transactions on Evolutionary Computation was just approved.
many other journals organized special issues on evolutionary computation (e.g.,
[32, 74]). Many excellent tutorial papers [10, 11, 98, 122, 33] and technical re-
ports provide more-or-less complete bibliographies of the �eld [1, 46, 103, 84].
There is also The Hitch-Hiker's Guide to Evolutionary Computation prepared
initially by J�org Heitk�otter and currently by David Beasley [52], available on
comp.ai.genetic interest group (Internet), and a new text, Handbook of Evolu-
tionary Computation, is in its �nal stages of preparation [7].

In this introductory article we provide a general overview of the �eld. The
next section provides a short introductory description of evolutionary algo-
rithms. Section 3 discusses the paradigms of genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming, as well as
some other evolutionary techniques. Section 4 provides with a discussion on
one of the most interesting developments in the �eld: adaption of the algorithm
to the problem, and section 5 concludes this article.

2 Evolutionary computation

In general, any abstract task to be accomplished can be thought of as solving
a problem, which, in turn, can be perceived as a search through a space of
potential solutions. Since usually we are after \the best" solution, we can view
this task as an optimization process. For small spaces, classical exhaustive
methods usually su�ce; for larger spaces special arti�cial intelligence techniques
must be employed. The methods of evolutionary computation are among such
techniques; they are stochastic algorithms whose search methods model some
natural phenomena: genetic inheritance and Darwinian strife for survival. As
stated in [18]:

\... the metaphor underlying genetic algorithms1 is that of natu-
ral evolution. In evolution, the problem each species faces is one
of searching for bene�cial adaptations to a complicated and chang-

1The best known evolutionary computation techniques are genetic algorithms; very
often the terms evolutionary computation methods and GA-based methods are used
interchangeably.



ing environment. The `knowledge' that each species has gained is
embodied in the makeup of the chromosomes of its members."

As already mentioned in the Introduction, the best known techniques in the
class of evolutionary computation methods are genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming. There are also
many hybrid systems which incorporate various features of the above paradigms;
however, the structure of any evolutionary computation algorithm is very much
the same; a sample structure is shown in Figure 1.

procedure evolutionary algorithm

begin

t 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t t+ 1
select P (t) from P (t� 1)
alter P (t)
evaluate P (t)

end

end

Figure 1: The structure of an evolutionary algorithm

The evolutionary algorithm maintains a population of individuals, P (t) =
fxt1; : : : ; x

t
ng for iteration t. Each individual represents a potential solution to

the problem at hand, and is implemented as some data structure S. Each
solution xti is evaluated to give some measure of its \�tness". Then, a new
population (iteration t+1) is formed by selecting the more �t individuals (select
step). Some members of the new population undergo transformations (alter
step) by means of \genetic" operators to form new solutions. There are unary
transformations mi (mutation type), which create new individuals by a small
change in a single individual (mi : S ! S), and higher order transformations cj
(crossover type), which create new individuals by combining parts from several
(two or more) individuals (cj : S � : : : � S ! S).2 After some number
of generations the algorithm converges|it is hoped that the best individual
represents a near-optimum (reasonable) solution.

Despite powerful similarities between various evolutionary computation tech-
niques there are also many di�erences between them (often hidden on a lower
level of abstraction). They use di�erent data structures S for their chromoso-

2In most cases crossover involves just two parents, however, it need not be the case. In a
recent study [25] the authors investigated the merits of `orgies', where more than two parents
are involved in the reproduction process. Also, scatter search techniques [42] proposed the
use of multiple parents.



mal representations, consequently, the `genetic' operators are di�erent as well.
They may or may not incorporate some other information (to control the search
process) in their genes. There are also other di�erences; for example, the two
lines of the Figure 1:

select P (t) from P (t� 1)
alter P (t)

can appear in the reverse order: in evolution strategies �rst the population is
altered and later a new population is formed by a selection process (see sec-
tion 3.2). Moreover, even within a particular technique there are many 
avors
and twists. For example, there are many methods for selecting individuals for
survival and reproduction. These methods include (1) proportional selection,
where the probability of selection is proportional to the individual's �tness, (2)
ranking methods, where all individuals in a population are sorted from the best
to the worst and probabilities of their selection are �xed for the whole evolu-
tion process,3 and (3) tournament selection, where some number of individuals
(usually two) compete for selection to the next generation: this competition
(tournament) step is repeated population-size number of times. Within each of
these categories there are further important details. Proportional selection may
require the use of scaling windows or truncation methods, there are di�erent
ways for allocating probabilities in ranking methods (linear, nonlinear distribu-
tions), the size of a tournament plays a signi�cant role in tournament selection
methods. It is also important to decide on a generational policy. For example,
it is possible to replace the whole population by a population of o�spring, or
it is possible to select the best individuals from two populations (population of
parents and population of o�spring)|this selection can be done in a determin-
istic or nondeterministic way. It is also possible to produce few (in particular,
a single) o�spring, which replace some (the worst?) individuals (systems based
on such generational policy are called `steady state'). Also, one can use an `eli-
tist' model which keeps the best individual from one generation to the next4;
such model is very helpful for solving many kinds of optimization problems.

However, the data structure used for a particular problem together with a
set of `genetic' operators constitute the most essential components of any evo-
lutionary algorithm. These are the key elements which allow us to distinguish
between various paradigms of evolutionary methods. We discuss this issue in
detail in the following section.

3For example, the probability of selection of the best individual is always 0.15 regardless
its precise evaluation; the probability of selection of the second best individual is always 0.14,
etc. The only requirements are that better individuals have larger probabilities and the total
of these probabilities equals to one.

4It means, that if the best individual from a current generation is lost due to selection or
genetic operators, the system force it into next generation anyway.



3 Main Paradigms of Evolutionary Computa-

tion

As indicated earlier, there are a few main paradigms of evolutionary compu-
tation techniques. In the following subsections we discuss them in turn; the
discussion puts some emphasis on the data structures and genetic operators
used by these techniques.

3.1 Genetic Algorithms

The beginnings of genetic algorithms can be traced back to the early 1950s
when several biologists used computers for simulations of biological systems
[43]. However, the work done in late 1960s and early 1970s at the University of
Michigan under the direction of John Holland led to genetic algorithms as they
are known today. A GA performs a multi-directional search by maintaining
a population of potential solutions and encourages information formation and
exchange between these directions.

Genetic algorithms (GAs) were devised to model adaptation processes, mainly
operated on binary strings and used a recombination operator with mutation
as a background operator [56]. Mutation 
ips a bit in a chromosome and
crossover exchanges genetic material between two parents: if the parents are
represented by �ve-bits strings, say (0; 0; 0; 0; 0) and (1; 1; 1; 1; 1), crossing the
vectors after the second component would produce the o�spring (0; 0; 1; 1; 1)
and (1; 1; 0; 0; 0).5 Fitness of an individual is assigned proportionally to the
value of the objective function for the individual; individuals are selected for
next generation on the basis of their �tness.

The combined e�ect of selection, crossover, and mutation gives so-called the
reproductive schema growth equation [56]:

�(S; t + 1) � �(S; t) � eval(S; t)=F (t)
h
1� pc �

�(S)
m�1 � o(S) � pm

i
;

where S is a schema de�ned over the alphabet of 3 symbols (`0', `1', and `?'
of length m; each schema represents all strings which match it on all positions
other than `?'); �(S; t) denoted the number of strings in a population at the time
t, matched by schema S; �(S) is the de�ning length of the schema S | the
distance between the �rst and the last �xed string positions; o(S) denotes the
order of the schema S | the number of 0 and 1 positions present in the schema;
Another property of a schema is its �tness at time t, eval(S; t) is de�ned as the
average �tness of all strings in the population matched by the schema S; and
F (t) is the total �tness of the whole population at time t. Parameters pc and
pm denote probabilities of crossover and mutation, respectively.

