
A Note on Usefulness of Geometrical Crossover for Numerical

Optimization Problems

Zbigniew Michalewicz
Department of Computer Science

University of North Carolina

Charlotte, NC 28223

zbyszek@uncc.edu

Girish Nazhiyath
Department of Computer Science

University of North Carolina

Charlotte, NC 28223

gnazhiya@uncc.edu

Maciej Michalewicz
Institute of Computer Science

Polish Academy of Sciences

ul. Ordona 21

01-237 Warsaw, Poland

michalew@ipipan.waw.pl

Abstract

Numerical optimization problems enjoy a sig-
ni�cant popularity in evolutionary computation
community; all major evolutionary techniques (ge-
netic algorithm, evolution strategies, evolutionary
programming) have been applied to these prob-
lems.
However, many of these techniques (as well as

other, classical optimization methods) have di�-
culties in solving some real-world problems which
include non-trivial constraints. For such prob-
lems, very often the global solution lies on the
boundary of the feasible region. Thus it is im-
portant to investigate some problem-speci�c op-
erators, which search this boundary in an e�cient
way.
In this study we discuss a new experimental evi-

dence on usefulness of so-called geometrical cross-
over, which might be used for a boundary search
for particular problems. This operator enhances
also the e�ectiveness of evolutionary algorithms
(based on oating point representation) in a sig-
ni�cant way.

1 Introduction

For many years, most evolutionary techniques were eval-
uated and compared with each other in the domain of
function optimization. It seems also that the domain
of function optimization will remain the primary test-
bed for many new comparisons and new features of var-
ious algorithms. In particular, numerical optimization
problems enjoy a signi�cant popularity in evolutionary

computation community; all major evolutionary tech-
niques (genetic algorithms, evolution strategies, evolu-
tionary programming) can be applied to these problems.

However, in this study we depart from di�erences be-
tween various evolutionary techniques for numerical op-
timization problems, and discuss rather some experimen-
tal evidence on usefulness of a new operator, so-called ge-
ometrical crossover. This operator seems to enhance the
e�ectiveness of evolutionary algorithms (based on oat-
ing point representation) in a signi�cant way; later in
the paper we compare it with a better known arithmeti-
cal crossover on a few test cases.

The geometrical crossover emerged as a problem-spe-
ci�c operator for one particular constrained problem. In
a similar way, we can construct (for other constrained
problems) various crossover operators (e.g., sphere cross-
over; see Conclusions) and analyse their performance.
Thus this study indicates another possible way for con-
straint handling in evolutionary methods, based on a
search for a global solution on the boundary of the fea-
sible region. Some other heuristic techniques (e.g., tabu
search) recognized recently the importance of such search
by investigating strategic oscillation (see Kelly et al. 1993,
Glover and Kochenberger, 1995).

The paper is organized as follows. The following
two sections survey briey several operators and a few
constraint-handling techniques for numerical optimiza-
tion problems, which have emerged in evolutionary com-
putation techniques (oating point representation) over
the years. Section 4 presents a test case of a constrained
optimization problem, which proved to be extremely dif-
�cult for most optimizationmethods. Section 5 discusses
a special, problem-speci�c evolutionary system, which

was \tuned" towards this particular problem; the system
incorporates a new operator, which we call geometrical
crossover. There is some experimental evidence on a gen-
eral usefulness of this operator, which outperforms a bet-
ter known arithmetical crossover; this is presented in Sec-
tion 6. We conclude the paper by providing an example
of another problem-speci�c crossover, sphere crossover,
and indicate its usefulness on another test case.

2 Numerical Optimization and Operators

Most evolutionary algorithms use vectors of oating point
numbers for their chromosomal representations. For such
representation, many operators have been proposed dur-
ing the last 30 years. We discuss them briey in turn.

The most popular mutation operator is Gaussian mu-
tation, which modi�ed all components of the solution
vector ~x = hx1; : : : ; xni by adding a random noise:

~xt+1 = ~xt + N (0; ~�),

N (0; ~�) is a vector of independent randomGaussian num-
bers with a mean of zero and standard deviations ~�.
Such a mutation is used in evolution strategies (B�ack et
al. 1991) and evolutionary programming (Fogel 1992).
(One of the di�erences between these techniques lies in
adjusting vector of standard deviations ~�.)

