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Abstract. Numerical optimization problems enjoy a signi�cant pop-
ularity in evolutionary computation community; all major evolutionary
techniques use such problems for various tests and experiments. However,
many of these techniques (as well as other, classical optimization meth-
ods) encounter di�culties in solving some real-world problems which
include non-trivial constraints. This paper discusses a new development
which is based on the observation that very often the global solution lies
on the boundary of the feasible region. Thus, for many constrained nu-
merical optimization problems it might be bene�cial to limit the search
to that boundary, using problem-speci�c operators. Two test cases il-
lustrate this approach: speci�c operators are designed from the simple
analytical expression of the constraints. Some possible generalizations to
larger classes of constraints are discussed as well.

1 Introduction

For many years evolutionary techniques have been evaluated and compared with
each other in the domain of function optimization. It seems also that the do-
main of function optimization will remain the primary test-bed for many new
comparisons and new features of various algorithms. In particular, numerical
optimization problems enjoy a signi�cant popularity in evolutionary computa-
tion community; all major evolutionary techniques (genetic algorithms, evolution
strategies, evolutionary programming) can be applied to these problems.

However, many of these techniques have di�culties in solving constrained
numerical optimization problems. Several di�erent search operators have been
investigated; several di�erent constraint handling techniques have been experi-
mented with. For many test cases, the results of experiments were far from being
satisfactory. It seems that one of the main reasons behind this failure was the
inability of evolutionary systems to precisely search the boundary area between
feasible and infeasible regions of the search space; in the case of optimization
problems with active constraints, such ability is essential.

Some other heuristic methods recognized the need for searching areas close
to the boundary of the feasible region. For example, one of the most recently de-
veloped approach for constrained optimization is strategic oscillation. Strategic
oscillation was originally proposed in accompaniment with the strategy of scatter



search [Glo77], and more recently has been applied to a variety of problem set-
tings in combinatorial and nonlinear optimization (see, for example, the review
of Glover [GK95]). The approach is based on identifying a critical level, which
represents a boundary between feasibility and infeasibility. The basic strategy is
to approach and cross the feasibility boundary, by a design that is implemented
either by adaptive penalties and inducements (which are progressively relaxed
or tightened according to whether the current direction of search is to move
deeper into a particular region or to move back toward the boundary) or by
simply employing modi�ed gradients or sub-gradients to progress in the desired
direction.

It seems that the evolutionary computation techniques have a huge potential
in incorporating specialized operators which search the boundary of feasible and
infeasible regions in an e�cient way. In this paper we discuss some possible
operators for such a search and illustrate this approach on a few test cases.

The paper is organized as follows. Section 2 briey surveys constraint-handling
techniques for numerical optimization problems, which have emerged in evolu-
tionary computation over the years. Section 3 introduces a new approach for
numerical constrained optimization, based on the idea of searching only the
boundary of the feasible search space. This approach is illustrated in section 4
on two di�cult problems on which it allows signi�cant improvements over best
known results. Section 5 proposes di�erent methods to design operators search-
ing a given surface of Rn in the general case. These methods are illustrated and
discussed on both test cases of section 4.

2 Evolutionary Constraint-Handling Methods

Let us consider the following constrained numerical optimization problem:

Find x 2 S � Rn such that

8<
:
f(x) = minff(y); y 2 Sg; (1)
gi(x) � 0; for i = 1; : : : ; q; (2)
gi(x) = 0; for i = q + 1; : : : ;m:(3)

where f and gi are real-valued functions on S. The set of feasible points (i.e.,
points satisfying the constraints (2) and (3)) is denoted F .

Restricting the search to the feasible region seems an elegant way to treat
constrained problems: in [MA94], the algorithmmaintains feasibility of all linear
constraints using a set of closed operators, which convert a feasible solution
(feasible in terms of linear constraints only) into another feasible solution.

However, for nonlinear constraints this ideal situation is generally out of
reach, and during the last few years, several methods have been proposed for
handling constraints by evolutionary algorithms. Most of them are based on the
concept of penalty functions: Infeasible individuals are penalized by adding to
their �tness f(x) a penalty term penalty(x), which is zero if no violation occurs,
and is positive otherwise.