The above equation tells us about the expected number of strings matching
a schema S in the next generation as a function of the actual number of strings
matching the schema, the relative �tness of the schema, and its de�ning length

5This is an example of so-called 1-point crossover.



and order. Again, it is clear that above-average schemata with short de�ning
length and low-order would still be sampled at exponentially increased rates.

The growth equation shows that selection increases the sampling rates of
the above-average schemata, and that this change is exponential. The sam-
pling itself does not introduce any new schemata (not represented in the initial
t = 0 sampling). This is exactly why the crossover operator is introduced | to
enable structured, yet random information exchange. Additionally, the muta-
tion operator introduces greater variability into the population. The combined
(disruptive) e�ect of these operators on a schema is not signi�cant if the schema
is short and low-order. The �nal result of the growth equation can be stated
as:

Schema Theorem: Short, low-order, above-average schemata re-
ceive exponentially increasing trials in subsequent generations of a
genetic algorithm.

An immediate result of this theorem is that GAs explore the search space
by short, low-order schemata which, subsequently, are used for information
exchange during crossover:

Building Block Hypothesis: A genetic algorithm seeks near-
optimal performance through the juxtaposition of short, low-order,
high-performance schemata, called the building blocks.

As stated in [43]:

\Just as a child creates magni�cent fortresses through the arrange-
ment of simple blocks of wood, so does a genetic algorithm seek near
optimal performance through the juxtaposition of short, low-order,
high performance schemata."

A population of pop size individuals of length m processes at least 2m and
at most 2pop size schemata. Some of them are processed in a useful manner:
these are sampled at the (desirable) exponentially increasing rate, and are not
disrupted by crossover and mutation (which may happen for long de�ning length
and high-order schemata).

Holland [56] showed, that at least pop size3 of them are processed usefully
| he has called this property an implicit parallelism, as it is obtained without
any extra memory/processing requirements. It is interesting to note that in a
population of pop size strings there are many more than pop size schemata rep-
resented. This constitutes possibly the only known example of a combinatorial
explosion working to our advantage instead of our disadvantage.

To apply a GA to a particular problem, it is necessary to design a mapping
between a space of potential solutions for the problem and a space of binary
strings of some length. Sometimes it is not trivial task and quite often the
process involved some additional heuristics (decoders, problem-speci�c opera-
tors, etc). For additional material on applications of genetic algorithms, see,
for example, [72].



3.2 Evolution Strategies

Evolution strategies (ESs) were developed as a method to solve parameter opti-
mization problems [109]; consequently, a chromosome represents an individual
as a pair of 
oat-valued vectors,6 i.e., ~v = (~x; ~�).

The earliest evolution strategies were based on a population consisting of one
individual only. There was also only one genetic operator used in the evolution
process: a mutation. However, the interesting idea (not present in GAs) was to
represent an individual as a pair of 
oat{valued vectors, i.e., ~v = (~x; ~�). Here,
the �rst vector ~x represents a point in the search space; the second vector ~� is
a vector of standard deviations: mutations are realized by replacing ~x by

~xt+1 = ~xt +N (0; ~�),

where N (0; ~�) is a vector of independent randomGaussian numbers with a mean
of zero and standard deviations ~�. (This is in accordance with the biological
observation that smaller changes occur more often than larger ones.) The o�-
spring (the mutated individual) is accepted as a new member of the population
(it replaces its parent) i� it has better �tness and all constraints (if any) are
satis�ed. For example, if f is the objective function without constraints to be
maximized, an o�spring (~xt+1; ~�) replaces its parent (~xt; ~�) i� f(~xt+1) > f(~xt).
Otherwise, the o�spring is eliminated and the population remain unchanged.

The vector of standard deviations ~� remains unchanged during the evolution
process. If all components of this vector are identical, i.e., ~� = (�; : : : ; �), and
the optimization problem is regular7, it is possible to prove the convergence
theorem [8]:

Convergence Theorem: For � > 0 and a regular optimization
problem with fopt > �1 (minimalization) or fopt <1 (maximiza-
tion),

p flimt!1 f(~xt) = foptg = 1

holds.

The evolution strategies evolved further [109] to mature as

(� + �){ESs and (�; �){ESs;

the main idea behind these strategies was to allow control parameters (like
mutation variance) to self-adapt rather than changing their values by some
deterministic algorithm.

6However, they startedwith integer variables as an experimental optimum-seekingmethod.
7An optimization problem is regular if the objective function f is continuous, the domain

of the function is a closed set, for all � > 0 the set of all internal points of the domain for which
the function di�ers from the optimal value less than � is non-empty, and for all ~x0 the set of
all points for which the function has values less than or equal to f(~x0) (for minimalization
problems; for maximization problems the relationship is opposite) is a closed set.



In the (�+ �){ES, � individuals produce � o�spring. The new (temporary)
population of (� + �) individuals is reduced by a selection process again to �
individuals. On the other hand, in the (�; �){ES, the � individuals produce
� o�spring (� > �) and the selection process selects a new population of �
individuals from the set of � o�spring only. By doing this, the life of each
individual is limited to one generation. This allows the (�; �){ES to perform
better on problems with an optimum moving over time, or on problems where
the objective function is noisy.

The operators used in the (�+�){ESs and (�; �){ESs incorporate two-level
learning: their control parameter ~� is no longer constant, nor it is changed by
some deterministic algorithm (like the 1/5 success rule), but it is incorporated
in the structure of the individuals and undergoes the evolution process. To
produce an o�spring, the system acts in several stages:

� select two individuals,

(~x1; ~�1) = ((x11; : : : ; x
1
n); (�

1
1; : : : ; �

1
n)) and

(~x2; ~�2) = ((x21; : : : ; x
2
n); (�

2
1; : : : ; �

2
n)),

and apply a recombination (crossover) operator. There are two types of
crossovers:

{ discrete, where the new o�spring is

(~x; ~�) = ((xq11 ; : : : ; xqnn ); (�q11 ; : : : ; �qnn )),

where qi = 1 or qi = 2 (so each component comes from the �rst or
second preselected parent),

{ intermediate, where the new o�spring is

(~x; ~�) = (((x11+x
2
1)=2; : : : ; (x

1
n+x

2
n)=2); ((�

1
1+�

2
1)=2; : : : ; (�

1
n+

�2n)=2)).

Each of these operators can be applied also in a global mode, where the
new pair of parents is selected for each component of the o�spring vector.

� apply mutation to the o�spring (~x; ~�) obtained; the resulting new o�spring
is (~x0; ~�0), where

~�0 = ~� � eN(0;�~�), and
~x0 = ~x+ N (0; ~�0),

where �~� is a parameter of the method.

The best source of complete information (including recent results) on evo-
lution strategies is recent Schwefel's text [111].



3.3 Evolutionary Programming

The original evolutionary programming (EP) techniques were developed by
Lawrence Fogel [38]. They aimed at evolution of arti�cial intelligence in the
sense of developing ability to predict changes in an environment. The environ-
ment was described as a sequence of symbols (from a �nite alphabet) and the
evolving algorithm supposed to produce, as an output, a new symbol. The out-
put symbol should maximize the payo� function, which measures the accuracy
of the prediction.