Other types of mutations include non-uniform muta-
tion, where

xt+1k =

�
xtk +4(t; right(k)� xk) if r is 0
xtk �4(t; xk � left(k)) if r is 1

for k = 1; : : : ; n (r is a random binary digit). The func-
tion 4(t; y) returns a value in the range [0; y] such that
the probability of 4(t; y) being close to 0 increases as
t increases (t is the generation number). This property
causes this operator to search the space uniformly ini-
tially (when t is small), and very locally at later stages.
In experiments reported in Michalewicz et al. (1994),
the following function was used:

4(t; y) = y � r � (1� t

T
)b;

where r is a random number from [0::1], T is the max-
imal generation number, and b is a system parameter
determining the degree of non{uniformity.

It is also possible to experiment with a uniform mu-
tation, which changes a single component of the solution
vector; e.g., if ~xt = (x1; : : : ; xk; : : : ; xq), then ~xt+1 =
(x1; : : : ; x0k; : : : ; xq), where x

0

k is a random value (uniform
probability distribution) from the domain of variable xk.
A special case of uniformmutation is boundary mutation,
where x0k is either left of right boundary of the domain
of xk.

There are a few interesting crossover operators. The
�rst one, uniform crossover (known also as discrete cross-

over in evolution strategies; Schwefel 1981), works as fol-
lows. Two parents,

~x1 = hx11; : : : ; x1ni and ~x2 = hx21; : : : ; x2ni,
produce an o�spring,

~x = hxq11 ; : : : ; xqnn i,
where qi = 1 or qi = 2 with equal probability for all
i = 1; : : : ; n (the second o�spring is created by setting
qi := 3�qi). Of course, the uniform crossover is a gener-
alization of 1-point, 2-point, and multi-point crossovers.

Another possibility is arithmetical crossover. Here
two vectors, ~x1 and ~x2 produce two o�spring, ~x3 and ~x4,
which are a linear combination of their parents, i.e.,

~x3 = a � ~x1 + (1� a) � ~x2 and
~x4 = (1� a) � ~x1 + a � ~x2.

Such a crossover was called also a guaranteed average
crossover (Davis, 1989, when a = 1=2), and an interme-
diate crossover (Schwefel, 1981).

There is also an interesting heuristic crossover pro-
posed by Wright (1991); it is a unique crossover for the
following reasons: (1) it uses values of the objective func-
tion in determining the direction of the search, (2) it
produces only one o�spring, and (3) it may produce no
o�spring at all. The operator generates a single o�spring
~x3 from two parents, ~x1 and ~x2 according to the following
rule:

~x3 = r � (~x2 � ~x1) + ~x2,

where r is a random number between 0 and 1, and the
parent ~x2 is not worse than ~x1, i.e., f(~x2) � f(~x1) for
maximization problems and f(~x2) � f(~x1) for minimiza-
tion problems.

M�uhlenbein and Voigt (1995) investigated the prop-
erties of a recombination operator, called gene pool re-
combination (default recombination mechanism in evo-
lution strategies, see Schwefel, 1981), where the genes
are randomly picked from the gene pool de�ned by the
selected parents. An interesting aspect of this operator
is that it allows so-called orgies: several parents in pro-
ducing an o�spring. Such a multi-parent crossover was
also investigated also by Eiben et al. (1994) in the con-
text of combinatorial optimization. Renders and Bersini
(1994) experimented with simplex crossover for numer-
ical optimization problems; this crossover involves com-
puting centroid of group of parents and moving from
the worst individual beyond the centroid point. Also,
Glover's (1977) scatter search techniques propose the use
of multiple parents.

3 Constraint-Handling Methods

During the last two years several methods were proposed
for handling constraints by genetic algorithms for numer-
ical optimization problems. Most of them are based on

2

the concept of penalty functions, which penalize unfea-
sible solutions, i.e.,

eval(X) =

�
f(X); if X 2 F
f(X) + penalty(X); if X 2 S � F ;

where the set S � Rn de�nes the search space and the set
F � S de�nes a feasible search space, penalty(X) is zero,
if no violation occurs, and is positive, otherwise (in the
rest of this section we assume minimization problems).
In most methods a set of functions fj (1 � j � m) is
used to construct the penalty; the function fj measures
the violation of the j-th constraint in the following way:

fj(X) =

�
maxf0; gj(X)g; if 1 � j � q

jhj(X)j; if q + 1 � j � m:

However, these methods di�er in many important de-
tails, how the penalty function is designed and applied
to unfeasible solutions.