The most severe penalty method is death penalty (penalty(x) = +1) as in
[BHS91]. A usual formof penalty functions is penalty(x) =

Pq

0
�imax(0; gi(x))+Pm

q+1 �ijgij, where parameters �i are either static parameters (see for instance



[HLQ94] for a method to determine �i), dynamically adjusted (as in [JH94]) or
adaptive (two methods are proposed in [BHA92, ST93]). Many variations on the
penalty approach have been implemented: in [PS93], an additional penalty term
is added to ensure that eny feasible point has higher �tness than any infeasible
one; in [LKLH95], two populations are evolved with two di�erent penalty co-
e�cients. The idea of using two separate populations is also used in Genocop
III [MN95]: a set of reference feasible points is maintained and used to repair
infeasible points.

For an experimental comparison of some of these methods and some others on
a few test cases, see [Mic95]. However, highly nonlinear constraints still present
di�culties for evolutionary algorithms, as penalty parameters or strategies are
then di�cult to adjust.

3 Searching the boundary of the feasible region

It is a common situation for many constrained optimization problems that some
constraints are active at the target global optimum. This optimum thus lies on
the boundary of the feasible space. One the other hand, it is commonly acknowl-
edged that restricting the size of the search space in evolutionary algorithms (as
in most search algorithms) is generally bene�cial. Hence, it seems natural in the
context of constrained optimization to restrict the search of the solution to the
boundary of the feasible part of the space.

We suppose in the rest of the paper that we are searching on a Riemanian
surface S of dimension n � 1 in the space Rn. This surface is supposed to be
regular, i.e., the gradient vector, orthogonal to the surface, is de�ned almost
everywhere. The Euclidean measure of Rn thus classically induces a distance on
that surface.

The basic components of an evolutionary search are (1) an initialization pro-
cedure generating points of the surface, and (2) evolutionary operators exploring
the surface. We discuss these two components in the following subsections.

3.1 Initialization procedure

This procedure must sample surface S as uniformly as possible according to the
distance at hand. Though conceptually simple, this procedure can be quite hard
to design: in many real-world engineering problems, the main di�culty can be
to �nd just one feasible point.

3.2 Evolution operators on the surface

The �rst necessary conditions for the evolution operators is to be closed, i.e.,
transforming point(s) of the surface into point(s) of the surface.

Moreover, these operators should (as much as possible) respect some exper-
imentally and empirically derived properties [Rad91, Mic92]:



{ recombination should be able to generate all points \between" the parents;
{ mutation should be ergodic, having non-zero probability to reach any point
within a �nite number of application, and should respect the principle of
strong causality [Rec73], i.e., small mutations must result in small changes
in the �tness function.

These ideas will be validated on two test cases in next section: speci�c evo-
lutionary algorithms searching the boundary of the feasible regions will be de-
signed.

4 Two test cases

4.1 Problem on an hyperboloid

An interesting constrained numerical optimization test case emerged recently;
the problem [Kea94] is to maximize a function:

f(x) = j
Pn

i=1
cos4(xi)� 2

Qn

i=1
cos2(xi)pPn

i=1 ix
2
i

j;

with
Qn

i=1 xi � 0:75,
Pn

i=1 xi � 7:5n, and 0 � xi � 10 for 1 � i � n.
Function f is nonlinear and its global maximum is unknown, lying some-

where near the origin. The problem has one nonlinear constraint and one linear
constraint; the latter one is inactive around the origin and will be forgotten in
the following.
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Fig. 1. The graph of function f for n = 2. Infeasible solutions were assigned value zero



Some potential di�culties of solving this test case are illustrated on Figure
1: infeasible points were assigned a value of zero. The F -surface is de�ned by the
equation �xi = 0:75. It is a di�cult problem, on which no standard method (be
it deterministic or evolutionary) gave satisfactory results. In [Kea94], a parallel
GA with 12bit binary encoding using a modi�ed Fiacco-McCormick constraint
penalty function gets values like 0.76 after 20,000 evaluations (for n = 20).