For example, we may consider a series of events, marked by symbols a1; a2; : : :;
an algorithm should predict the next (unknown) symbol, say an+1 on the ba-
sis of the previous (known) symbols, a1; a2; : : : ; an. The idea of evolutionary
programming was to evolve such an algorithm.

Finite state machines (FSM) were selected as a chromosomal representation
of individuals; after all, �nite state machines provide a meaningful represen-
tation of behavior based on interpretation of symbols. Figure 2 provides an
example of a transition diagram of a simple �nite state machine for a parity
check. Such transition diagrams are directed graphs that contain a node for
each state and edges that indicate the transition from one state to another,
input and output values (notation a/b next to an edge leading from state S1 to
the state S2 indicates that the input value of a, while the machine is in state
S1, results in output b and the next state S2.

EVEN ODD

0/0 1/1

1/0

0/1

Figure 2: A FSM for a parity check

There are two states `EVEN' and `ODD' (machine starts in state `EVEN');
the machine recognizes a parity of a binary string.

So, evolutionary programming technique maintains a population of �nite
state machines; each such individual represents a potential solution to the prob-
lem (i.e., represents a particular behavior). As already mentioned, each FSM
is evaluated to give some measure of its \�tness". This is done in the following
way: each FSM is exposed to the environment in the sense that it examines all
previously seen symbols. For each subsequence, say, a1; a2; : : : ; ai it produces
an output a0i+1, which is compared with the next observed symbol, ai+1. For
example, if n symbols were seen so far, a FSM makes n predictions (one for
each of the substrings a1, a1; a2, and so on, until a1; a2; : : : ; an); the �tness func-
tion takes into account the overall performance (e.g., some weighted average of
accuracy of all n predictions).



Like in evolution strategies, evolutionary programming technique �rst cre-
ates o�spring and later selects individuals for the next generation. Each parent
produces a single o�spring; hence the size of the intermediate population dou-
bles (like in (pop size; pop size)-ES). O�spring (a new FSMs) are created by
random mutations of parent population (see Figure 3). There are �ve possible
mutation operators: change of an output symbol, change of a state transi-
tion, addition of a state, deletion of a state, and change of the initial state
(there are some additional constraints on the minimum and maximum number
of states). These mutations are chosen with respect to some probability distri-
bution (which can change during the evolutionary process); also it is possible
to apply more than one mutation to a single parent (a decision on the number
of mutations for a particular individual is made with respect to some other
probability distribution).

1

2

3

0/a

1/b

0/c

1/d

0/b

1/c

1

2

3

1/b

0/c

1/d

0/b

1/c

0/c

FSM parent FSM offspring

Figure 3: A FSM and its o�spring. Machines start in state 1

The best pop size individuals are retained for the next generation; i.e., to
qualify for the next generation an individual should rank in the top 50% of
the intermediate population. In original version [38] this process was iterated
several times before the next output symbol was made available. Once a new
symbol is available, it is added to the list of known symbols, and the whole
process is repeated.

Of course, the above procedure can be extended in many way; as stated in
[34]:

\The payo� function can be arbitrarily complex and can posses tem-
poral components; there is no requirement for the classical squared
error criterion or any other smooth function. Further, it is not re-
quired that the predictions be made with a one-step look ahead.
Forecasting can be accomplished at an arbitrary length of time into
the future. Multivariate environments can be handled, and the en-



vironmental process need not be stationary because the simulated
evolution will adapt to changes in the transition statistics."

Recently evolutionary programming techniques were generalized to handle
numerical optimization problems; for details see [29] or [34]. For other exam-
ples of evolutionary programming techniques, see also [38] (classi�cation of a
sequence of integers into primes and nonprimes), [30] (for application of EP
technique to the iterated prisoner's dilemma), as well as [35, 36, 113, 70] for
many other applications.

3.4 Genetic Programming

Another interesting approach was developed relatively recently by Koza [64, 65].
Koza suggests that the desired program should evolve itself during the evolution
process. In other words, instead of solving a problem, and instead of building
an evolution program to solve the problem, we should rather search the space
of possible computer programs for the best one (the most �t). Koza developed
a new methodology, named Genetic Programming (GP), which provides a way
to run such a search.

There are �ve major steps in using genetic programming for a particular
problem. These are:

� selection of terminals,

� selection of a function,

� identi�cation of the evaluation function,

� selection of parameters of the system, and

� selection of the termination condition.

It is important to note that the structure which undergoes evolution is a
hierarchically structured computer program.8 The search space is a hyperspace
of valid programs, which can be viewed as a space of rooted trees. Each tree
is composed of functions and terminals appropriate to the particular problem
domain; the set of all functions and terminals is selected a priori in such a way
that some of the composed trees yield a solution.

For example, two structures e1 and e2 (Figure 4) represent expressions 2x+
2:11 and x � sin(3:28), respectively. A possible o�spring e3 (after crossover of e1
and e2) represents x � sin(2x).

The initial population is composed of such trees; construction of a (random)
tree is straightforward. The evaluation function assigns a �tness value which
evaluates the performance of a tree (program). The evaluation is based on a
preselected set of test cases; in general, the evaluation function returns the sum

8Actually, Koza has chosen LISP's S-expressions for all his experiments. Currently, how-
ever, there are implementations of GP in C and other programming languages.



+

*

x

2.11

2.00

*

x

3.28

sin

e e1 2
x

e3

sin x

*

*

2.00

Figure 4: Expression e3: an o�spring of e1 and e2. Broken line includes areas
being exchanged during the crossover operation

of distances between the correct and obtained results on all test cases. The se-
lection is proportional; each tree has a probability of being selected to the next
generation proportional to its �tness. The primary operator is a crossover that
produces two o�spring from two selected parents. The crossover creates o�-
spring by exchanging subtrees between two parents. There are other operators
as well: mutation, permutation, editing, and a de�ne-building-block operation
[64]. For example, a typical mutation selects a node in a tree and generates a
new (random) subtree which originates in the selected node.

In addition to �ve major steps for building a genetic program for a particular
problem, Koza [66] recently considered the advantages of adding an additional
feature: a set of procedures. These procedures are called Automatically De-
�ned Functions (ADF). It seems that this is an extremely useful concept for
genetic programming techniques with its major contribution in the area of code
reusability. ADFs discover and exploit the regularities, symmetries, similari-
ties, patterns, and modularities of the problem at hand, and the �nal genetic
program may call these procedures at di�erent stages of its execution.

The fact that genetic programming operates on computer programs has a
few interesting aspects. For example, the operators can be viewed also as pro-
grams, which can undergo a separate evolution during the run of the system.
Additionally, a set of functions can consist of several programs which perform
complex tasks; such functions can evolve further during the evolutionary run
(e.g., ADF). Clearly, it is one of the most exiting areas of the current develop-
ment in the evolutionary computation �eld with already a signi�cant amount
of experimental data (apart from [65] and [66], see also [63] and [3]).