The most severe penalty is a death penalty; some
method rejects unfeasible individuals. Such a method
has been used by by many techniques, e.g., evolution
strategies (B�ack et al. 1991) and simulated annealing.

Some methods use static penalties; for example, a
method proposed by Homaifar, Lai, and Qi (1994) as-
sumes that for every constraint we establish a family
of intervals which determine appropriate penalty coe�-
cient. It works by creating (for each constraint) several
(`) levels of violation; creating a penalty coe�cient Rij

(for each level of violation and for each constraint; higher
levels of violation require larger values of this coe�cient;
starting with a random population of individuals (fea-
sible or unfeasible); and evolving the population, where
the evaluation function used is

eval(X) = f(X) +
Pm

j=1Rijf
2
j (X).

Some other methods apply dynamic penalties. For
example, in the method proposed by Joines and Houck
(1994) individuals are evaluated (at the iteration t) by
the following formula:

eval(X) = f(X) + (C � t)�
Pm

j=1 f
�
j (X),

where C, � and � are constants. A reasonable choice for
these parameters is C = 0:5, � = � = 2.

Also, Michalewicz and Attia (1994) experimented with
the procedure, where the algorithm maintains feasibility
of all linear constraints using a set of closed operators,
which convert a feasible solution (feasible in terms of lin-
ear constraints only) into another feasible solution. At
every iteration the algorithm considers active constraints
only, the pressure on unfeasible solutions is increased due
to the decreasing values of temperature � .

It is also possible to incorporate adaptive penalties;
Bean and Hadj-Alouane (1992) and Smith and Tate (1993)
experimented with them. Bean and Hadj-Alouane (1992)

change the penalty coe�cients on the basis of the number
of feasible and infeasible individuals in the last k gener-
ations, whereas in the Smith and Tate (1993) approach
penalty measure depends on the number of violated con-
straints, the best feasible objective function found, and
the best objective function value found.

Yet another approach was proposed recently by Le
Riche et al. (1995). The authors designed a (segregated)
genetic algorithm which uses two values of penalty pa-
rameters (for each constraint) instead of one; these two
values aim at achieving a balance between heavy and
moderate penalties by maintaining two subpopulations
of individuals. The population is split into two cooperat-
ing groups, where individuals in each group are evaluated
using either one of the two penalty parameters.

Additional method was proposed by Schoenauer and
Xanthakis (1993) The method requires a linear order of
all constraints which are processed in turn. At iteration
j, solutions that do not satisfy one of the 1st, 2nd, ...,
or (j � 1)-th constraint are eliminated from the popu-
lation and the stop criterion is the satisfaction of the
j-th constraint by the ip threshold percentage � of the
population. In the last step the algorithm optimizes the
objective function, rejecting unfeasible individuals.

Another method was developed by Powell and Skol-
nick (1993). The method is a classical penalty method
with one notable exception. Each individual is evaluated
by the formula:

eval(X) = f(X) + r
Pm

j=1 fj(X) + �(t;X),

where r is a constant; however, there is also a compo-
nent �(t;X). This is an additional iteration dependent
function which inuences the evaluations of unfeasible
solutions. The point is that the method distinguishes be-
tween feasible and unfeasible individuals by adopting an
additional heuristic rule (suggested earlier by Richard-
son et al. 1989): for any feasible individual X and any
unfeasible individual Y : eval(X) < eval(Y), i.e., any
feasible solution is better than any unfeasible one.

One of the most recent methods (Genocop III; see
Michalewicz and Nazhiyath 1995) incorporates the orig-
inal Genocop system (Michalewicz et al. 1994), but
also extends it by maintaining two separate populations,
where a development in one population inuences eval-
uations of individuals in the other population. The �rst
population consists of so-called search points from S
which satisfy linear constraints of the problem (as in the
original Genocop system). The feasibility (in the sense
of linear constraints) of these points is maintained, as
before, by specialized operators. The second population
consists of so-called reference points fromF ; these points
are fully feasible, i.e., they satisfy all constraints. Refer-
ence points R, being feasible, are evaluated directly by
the objective function (i.e., eval(R) = f(R)). On the
other hand, unfeasible search points are \repaired" for
evaluation.

3

For an experimental comparison of some of these meth-
ods on a few test cases, see Michalewicz (1995).