This test case was the �rst one on which the idea of searching only the
boundary was used [MNM96]: due to the simple analytical formulation of the
constraint, ad hoc speci�c initialization procedure and operators could be de-
signed.

{ Initialization: Randomly choose a positive variable for xi, and use its in-
verse as a variable for xi+1. The last variable is either 0.75 (when n is odd),
or is multiplied by 0.75 (if n is even), so that the point lies on the F -surface.

{ Crossover: The geometrical crossover is de�ned by

(xi)(yi)! (x�i y
1��
i ), with � randomly chosen in [0; 1]

Figure 2 in section 5.2 illustrates the possible o�spring from two parents on
the F -surface for all values of �.

{ Mutation: Pick two variables randomly, multiply one by a random factor q
and the other by 1

q
(restrict q to respect the bounds on the variables).

The simple evolutionary algorithm described above gave outstanding results. For
the case n = 20 the system reached the value of 0.80 in less than 4,000 generations
(with population size of 30, probability of crossover pc = 1:0, and probability
of mutation pm = 0:06) in all runs. The best value found (namely 0.803553)
was better than the best values of any method discussed earlier, whereas the
worst value found was 0.802964. Similarly, for n = 50, all results (in 30,000
generations) were better than 0.83 (with the best of 0.8331937):
(6.28006029, 3.16155291, 3.15453815, 3.14085174, 3.12882447, 3.11211085, 3.10170507,

3.08703685, 3.07571769, 3.06122732, 3.05010581, 3.03667951, 3.02333045, 3.00721049,

2.99492717, 2.97988462, 2.96637058, 2.95589066, 2.94427204, 2.92796040, 0.40970641,

2.90670991, 0.46131119, 0.48193336, 0.46776962, 0.43887550, 0.45181099, 0.44652876,

0.43348753, 0.44577143, 0.42379948, 0.45858049, 0.42931050, 0.42928645, 0.42943302,

0.43294361, 0.42663351, 0.43437257, 0.42542559, 0.41594154, 0.43248957, 0.39134723,

0.42628688, 0.42774364, 0.41886297, 0.42107263, 0.41215360, 0.41809589, 0.41626775,

0.42316407).

It was interesting to note the importance of geometrical crossover. With �xed
population size (kept constant at 30), the higher values of probability of crossover
pc, the better results of the system were observed. Similarly, the best mutation
rates were relatively low (pm � 0:06).

4.2 Constrained problem on the sphere

The main interest of the sphere as a surface in Rn come from both its simple
analytical expression and its nice symmetrical properties. Hence di�erent meth-
ods to design evolution operators on the sphere can be used (see sections 5.3



and 5.2). But, as for previous section, we shall now present results of an ad

hoc evolutionary algorithm that was designed in [MNM96], based on the simple
analytical formulation of the constraint.

The test problem constructed for this case is to maximize

f(x) = (
p
n)n �

nY
i=1

xi;

where
Pn

i=1 xi = 1 and 0 � xi � 1 for 1 � i � n.
The function has a global solution at (x1; : : : ; xn) = ( 1p

n
; : : : ; 1p

n
) and the value

of the function in this point is 1. The evolutionary algorithm uses the following
components:

{ Initialization: Randomly generate n variables yi, calculate s =
Pn

i=1 y
2
i ,

and initialize an individual (xi) by x = yi=s for i 2 [1; n].
{ Crossover: The sphere crossover produces one o�spring (zi) from two par-
ents (xi) and (yi) by:

zi =
q
�x2i + (1� �)y2i ) i 2 [1; n], with � randomly chosen in [0; 1]

{ Mutation: Similarly, the problem-speci�c mutation transforms (xi) by se-
lecting two indices i 6= j and a random number p in h0; 1i, and setting:

xi ! p � xi and xj ! q � xj;where q =
r
(
xi
xj

)2(1� p2) + 1:

The simple evolutionary algorithm described above gave very good results. For
the case n = 20 the system reached the value of 0.99 in less than 6,000 generations
(with population size of 30, probability of crossover pc = 1:0, and probability of
mutation pm = 0:06) in all runs. The best value found in 10,000 generations was
0.999866 for the following solution vector:
(0.223677, 0.223493, 0.222513, 0.224233, 0.224290, 0.224291, 0.223337, 0.222847, 0.223088,

0.224096, 0.222996, 0.224087, 0.224344, 0.223155, 0.224295, 0.223748, 0.222592, 0.223964,

0.223506, 0.223568).