3.5 Other techniques

Many researchers modi�ed further evolutionary algorithms by `adding' the
problem speci�c knowledge to the algorithm. Several papers have discussed
initialization techniques, di�erent representations, decoding techniques (map-
ping from genetic representations to `phenotypic' representations), and the use
of heuristics for genetic operators. Davis [17] wrote (in the context of classical,
binary GAs):

\It has seemed true to me for some time that we cannot handle most
real-world problems with binary representations and an operator set
consisting only of binary crossover and binary mutation. One reason
for this is that nearly every real-world domain has associated domain
knowledge that is of use when one is considering a transformation
of a solution in the domain [...] I believe that genetic algorithms
are the appropriate algorithms to use in a great many real-world
applications. I also believe that one should incorporate real-world
knowledge in one's algorithm by adding it to one's decoder or by
expanding one's operator set."

Such hybrid/nonstandard systems enjoy a signi�cant popularity in evolutionary
computation community. Very often these systems, extended by the problem-
speci�c knowledge, outperform other classical evolutionary methods as well as
other standard techniques [71, 72]. For example, a system Genetic-2N [71] con-
structed for the nonlinear transportation problem used a matrix representation
for its chromosomes, a problem-speci�c mutation (main operator, used with
probability 0.4) and arithmetical crossover (background operator, used with
probability 0.05). It is hard to classify this system: it is not really a genetic
algorithm, since it can run with mutation operator only without any signi�cant
decrease of quality of results. Moreover, all matrix entries are 
oating point
numbers. It is not an evolution strategy, since it did not encode any control
parameters in its chromosomal structures. Clearly, it has nothing to do with
genetic programming and very little (matrix representation) with evolutionary
programming approaches. It is just an evolutionary computation technique
aimed at particular problem.

There are a few heuristics to guide a user in selection of appropriate data
structures and operators for a particular problem. For numerical optimization
problems it is generally best to use an evolution strategy or genetic algorithm
with 
oating point representation as the reproduction operators are more suited
to the representation and numerical problems, whereas other versions of genetic
algorithms would be the best to handle combinatorial optimization problems.
Genetic programs are great in discovery of rules given as a computer program,
and evolutionary programming techniques can be used successfully to model a
behavior of the system (e.g., prisoner dilemma problem). It seems also that
neither of the evolutionary techniques is perfect (or even robust) across the
problem spectrum; only the whole family of algorithms based on evolutionary



computation concepts (i.e., evolutionary algorithms) have this property of ro-
bustness. But the main key to successful applications is in heuristics methods,
which are mixed skilfully with evolutionary techniques.

In the next section we discuss one of the most promising direction of evolu-
tionary computation: adaption of the algorithm to the problem.

4 Adapting Algorithm to the Problem

As evolutionary algorithms (EAs) implement the idea of evolution, and as evo-
lution itself must have evolved to reach its current state of sophistication, it
is natural to expect adaption to be used in not only for �nding solutions to a
problem, but also for tuning the algorithm to the particular problem.

In EAs, not only do we need to choose the algorithm, representation and
operators for the problem, but we also need to choose parameter values and
operator probabilities for the evolutionary algorithm so that it will �nd the
solution and, what is also important, �nd it e�ciently. This is a time consuming
task and a lot of e�ort has gone into automating this process. Researchers have
used various ways of �nding good values for the strategy parameters as these
can a�ect the performance of the algorithm in a signi�cantly. Many researchers
experimented with problems from a particular domain, tuning the strategy
parameters on the basis of such experimentation (tuning \by hand"). Later,
they reported their results of applying a particular EA to a particular problem,
stating:

For these experiments, we have used the following parameters: pop-
ulation size = 80, probability of crossover = 0:7, etc.

without much justi�cation of the choice made. Other researchers tried to modify
the values of strategy parameters during the run of the algorithm; it is possible
to do this by using some (possibly heuristic) rule, by taking feedback from the
current state of the search, or by employing some self-adaptive mechanism. Note
that these changes may e�ect a single component of a chromosome, the whole
chromosome (individual), or even the whole population. Clearly, by changing
these values while the algorithm is searching for the solution of the problem,
further e�ciencies can be gained.

Self-adaption, based on the evolution of evolution, was pioneered in Evolu-
tion Strategies to adapt mutation parameters to suit the problem during the
run. The method was very successful in improving e�ciency of the algorithm.
This technique has been extended to other areas of evolutionary computation,
but �xed representations, operators, and control parameters are still the norm.

Other research areas based on the inclusion of adapting mechanisms are:

� representation of individuals (as proposed by Shaefer [114]; the Dynamic
Parameter Encoding technique, Schraudolph & Belew [108] and messy
genetic algorithms, Goldberg et al. [45] also fall into this category).



� operators. It is clear that di�erent operators play di�erent roles at di�er-
ent stages of the evolutionary process. The operators should adapt (e.g.,
adaptive crossover Scha�er & Morishima [105], Spears [117]). This is true
especially for time-varying �tness landscapes.

� control parameters. There have been various experiments aimed at adap-
tive probabilities of operators [17, 62, 118]. However, much more remains
to be done.

The action of determining the variables and parameters of an EA to suit the
problem has been termed adapting the algorithm to the problem, and in EAs
this can be done while the algorithm is �nding the problem solution.

In this section we provide with a comprehensive classi�cation of adaption
and give examples of their use. The classi�cation is based on the mechanism of
adaption and the level (in the EA) it occurs. We give classi�cations of adaption
in Table 1; this classi�cation is based on the mechanism of adaption (adaption
type) and on which level inside the EA adaption occurs (adaption level). These
classi�cations are orthogonal and encompass all forms of adaption within EAs.
Angeline's classi�cation [2] is from a di�erent perspective and forms a subset
of our classi�cations.

Type Static Dynamic
Level Deterministic Adaptive Self-adaptive
Environment S E-D E-A E-SA
Population S P-D P-A P-SA
Individual S I-D I-A I-SA
Component S C-D C-A C-SA

Table 1: Classi�cation of adaption in EAs

The Type of parameters' change consists of two main categories: static (no
change) and dynamic, with the latter one divided further into deterministic
(D), adaptive (A), and self-adaptive (SA) mechanisms. In the following section
we discuss these types of adaption.

The Level of parameters' change consists of four categories: environment
(E), population (P), individual (I), and component (C). These categories indi-
cate the scope of the changed parameter; we discuss these types of adaption in
section 4.2.

Whether examples are discussed in section 4.1 or in section 4.2 is completely
arbitrary. An example of adaptive individual level adaption (I-A) could have
been discussed in section 4.1 as an example of adaptive dynamic adaption or in
section 4.2 as an example of individual level of adaption.



4.1 Types of Adaption

The classi�cation of the type of adaption is made on the basis of the mechanism
of adaption used in the process; in particular, attention is paid to the issue of
whether feedback from the EA is used.

4.1.1 Static

Static adaption is where the strategy parameters have a constant value through-
out the run of the EA. Consequently, an external agent or mechanism (e.g., a
person or a program) is needed to tune the desired strategy parameters and
choose the most appropriate values. This method is commonly used for most
of the strategy parameters.

De Jong [20] put a lot of e�ort in �nding parameter values which were good
for a number of numeric test problems using a traditional GA. He determined
experimentally recommended values for the probability of using single-point
crossover and bit mutation. Grefenstette [49] used a GA as a meta-algorithm
to optimize values for some parameter values.

4.1.2 Dynamic

Dynamic adaption happens if there is some mechanism which modi�es a strat-
egy parameter without external control. The class of EAs that use dynamic
adaption can be sub-divided further into three classes where the mechanism of
adaption is the criterion.

Deterministic

Deterministic dynamic adaption takes place if the value of a strategy parameter
is altered by some deterministic rule; this rule modi�es the strategy parameter
deterministically without using any feedback from the EA. Usually, the rule
will be used when a set number of generations have elapsed since the last time
the rule was activated.