4 The Test Case

An interesting constrained numerical optimization test
case emerged recently; the problem (Keane, 1994) is to
maximize a function:

f(~x) = j
Pn

i=1 cos
4(xi)� 2

Qn

i=1 cos
2(xi)pPn

i=1 ix
2
i

j;

where
Qn

i=1 xi � 0:75, (1)Pn

i=1 xi � 7:5n, (2)
and 0 � xi � 10 for 1 � i � n.

The problem has two constraints; the function f is non-
linear and its global maximum is unknown.

0
5

10
15

20
25

0

5

10

15

20

25
0

2

4

6

8

10

12

Figure 1: The graph of function f for n = 2

To illustrate some potential di�culties of solving this
test case, a few graphs (for case of n = 2) are displayed
in Figures 1 { 4. Figure 1 gives a general overview of the
objective function f : the whole landscape seems to be
relatively at except for a sharp peek around the point
(0; 0). Figures 2 and 3 incorporate the active constraint:
infeasible solutions were assigned a value of zero. In that
case the objective function f takes values from the range
h0; 1i; because of the scaling, the landscape is more visi-
ble. Figure 3 displays only the area of interest (i.e., the
area of global optimum). Figure 4 presents a side view
of the landscape along one of the axis. Again, the only
feasible part of the landscape is displayed.

All methods (described in section 3) were tried on
this test case with quite poor results. As Keane (1994)
noted:

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

Figure 2: The graph of function f for n = 2. Infeasible
solutions were assigned value zero

\I am currently using a parallel GA with 12bit
binary encoding, crossover, inversion, mutation,
niche forming and a modi�ed Fiacco-McCormick
constraint penalty function to tackle this. For n =
20 I get values like 0.76 after 20,000 evaluations."

We obtained the best results fromGenocop III; however,
the results varied from run to run (between 0.75 and 0.80,
case of n = 20).

5 A New System and the Geometrical
Crossover

It seems that majority of constraint-handling methods
have serious di�culties in returning a high quality solu-
tion for the above problem. It might be possible, how-
ever, to build a dedicated system for this particular test
case, which would incorporate the problem speci�c knowl-
edge. This knowledge can emerge from analysis of the
objective function f and the constraints; thus we assume
that (a) the domain for all variables is h0:1; 10:0i, (b) con-
straint (1) is active at the global optimum, and (c) the
constraint (2) is not.

Now it is possible to develop an evolutionary system
which would search just the surface de�ned by the �rst
constraint:

Qn

i=1 xi = 0:75.

Thus the search space is greatly reduced; we consider
only points which satisfy the above equation. Such a
system would start from a population of feasible points,
i.e., points, for which a product of all coordinates is equal
to 0.75. It is relatively easy to develop such initialization
routine:

4

0

10

20

30

40 0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

Figure 3: The graph of function f for n = 2. Infeasi-
ble solutions were assigned value zero; only the corner
around the global optimum is shown

for i = 1 to n do
begin

if i is even
xi�1 = random (0.1, 10)
xi = 1=xi�1

end
if n is odd

xn = 0:75
else

for some random i
xi = 0:75 � xi

It is important to note, that the above initialization
routine is not signi�cant for the performance of any sys-
tem; it just ensures that all points in the population are
at the boundary between feasible and infeasible regions.
Many other methods were tried with such initialized pop-
ulations and gave poor results. Also, the value of the best
individual in the population initialized in such a way is
around 0.30.

The geometrical crossover takes two parents and pro-
duces a single o�spring; for parents ~x1 and ~x2 the o�-
spring ~x3 is

~x3 = h
p
x11 � x21; : : : ;

p
x1n � x2ni. (3)

Note, that the o�spring ~x3 also lies on the boundary of
feasible region:
Qn

i=1 x
3
i = 0:75.

Of course, it is an easy task to generalize the above geo-
metrical crossover into

~x3 = h(x11)� � (x21)(1��); : : : ; (x1n)� � (x2n)(1��)i, (4)

0 20 40 60 80 100050100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: The vertical view of the function f for n = 2

for 0 � � � 1. Also it is possible to include several (say,
k) parents:

~xk+1 = h(x11)�1 � (x21)�2 � : : : � (xk1)�k ; : : : ;
(x1n)

�1 � (x2n)�2 � : : : � (xkn)�ki, (5)

where �1+ : : :+�k = 1. However, in the experiments re-
ported in this paper, we limited ourselves to the simplest
geometrical crossover (3).