5 Surface-searching evolutionary operators

In this section, we propose possible approaches to the design of evolutionary
operators on a general surface of dimension n� 1 given in analytical form.

5.1 Curve-based operators

The �rst method to design suitable operators is based on curves drawn on the
surface.



Crossover operators:
From curves joining two di�erent points, one can derive a crossover operator by
choosing as o�spring one (two) point(s) on that curve. Minimal-length curves
(termed geodesical curves) seem a priori a good choice: their existence is guar-
anteed, locally on any regular surface from standard Cauchy-Lipschitz theorem,
and globally (i.e. joining any pair of points of the surface) if the surface is geodesi-
cally complete1 (Hopf-Rinov theorem) [Mar90]. Moreover, in the linear case, the
geodesical curve between two points is the line segment between them, and the
curve-based operator is nothing but the standard linear recombination operator
[Mic92]. But recent experiments suggest that other paths between both parents
can be used successfully [MNM96]: the minimal length requirement does not
seem mandatory.

Mutation operators:
From a beam of curves starting from one point, one can derive a mutation
operator by �rst choosing randomly one curve in the beam, then choosing a point
on the chosen curve. A desirable property of the beam of curves related to the
ergodicity of the resulting mutation operator is that a large enough neighborhood
of the starting point is covered by such set of curves: the local geodesical curves
de�ned from the parent point and one tangent direction are such sets, de�ned
almost everywhere on regular surfaces [Mar90]. On the sphere, for instance, the
geodesical curves from a pole are the meridians, which in that case cover not only
a whole neighborhood of the parent point, but the whole surface. Furthermore,
a tight control of the distance between parents and o�spring allows for a simple
implementation of adaptive mutation respecting the strong causality principle.

Unfortunately, in the general case, even with analytical de�nitions of the con-
straints, the derivation of the geodesical curves (or the exponential curves beam)
is not tractable: it involves heavy symbolic computations, plus the numerical so-
lution of many local second-order systems of di�erential equations. Moreover,
unavoidable numerical errors would probably move the solutions o� the desired
curves.

However, in some situations, the ideas presented above can be implemented,
and evolutionary search on the boundary can be successfully performed without
the need for exact geodesical curves. The geometrical and spherical crossovers
presented in section 3 are particular examples of such curves. Next subsections
will also present particular cases where such curves are available.

5.2 Parametric representation of the surface

From a parametric representation of a surface, it is easy to design a complete
evolutionary algorithm on that surface. Suppose the surface S (of dimension
n� 1) is de�ned by xi = si(t1; : : : tn�1); ti 2 [ai; bi], for i = 1; : : : ; n, where the
functions si are regular functions from Rn�1 into R. In the following, we denote
this relation (xi) = S[(ti)].

1 A surface is geodesically complete if no geodesical curve encounters a dead-end.



The following elements can be designed:

{ Initialization: A random choice of a point on S amounts to the choice of
the n � 1 values of the parameters t1; : : :tn�1, uniformly on �[ai; bi].

{ Crossover: The crossover can be de�ned by:

S[(ti)]; S[(ui)]! S[(�ti + (1� �)ui)]

for some � randomly chosen in [0; 1].
{ Mutation: Similarly, the mutation can be given by

S[(ti)]! S[(ti + N (0; �i))]

where N (0; �) denotes the normal distribution with zero mean and � vari-
ance. The parameters �i can be either user-supplied (eventually dynamically)
or adaptive, i.e., encoded in the individual, as in evolution strategies.