This method of adaption can be used to alter the probability of mutation so
that the probability of mutation changes with the number of generations. For
example:

mut% = 0:5 + 0:3 �
g

G
;

where g is the generation number from 1 : : :G. Here the mutation probability
mut% will increase from 0:5 to 0:8 as the number of generations increases to G.

This method of adaption was used also in de�ning a mutation operator for

oating-point representations [72]: non-uniformmutation. For a parent ~x, if the
element xk was selected for this mutation, the result is ~x

0 = (x1; : : : ; x
0

k; : : : ; xn),



where

x0k =

8>><
>>:

xk +4(t; right(k)� xk)
if a random binary digit is 0

xk �4(t; xk � left(k))
if a random binary digit is 1.

The function4(t; y) returns a value in the range [0; y] such that the probability
of 4(t; y) being close to 0 increases as t increases (t is the generation number).
This property causes this operator to search the space uniformly initially (when
t is small), and very locally at later stages.

Deterministic dynamic adaption was also used for changing the objective
function of the problem; the point was to increase the penalties for violated
constraints with evolution time [59, 75]. Joines & Houck used the following
formula:

F (~x) = f(~x) + (C � t)�
Pm

j=1 f
�
j (~x),

whereas Michalewicz and Attia experimented with

F (~x; � ) = f(~x) + 1
2�

Pm
j=1 f

2
j (~x).

In both cases, functions fj measure the violation of the j-th constraint.
Eiben & Ruttkay [26] described an implementation of evolutionary algo-

rithm for constraint satisfaction problems, where the penalty coe�cients were
increased after speci�ed number of generations.

Adaptive

Adaptive dynamic adaption takes place if there is some form of feedback from
the EA that is used to determine the direction and/or magnitude of the change
to the strategy parameter. The assignment of the value of the strategy param-
eter may involve credit assignment, and the action of the EA may determine
whether or not the new value persists or propagates throughout the population.

Early examples of this type of adaption include Rechenberg's `1=5 success
rule', which was used to vary the step size of mutation [97]. This rule states
that the ratio of successful mutations to all mutations should be 1=5, hence if
the ratio is greater than 1=5 then decrease the step size, and if the ration is
less than 1=5 then decrease the step size. Another example is Davis's `adaptive
operator �tness', which used feedback from the performance of reproduction
operators to adjust their probability of being used [16].

Adaption was also used to change the objective function by increasing or
decreasing penalty coe�cients for violated constraints. For example, Bean &
Hadj-Alouane [9] designed a penalty function where its one component takes a
feedback from the search process. Each individual is evaluated by the formula:

F (~x) = f(~x) + �(t)
Pm

j=1 f
2
j (~x),



where �(t) is updated every generation t in the following way:

�(t + 1) =

8>>>>>>>><
>>>>>>>>:

(1=�1) � �(t);

if~b(i) 2 F for all
t� k + 1 � i � t

�2 � �(t);

if~b(i) 2 S � F for all
t� k + 1 � i � t

�(t); otherwise;

where ~b(i) denotes the best individual, in terms of function eval, in generation
i, �1; �2 > 1 and �1 6= �2 (to avoid cycling). In other words, the method (1)
decreases the penalty component �(t + 1) for the generation t + 1, if all best
individuals in the last k generations were feasible, and (2) increases penalties,
if all best individuals in the last k generations were infeasible. If there are some
feasible and infeasible individuals as best individuals in the last k generations,
�(t+ 1) remains without change.

Other examples include adaption of probabilities of eight operators for adap-
tive planner/navigator [125], where the feedback from the evolutionary process
includes, through the operator performance index, e�ectiveness of operators in
improving the �tness of a path, their operation time, and their side e�ect to
future generations.

Self-adaptive

The idea of the evolution of evolution can be used to implement the self-adaption
of parameters. Here the parameters to be adapted are encoded onto the chro-
mosome(s) of the individual and undergo mutation and recombination. These
encoded parameters do not a�ect the �tness of individuals directly, but \better"
values will lead to \better" individuals and these individuals will be more likely
to survive and product o�spring and hence propagate these \better" parameter
values.

Schwefel [110, 111] pioneered this method to self-adapt the mutation step
size and the mutation rotation angles in Evolution Strategies. Self-adaption
was extended to EP by Fogel et al. [31] and to GAs by B�ack [6] and Hinterding
[53].

The parameters to self adapt can be parameter values or probabilities of
using alternative processes, and as these are numeric quantities this type of self-
adaption has been used mainly for the optimization of numeric functions. This
has been the case when single chromosome representations are used (which is the
overwhelming case), as otherwise numerical and non-numerical representations
would need to be combined on the same chromosome. Examples of self-adaption
for non-numerical problems are Fogel et al. [40] where they self-adapted the
relative probabilities of �ve mutation operators for the components of a �nite
state machine. The other example is Hinterding [55], where a multi-chromosome



GA is used to implement the self-adaption in the Cutting Stock Problem with
contiguity. Here self-adaption is used to adapt the probability of using one of
the two available mutation operators, and the strength of the group mutation
operator.

4.2 Levels of Adaption

We can also de�ne at what level within the EA and the solution representation
adaption takes place. We de�ne four levels: environment, population, individual
and component. These levels of adaption can be used with each of the types of
adaption, and a mixture of levels and types of adaption can be used within an
EA.

4.2.1 Environment Level Adaption

Environment level adaption is where the response of the environment to the
individual is changed. This covers cases such as when the penalties in the �tness
function change, where weights within the �tness function change and the �tness
of an individual changes in response to niching considerations (some of these
were discussed in the previous section, in the context of types of adaption).

Darwen & Yao [19], explore both deterministic and adaptive environmental
adaption in their paper comparing �tness sharing methods.

4.2.2 Population Level Adaption

In EAs some (or all in simple EAs) of the parameters are global, modifying these
parameters when they apply to all members of the population is population level
adaption.

Dynamic adaption of these parameters is in most cases deterministic or
adaptive. No cases of population level self-adaption have been seen yet. The
example mutation rate adaption in the section on deterministic adaption is
deterministic population level adaption, and Rechenberg's `1=5 success rule' is
an example of adaptive population level adaption.

Population level adaption also covers cases where a number of populations
are used in a parallel EA or otherwise, Lis [68] uses feedback from a num-
ber of parallel populations to dynamically adapt the mutation rate. She uses
feedback from a number of parallel populations running with di�erent muta-
tion probabilities to adjust the mutation probabilities of all the populations up
or down. Schlierkamp-Voosen & M�uhlenbein [106] uses competition between
sub-populations to determine which populations will lose or gain individuals.
Hinterding et al. [54] uses feedback from three sub-populations with di�erent
population sizes to adaptively change some or all of the sub-population sizes.



4.2.3 Individual Level Adaption

Individual-level adaption adjusts strategy parameters held within individuals
and whose value a�ects only that individual. Examples are: the adaption of
the mutation step size in ESs, EP, and GAs; the adaption of crossover points
in GAs [105].

In [4] there is a description of a method for adapting population size by
de�ning age of individuals; the size of the population after single iteration is

PopSize(t + 1) = PopSize(t) + N (t)�D(t),

where D(t) is the number of chromosomes which die o� during generation t and
N (t) is the number of o�spring produced during the generation t (for details,
see [72]). The number of produced o�spring N (t) is proportional to the size of
the population at given generation t, whereas the number of individuals \to die"
D(t) depends on age of individual chromosomes. There are several heuristics
one can use for the age allocation for individuals [4]; all of them require a
feedback from the current state of the search.