The task of designing a feasibility-preserving muta-
tion is relatively simple; if the i-th component is selected
for mutation, the following algorithm is executed:

determine random j, 1 � j � n, j 6= i
select q such that:

0:1 � xi � q � 10:0 and
0:1 � xj=q � 10:0

xi = xi � q
xj = xj=q

A simple evolutionary algorithm (200 lines of code!)
with geometrical crossover and problem-speci�c muta-
tion gave an outstanding results. For the case n = 20
the system reached the value of 0.80 in less than 4,000
generations (with population size of 30, probability of
crossover pc = 1:0, and probability of mutation pm =
0:06) in all runs. The best value found (namely 0.803553)
was better than the best values of any method discussed
earlier, whereas the worst value found was 0.802964. Sim-
ilarly, for n = 50, all results (in 30,000 generations) were
better than 0.83 (with the best of 0.8331937);

~x = (6.28006029, 3.16155291, 3.15453815, 3.14085174,
3.12882447, 3.11211085, 3.10170507, 3.08703685,
3.07571769, 3.06122732, 3.05010581, 3.03667951,
3.02333045, 3.00721049, 2.99492717, 2.97988462,
2.96637058, 2.95589066, 2.94427204, 2.92796040,

5

0.40970641, 2.90670991, 0.46131119, 0.48193336,
0.46776962, 0.43887550, 0.45181099, 0.44652876,
0.43348753, 0.44577143, 0.42379948, 0.45858049,
0.42931050, 0.42928645, 0.42943302, 0.43294361,
0.42663351, 0.43437257, 0.42542559, 0.41594154,
0.43248957, 0.39134723, 0.42628688, 0.42774364,
0.41886297, 0.42107263, 0.41215360, 0.41809589,
0.41626775, 0.42316407),

It was interesting to note the importance of geometri-
cal crossover. With �xed population size (kept constant
at 30), the higher values of probability of crossover pc,
the better results of the system were observed. Similarly,
the best mutation rates were relatively low (pm � 0:06).
We illustrate the average values (out of 10 runs) of the
best values found for di�erent probabilities of mutation
(with �xed pc = 1:0) in Figure 5.

0.0
0.0

Pm

f(x)

1.0

0.5

0.250.06

Figure 5: The performance of the system with pc = 1:0
and a variable mutation rate pm

Clearly, geometrical crossover can be applied only for
problems where each variable takes nonnegative values
only, so its use is quite restricted in comparison with
other types of crossovers (e.g., arithmetical crossover).
However, for many engineering problems, all problem
variables are positive; moreover, it is always possible to
replace variable xi 2 hai; bii which can take negative val-
ues (i.e., where ai < 0) with a new variable yi = xi� ai.

6 Further Experiments and Results

We compared arithmetical and geometrical crossovers on
several test cases. The preliminary experiments indi-
cate that geometrical crossover outperforms arithmetical
crossover on majority of unconstrained test problems.

For example, one of the selected test cases was to

minimize f(X) = 100(x2 � x21)
2 + (1� x1)2+

90(x4 � x23)
2 + (1� x3)

2+
10:1((x2� 1)2 + (x4 � 1)2)+
19:8(x2� 1)(x4 � 1),

subject to:

0:0 � xi � 10:0, i = 1; 2; 3; 4.

The global solution is X
�

= (1; 1; 1; 1), and f(X
�

) = 0.
We experimented with two simple systems (A and

B); both of them use two operators, and one of these op-
erators (in both systems) was a non-uniform mutation
(described in section 2). The only di�erence between
systems A and B was, that the former system used arith-
metical crossover, i.e., o�spring ~z of parents ~x and ~y was
de�ned as

zi = a � xi + (1 � a) � yi for all 1 � i � n and
random 0 � a � 1,

whereas the system B used geometrical crossover:

zi = xai � y1�ai for all 1 � i � n and random
0 � a � 1.

Figure 6 illustrates the di�erence in the performance of
systems A and B.

f(x)

x 10
4

1 2 3 4 5 6 7
0

*

*

*

*

*
*

*

10

10

10

10

10

−5

−4

−3

−2

−1

1

10

*

Figure 6: The performance (number of generations in
10,000s versus the average value of the objective function
over 20 runs) of the systems A (marked by `�') and B
(marked by `*') on one test case

7 Conclusions

It seems that the experiments described in the previous
sections can be generalized in the following sense. Ini-
tial experiments (using any evolutionary method) may
indicate active constraints for a given problem. Then
it might be possible to build a specialized system with
operators to search a boundary between feasible and in-
feasible parts of the search space. This was precisely the
case of the problem described in section 4; it might be
the case for many other optimization problems.