In that context, the choice of a speci�c parametric representation fully deter-
mines the operators. Further subsection presents the common situation in which
many di�erent parameterization of surface S are available, for both test cases of
section 4.

Parametric operators on the hyperboloid. In the case of the hyperboloid
(section 4.1), surface S is de�ned by the equation

Q
xi = 0:75. Any n�1 variables

can be chosen as parameters, the last one is then de�ned by the equation of the
surface itself. There are n di�erent systems of such parametric representation,
for the n di�erent choices of i0 = 1; : : :n:

xi0 =
0:75

�i6=i0xi

Figure 2 presents three possible parametric crossovers (as de�ned above) in
the case n = 3, termed Ci when variable i is taken as unknown, together with the
geometrical crossover introduced in section 4.1 termed G. It is clear from that
�gure that the possible locations for the o�spring depends on both the chosen
parameterization and the position of the parents on the surface.

Parametric operators on the sphere. Similarly, an evolutionary algorithm
can be de�ned as described earlier in this section from any standard spherical
parametric representation (which are the straightforward extension of the usual
spherical coordinates of R3). Here, there are n! valid parametric representations
for the sphere, corresponding to the permutations among coordinates. Figure
3-a gives an example of three curves de�ning these operators on the sphere in
the case n = 3 (denoted P1, P2, and P3), together with the geodesical curve
(denoted G) and the curve corresponding to the spherical crossover presented in
section 4.2 (denoted Sp).



x y

z

x y

z

Fig. 2. Parametric crossovers for the hyperboloid problem, for di�erent parametric
representations and di�erent parents. (a) From left to right, C2; C1;G;C3 (b) From
top to bottom, C1; C2; G;C3

5.3 Plane-based operators

Another general method to design curves, and hence operators to evolve on a
surface is to use the intersection of that surface with 2-dimensional planes.

Consider two points A and B belonging to S, and one vector v which are not
collinear to AB and which is not orthogonal to the gradient vector at point A.
Hence the plane de�ned by (A;AB;v) intersects the surface around A, de�ning
a curve on S. If this curve is connected, a crossover operator can be designed
as described in section 5.1. But this procedure can fail if the intersection is not
connected (as for the \horse-shoe sausage" of R3 with A and B at both end).

Similarly, the mutation operator can be designed by choosing the gradient
at point A instead of vector AB above, with a prescribed distance o� parent
point A. Examples of plane-based operators will now be given in the simple case
where S is a sphere.

Plane-based operators on the sphere. In the case of the sphere, the deriva-
tion of curves joining two points by intersecting the sphere with a plane is
straightforward calculation. Moreover, the geodesical curves are a particular case
of such plane-based curves, corresponding to the case where the chosen plane
goes through the center of the sphere.

Figure 3-b shows some plane-based curves for di�erent values of the angle
between the plane and the gradient of the surface. The angles were such that
the resulting curves approximately match the curves of Figure 3-a, obtained
by parametric operators (section 5.2) and by the spherical crossover of section
4.2. Obviously, in that particular case, plane-based operators are more general
operators: particular plane-based crossovers can give almost the same resulting
o�spring than any other crossover presented here.
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Fig. 3. Crossover operators on the sphere. (a) From top to bottom, P1; P2;G; Sp; P3.
(b) From top to bottom, angle between the plane and the gradient is 0; 15; 20;�15;�57
(in degrees).

6 Conclusions

Using the geodesical curves constitute a theoretical method for constructing
speci�c operators on a surface, but raises technical di�culties. The parametric
operators represent an easy way when availablewith the inconvenience that these
operators do depend a lot on the chosen parameterization (as it is obvious from
Figure 2).

The plane operators provide another possibility, but they require more com-
plex calculations, and possibly they may lead to pathological solutions (e.g.,
non-connected parts of curves). The case of the sphere illustrates all above-
mentioned types of operators: plane-based operators end up in more general
operators, sweeping a large region around the parents, thus avoiding the bias
due to the choice of a single curve. Further comparative experiments are needed,
on both test cases presented here as well as on other more complex surfaces.
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