4.2.4 Component Level Adaption

Component-level adaption adjusts strategy parameters local to some compo-
nent or gene of an individual in the population. The best known example of
component level adaption is the self-adaption of component level mutation step
sizes and rotation angles in ESs.

Additionally, in [40] the mechanism of adapting probabilities of mutation
for each component of a �nite states machine is discussed.

4.3 Combining forms of adaption

The classic example of combining forms of adaption is in ESs, where the algo-
rithm can be con�gured for individual level adaption (one mutation step size
per individual), component level adaption (one mutation step size per compo-
nent) or with two types of component level adaption where both the mutation
step size and rotation angle is self-adapted for individual components [110].

Hinterding et al. [54] combine global level adaption of the population size
with individual level self-adaption of the mutation step size for optimizing nu-
meric functions.

Combining forms of adaption has not been used much as the interactions are
complex, hence deterministic or adaptive rules will be di�cult to work out. But
self-adaption where we use evolution to determine the bene�cial interactions (as
in �nding solutions to problems) would seem to be the best approach.

5 Discussion

The e�ectiveness of evolutionary computations depend on the representation
used for the problem solutions, the reproduction operators used and the con-



�guration of the evolutionary algorithm used.
Adaption gives us the opportunity to customize the evolutionary algorithm

to the problem and to modify the con�guration and the strategy parameters
used while the problem solution is sought. This enables us not only to incorpo-
rate domain information and multiple reproduction operators into the EA more
easily, but can allow the algorithm itself to select those values and operators
which give better results. Also these values can be modi�ed during the run of
the EA to suit the situation during that part of the run.

Although evolutionary algorithms have been successfully applied to many
practical problems, there have been a number of failures as well, and there is
little understanding of what features of these domains make them appropriate
or inappropriate for these algorithms. Three important claims have been made
about why evolutionary algorithms perform well: (1) independent sampling is
provided by populations of candidate solutions, (2) selection is a mechanism
that preserves good solutions, and (3) partial solutions can be e�ciently mod-
i�ed and combined through various `genetic' operators.

References

[1] Alander, J.T., An Indexed Bibliography of Genetic Algorithms: Years
1957{1993, Department of Information Technology and Production Eco-
nomics, University of Vaasa, Finland, Report Series No.94-1, 1994.

[2] Angeline, P.J., Adaptive and Self-Adaptive Evolutionary Computation, in
Palaniswami, M., Attikiouzel, Y., Marks, R.J.II, Fogel, D., & Fukuda, T.
(Eds), Computational Intelligence, A Dynamic System Perspective, IEEE
Press, pp.152{161, 1995.

[3] Angeline, P.J. and Kinnear, K.E. (Editors), Advances in Genetic Pro-
gramming II, MIT Press, Cambridge, MA, 1996.

[4] Arabas, J., Michalewicz, Z., and Mulawka, J., GAVaPS | a Genetic
Algorithm with Varying Population Size, in [91].

[5] B�ack, T., and Ho�meister, F., Extended Selection Mechanisms in Genetic
Algorithms, in [12], pp.92{99.

[6] B�ack, T., Self-adaption in Genetic Algorithms, Proceedings of the First
European Conference on Arti�cial Life, pp.263{271, 1992.

[7] B�ack, T., Fogel, D., and Michalewicz, Z. (Editors), Handbook of Evolu-
tionary Computation, Oxford University Press, New York, 1996.

[8] B�ack, T., Ho�meister, F., and Schwefel, H.-P., A Survey of Evolution
Strategies, in [12], pp.2{9.



[9] Bean, J.C. and Hadj-Alouane, A.B., A Dual Genetic Algorithm for
Bounded Integer Programs, Department of Industrial and Operations En-
gineering, The University of Michigan, TR 92-53, 1992.

[10] Beasley, D., Bull, D.R., and Martin, R.R., An Overview of Genetic Algo-
rithms: Part 1, Foundations, University Computing, Vol.15, No.2, pp.58{
69, 1993.

[11] Beasley, D., Bull, D.R., and Martin, R.R., An Overview of Genetic Al-
gorithms: Part 2, Research Topics, University Computing, Vol.15, No.4,
pp.170{181, 1993.

[12] Belew, R. and Booker, L. (Editors), Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann Publishers,
Los Altos, CA, 1991.

[13] Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User's Guide, The
Scienti�c Press, 1988.

[14] Davidor, Y., Schwefel, H.-P., and M�anner, R. (Editors), Proceedings of
the Third International Conference on Parallel Problem Solving from Na-
ture (PPSN), Springer-Verlag, New York, 1994.

[15] Davis, L., (Editor), Genetic Algorithms and Simulated Annealing, Morgan
Kaufmann Publishers, Los Altos, CA, 1987.

[16] Davis, L., Handbook of Genetic Algorithms, New York, Van Nostrand
Reinhold, 1991.

[17] Davis, L., Adapting Operator Probabilities in Genetic Algorithms, in [104],
pp.61{69.

[18] Davis, L. and Steenstrup, M., Genetic Algorithms and Simulated Anneal-
ing: An Overview, in [15], pp.1{11.

[19] Darwen, P and Yao, X., Every Niching Method has its Niche: Fitness
sharing and Implicit Sharing Compared, in [121], pp.398{407.

[20] De Jong, K.A., \An Analysis of the Behavior of a Class of Genetic Adap-
tive Systems", (Doctoral dissertation, University of Michigan), Disser-
tation Abstract International, 36(10), 5140B. (University Micro�lms No
76-9381).

[21] De Jong, K.A., (Editor), Evolutionary Computation, MIT Press, 1993.

[22] De Jong, K., Genetic Algorithms: A 10 Year Perspective, in [48], pp.169{
177.

[23] De Jong, K., Genetic Algorithms: A 25 Year Perspective, in [126], pp.125{
134.



[24] Dhar, V. and Ranganathan, N., Integer Programming vs. Expert Systems:
An Experimental Comparison, Communications of ACM, Vol.33, No.3,
pp.323{336, 1990.

[25] Eiben, A.E., Raue, P.-E., and Ruttkay, Zs., Genetic Algorithms with
Multi-parent Recombination, in [14], pp.78{87.

[26] Eiben, A.E. and Ruttkay, Zs., Self-adaptivity for Constraint Satisfaction:
Learning Penalty Functions, in [93], pp.258{261.

[27] Eshelman, L.J., (Editor), Proceedings of the Sixth International Confer-
ence on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1995.

[28] Eshelman, L.J. and Scha�er, J.D., Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest, in [12], pp.115{122.

[29] Fogel, D.B., Evolving Arti�cial Intelligence, Ph.D. Thesis, University of
California, San Diego, 1992.

[30] Fogel, D.B., Evolving Behaviours in the Iterated Prisoner's Dilemma,
Evolutionary Computation, Vol.1, No.1, pp.77{97, 1993.

[31] Fogel, D.B., Fogel, L.J. and Atmar, J.W. Meta-Evolutionary Program-
ming, Informatica, Vol.18, No.4, pp.387{398, 1994.

[32] Fogel, D.B. (Editor), IEEE Transactions on Neural Networks, special issue
on Evolutionary Computation, Vol.5, No.1, 1994.

[33] Fogel, D.B., An Introduction to Simulated Evolutionary Optimization,
IEEE Transactions on Neural Networks, special issue on Evolutionary
Computation, Vol.5, No.1, 1994.

[34] Fogel, D.B., Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.

[35] Fogel, D.B. and Atmar, W., Proceedings of the First Annual Conference
on Evolutionary Programming, La Jolla, CA, 1992, Evolutionary Pro-
gramming Society.

[36] Fogel, D.B. and Atmar, W., Proceedings of the Second Annual Confer-
ence on Evolutionary Programming, La Jolla, CA, 1993, Evolutionary
Programming Society.

[37] Fogel, L.J., Angeline, P.J., B�ack, T. (Editors), Proceedings of the Fifth
Annual Conference on Evolutionary Programming, The MIT Press, 1996.

[38] Fogel, L.J., Owens, A.J., and Walsh, M.J., Arti�cial Intelligence Through
Simulated Evolution, John Wiley, Chichester, UK, 1966.

[39] Fogel, L.J., Evolutionary Programming in Perspective: The Top-Down
View, in [126], pp.135{146.



[40] Fogel, L.J., Angeline, P.J. and Fogel, D.B. An Evolutionary Programming
Approach to Self-Adaption on Finite State Machines, in [70], pp.355{365.

[41] Forrest, S. (Editor), Proceedings of the Fifth International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, Los Altos, CA, 1993.

[42] Glover, F., Heuristics for Integer Programming Using Surrogate Con-
straints, Decision Sciences, Vol.8, No.1, pp.156{166, 1977.

[43] Goldberg, D.E.,Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[44] Goldberg, D.E.., Simple Genetic Algorithms and the Minimal, Deceptive
Problem, in [15], pp.74{88.

[45] Goldberg, D.E., Deb, K., and Korb, B., Do not Worry, Be Messy, in [12],
pp.24{30.

[46] Goldberg, D.E., Milman, K., and Tidd, C., Genetic Algorithms: A Bibli-
ography, IlliGAL Technical Report 92008, 1992.

[47] Gorges-Schleuter, M., ASPARAGOS An Asynchronous Parallel Genetic
Optimization Strategy, in [104], pp.422{427.

[48] Grefenstette, J.J., (Editor), Proceedings of the First International Con-
ference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1985.

[49] Grefenstette, J.J., Optimization of Control Parameters for Genetic Algo-
rithms, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 16,
No.1, pp.122{128, 1986.

[50] Grefenstette, J.J., (Editor), Proceedings of the Second International Con-
ference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1987.

[51] Hadj-Alouane, A.B. and Bean, J.C., A Genetic Algorithm for the
Multiple-Choice Integer Program, Department of Industrial and Opera-
tions Engineering, The University of Michigan, TR 92-50, 1992.

[52] Heitk�otter, J., (Editor), The Hitch-Hiker's Guide to Evolutionary Com-
putation, FAQ in comp.ai.genetic, issue 1.10, 20 December 1993.

[53] Hinterding, R., Gaussian Mutation and Self-adaption in Numeric Genetic
Algorithms, in [91], pp.384{389.

[54] Hinterding, R., Michalewicz, Z. and Peachey, T.C., Self-Adaptive Genetic
Algorithm for Numeric Functions, in [121], pp.420{429.

[55] Hinterding, R., Self-adaption using Multi-chromosomes, Submitted to:
1997 IEEE International Conference on Evolutionary Computation, 1996.



[56] Holland, J.H., Adaptation in Natural and Arti�cial Systems, University
of Michigan Press, Ann Arbor, 1975.

[57] Holland, J.H., Royal Road Functions, Genetic Algorithm Digest, Vol.7,
No.22, 12 August 1993.

[58] Homaifar, A., Lai, S. H.-Y., Qi, X., Constrained Optimization via Genetic
Algorithms, Simulation, Vol.62, No.4, 1994, pp.242{254.

[59] Joines, J.A. and Houck, C.R., On the Use of Non-Stationary Penalty
Functions to Solve Nonlinear Constrained Optimization Problems With
GAs, in [91], pp.579{584.

[60] Jones, T., A Description of Holland's Royal Road Function, Evolutionary
Computation, Vol.2, No.4, 1994, pp.409{415.

[61] Jones, T. and Forrest, S., Fitness Distance Correlation as a Measure of
Problem Di�culty for Genetic Algorithms, in [27], pp.184{192.

[62] Julstrom, B.A., What Have You Done for Me Lately? Adapting Operator
Probabilities in a Steady-State Genetic Algorithm, in [27], pp.81{87.

[63] Kinnear, K.E. (Editor), Advances in Genetic Programming, MIT Press,
Cambridge, MA, 1994.

[64] Koza, J.R., Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems, Report No. STAN{
CS{90{1314, Stanford University, 1990.

[65] Koza, J.R., Genetic Programming, MIT Press, Cambridge, MA, 1992.

[66] Koza, J.R., Genetic Programming { 2, MIT Press, Cambridge, MA, 1994.

[67] Le Riche, R., Knopf-Lenoir, C., and Haftka, R.T., A Segregated Genetic
Algorithm for Constrained Structural Optimization, in [27], pp.558{565.

[68] Lis, J., Parallel Genetic Algorithm with Dynamic Control Parameter, in
[93], pp.324{329.

[69] M�anner, R. and Manderick, B. (Editors), Proceedings of the Second In-
ternational Conference on Parallel Problem Solving from Nature (PPSN),
North-Holland, Elsevier Science Publishers, Amsterdam, 1992.

[70] McDonnell, J.R., Reynolds, R.G., and Fogel, D.B. (Editors), Proceedings
of the Fourth Annual Conference on Evolutionary Programming, The
MIT Press, 1995.

[71] Michalewicz, Z., A Hierarchy of Evolution Programs: An Experimental
Study, Evolutionary Computation, Vol.1, No.1, 1993, pp.51{76.



[72] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer-Verlag, 3rd edition, 1996.

[73] Michalewicz, Z., Heuristic Methods for Evolutionary Computation Tech-
niques, Journal of Heuristics, Vol.1, No.2, 1995, pp.177-206.

[74] Michalewicz, Z. (Editor), Statistics & Computing, special issue on evolu-
tionary computation, Vol.4, No.2, 1994.

[75] Michalewicz, Z., and Attia, N., Evolutionary Optimization of Constrained
Problems, in [113], pp.98{108.

[76] Michalewicz, Z., Dasgupta, D., Le Riche, R.G., and Schoenauer, M., Evo-
lutionary Algorithms for Constrained Engineering Problems, Computers
& Industrial Engineering Journal, Vol.30, No.4, September 1996, pp.851{
870.

[77] Michalewicz, Z. and Nazhiyath, G., Genocop III: A Co-evolutionary Algo-
rithm for Numerical Optimization Problems with Nonlinear Constraints,
in [92], pp.647{651.

[78] Michalewicz, Z. and Schoenauer, M., Evolutionary Algorithms for Con-
strained Parameter Optimization Problems, Evolutionary Computation,
Vol.4, No.1, 1996.

[79] Michalewicz, Z., Vignaux, G.A., and Hobbs, M., A Non-Standard Genetic
Algorithm for the Nonlinear Transportation Problem, ORSA Journal on
Computing, Vol.3, No.4, 1991, pp.307{316.

[80] Michalewicz, Z. and Xiao, J., Evaluation of Paths in Evolutionary
Planner/Navigator, Proceedings of the 1995 International Workshop on
Biologically Inspired Evolutionary Systems, Tokyo, Japan, May 30{31,
1995, pp.45{52.

[81] M�uhlenbein, H., Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization, in [104], pp.416-421.

[82] M�uhlenbein, H. and Schlierkamp-Vosen, D., Predictive Models for the
Breeder Genetic Algorithm, Evolutionary Computation, Vol.1, No.1,
pp.25{49, 1993.

[83] Nadhamuni, P.V.R.,Application of Co-evolutionary Genetic Algorithm to
a Game, Master Thesis, Department of Computer Science, University of
North Carolina, Charlotte, 1995.

[84] Nissen, V., Evolutionary Algorithms in Management Science: An
Overview and List of References, European Study Group for Evolutionary
Economics, 1993.



[85] Orvosh, D. and Davis, L., Shall We Repair? Genetic Algorithms, Com-
binatorial Optimization, and Feasibility Constraints, in [41], p.650.

[86] Palmer, C.C. and Kershenbaum, A., Representing Trees in Genetic Algo-
rithms, in [91], pp.379{384.

[87] Paredis, J., Genetic State-Space Search for Constrained Optimization
Problems, Proceedings of the Thirteen International Joint Conference on
Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, 1993.

[88] Paredis, J., Co-evolutionary Constraint Satisfaction, in [14], pp.46{55.

[89] Powell, D. and Skolnick, M.M., Using Genetic Algorithms in Engineering
Design Optimization with Non-linear Constraints, in [41], pp.424{430.

[90] Potter, M. and De Jong, K., A Cooperative Coevolutionary Approach to
Function Optimization, George Mason University, 1994.

[91] Proceedings of the First IEEE International Conference on Evolutionary
Computation, Orlando, 26 June { 2 July, 1994.

[92] Proceedings of the Second IEEE International Conference on Evolution-
ary Computation, Perth, 29 November { 1 December, 1995.

[93] Proceedings of the Third IEEE International Conference on Evolutionary
Computation, Nagoya, 18{22 May, 1996.

[94] Radcli�e, N.J., Forma Analysis and Random Respectful Recombination,
in [12], pp.222{229.

[95] Radcli�e, N.J., Genetic Set Recombination, in [124], pp.203{219.

[96] Radcli�e, N.J., and George, F.A.W., A Study in Set Recombination, in
[41], pp.23{30.

[97] Rechenberg, R., Evolutionsstrategie: Optimierung technischer Syseme
nach Prinzipien der biologischen Evolution, Frommann-Holzboog,
Stuttgart, 1973.

[98] Reeves, C.R., Modern Heuristic Techniques for Combinatorial Problems,
Blackwell Scienti�c Publications, London, 1993.

[99] Reynolds, R.G.,An Introduction to Cultural Algorithms, in [113], pp.131{
139.

[100] Reynolds, R.G., Michalewicz, Z., and Cavaretta, M., Using Cultural Al-
gorithms for Constraint Handling in Genocop, in [70], pp.289{305.

[101] Richardson, J.T., Palmer, M.R., Liepins, G., and Hilliard, M., Some
Guidelines for Genetic Algorithms with Penalty Functions, in [104],
pp.191{197.



[102] Ronald, E., When Selection Meets Seduction, in [27], pp.167{173.

[103] Saravanan, N. and Fogel, D.B., A Bibliography of Evolutionary Compu-
tation & Applications, Department of Mechanical Engineering, Florida
Atlantic University, Technical Report No. FAU-ME-93-100, 1993.

[104] Scha�er, J., (Editor), Proceedings of the Third International Conference
on Genetic Algorithms, Morgan Kaufmann Publishers, Los Altos, CA,
1989.

[105] Scha�er, J.D. and Morishima, A., An Adaptive Crossover Distribution
Mechanism for Genetic Algorithms, in [50], pp.36{40.

[106] Schlierkamp-Voosen, D. and M�uhlenbein, H., Adaption of Population
Sizes by Competing Subpopulations, in [93], pp.330{335.

[107] Schoenauer, M., and Xanthakis, S., Constrained GA Optimization, in [41],
pp.573{580.

[108] Schraudolph, N. and Belew, R.,Dynamic Parameter Encoding for Genetic
Algorithms, CSE Technical Report #CS90{175, University of San Diego,
La Jolla, 1990.

[109] Schwefel, H.-P., On the Evolution of Evolutionary Computation, in [126],
pp.116{124.

[110] Schwefel, H.-P., Numerische Optimierung von Computer-Modellen mit-
tels der Evolutionsstrategie, Interdisciplinary systems research, Vol.26,
Birh�auser, Basel, 1977.

[111] Schwefel, H.-P., Evolution and Optimum Seeking, John Wiley, Chichester,
UK, 1995.

[112] Schwefel, H.-P. and M�anner, R. (Editors), Proceedings of the First Inter-
national Conference on Parallel Problem Solving from Nature (PPSN),
Springer-Verlag, Lecture Notes in Computer Science, Vol.496, 1991.

[113] Sebald, A.V. and Fogel, L.J., Proceedings of the Third Annual Conference
on Evolutionary Programming, San Diego, CA, 1994, World Scienti�c.

[114] Shaefer, C.G., The ARGOT Strategy: Adaptive Representation Genetic
Optimizer Technique, in [50], pp.50{55.

[115] Siedlecki, W. and Sklanski, J., Constrained Genetic Optimization via Dy-
namic Reward{Penalty Balancing and Its Use in Pattern Recognition, in
[104], pp.141{150.

[116] Smith, A. and Tate, D., Genetic Optimization Using A Penalty Function,
in [41], pp.499{503.



[117] Spears, W.M., Adapting Crossover in Evolutionary Algorithms, in [70],
pp.367{384.

[118] Srinivas, M. and Patnaik, L.M., Adaptive Probabilities of Crossover and
Mutation in Genetic Algorithms, IEEE Transactions on Systems, Man,
and Cybernetics, Vol.24, No.4, 1994, pp.17{26.

[119] Surry, P.D., N.J. Radcli�e, and I.D. Boyd, A Multi-objective Approach
to Constrained Optimization of Gas Supply Networks. Presented at the
AISB-95 Workshop on Evolutionary Computing, She�eld, UK, April 3{4,
1995, pp.166{180.

[120] Vignaux, G.A., and Michalewicz, Z., A Genetic Algorithm for the Lin-
ear Transportation Problem, IEEE Transactions on Systems, Man, and
Cybernetics, Vol.21, No.2, 1991, pp.445{452.

[121] Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (Editors), Pro-
ceedings of the Fourth International Conference on Parallel Problem Solv-
ing from Nature (PPSN), Springer-Verlag, New York, 1996.

[122] Whitley, D., Genetic Algorithms: A Tutorial, in [74], pp.65{85.

[123] Whitley, D., GENITOR II: A Distributed Genetic Algorithm, Journal of
Experimental and Theoretical Arti�cial Intelligence, Vol.2, pp.189{214.

[124] Whitley, D. (Editor), Foundations of Genetic Algorithms{2, Second
Workshop on the Foundations of Genetic Algorithms and Classi�er Sys-
tems, Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[125] Xiao, J., Michalewicz, Z. and Zhang, L Evolutionary Planner/Navigator:
Operator Performance and Self-Tuning, in [93], pp.366{371.

[126] Zurada, J., Marks, R., and Robinson, C. (Editors), Computational Intel-
ligence: Imitating Life, IEEE Press, 1994.