Let us consider, for example, the following optimiza-
tion problem:

maximize f(~x) = (
p
n)n �Qn

i=1 xi

where

6

Pn

i=1 x
2
i � 1 (6)

and 0 � xi � 1, for 1 � i � n.

Clearly, the objective function reaches its global opti-
mum at

~x� = h1=pn; : : : ; 1=
p
ni,

and f(~x�) = 1.
Again, it is relatively easy to initialize the population

by boundary points, i.e., points, satisfying
Pn

i=1 x
2
i = 1.

Then, the sphere crossover produces an o�spring ~x3 from
two parents ~x1 and ~x2 in the following way:

x3i =
p
((x1i)

2 + (x2i)
2)=2.

As for geometrical crossover, it is easy to generalize sphere
crossover:

x3i =
p
�(x1i)

2 + (1� �)(x2i)
2,

for 0 � � � 1, as well as for multiple parents:

xk+1i =
p
�1(x1i)

2 + : : :+ �k(xki)
2,

for �1 + : : :+ �k = 1.
Clearly, ~x3 lies also on the sphere de�ned by (6). Sim-

ilarly, a problem-speci�c mutation (for a parent vector ~x)
can select two indices, i 6= j and a random number p from
the range h0; 1i, and assign:

xt+1i = p � xti, and
xt+1j = q � xtj,

where q =
q
(xi
xj
)2(1� p2) + 1. Such a simple evolution-

ary system �nds the global optimumeasily (e.g., the case
of n = 20 requires 10,000 generations with population
size equal to 30, pc = 1:0, and pm = 0:06).

It seems that problem-speci�c operators which search
the boundary of a feasible region can enhance the search
for a global optimum in a signi�cant way. At least for
some numerical optimization problems, it is an interest-
ing option to explore. Resulting evolutionary systems
are very easy to construct (less than 200 lines of code)
and use. As indicated in section 6, such operators can
be useful also for problems without constraints. We
plan further study on properties of various crossovers
and boundary-search operators for numerical optimiza-
tion problems.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant IRI-9322400.

References

B�ack, T., F. Ho�meister and H.-P. Schwefel (1991). A
Survey of Evolution Strategies. In Proceedings of the
Fourth International Conference on Genetic Algorithms,
Los Altos, CA, Morgan Kaufmann Publishers, 2{9.

Bean, J.C. and A.B. Hadj-Alouane (1992). A Dual Ge-
netic Algorithm for Bounded Integer Programs. Depart-
ment of Industrial and Operations Engineering, The Uni-
versity of Michigan, TR 92-53.

Davis, L. (1989). Adapting Operator Probabilities in Ge-
netic Algorithms. In Proceeding of the 3rd International
Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, pp.61{69.

Eiben, A.E., P.-E. Raue, and Zs. Ruttkay (1994). Ge-
netic Algorithms with Multi-parent Recombination. In
Proceedings of the Third International Conference on Par-
allel Problem Solving from Nature (PPSN), Springer-
Verlag, New York, pp.78{87.

Fogel, D.B. (1992). Evolving Arti�cial Intelligence. PhD
Thesis, University of California, San Diego.

Glover, F. (1977). Heuristics for Integer Programming
Using Surrogate Constraints. Decision Sciences, Vol.8,
No.1, pp.156{166.

Glover, F. and G. Kochenberger (1995). Critical Event
Tabu Search for Multidimensional Knapsack Problems.
In Proceedings of the International Conference on Meta-
heuristics for Optimization, Kluwer Publishing, pp.113{
133.

Hadj-Alouane, A.B. and J.C. Bean (1992). A Genetic
Algorithm for the Multiple-Choice Integer Program. De-
partment of Industrial and Operations Engineering, The
University of Michigan, TR 92-50.

Homaifar, A., S. H.-Y. Lai and X. Qi (1994). Con-
strained Optimization via Genetic Algorithms. Simu-
lation, 62: 242{254.

Joines, J.A. and C.R. Houck (1994). On the Use of Non-
Stationary Penalty Functions to Solve Nonlinear Con-
strained Optimization Problems With GAs. In Proceed-
ings of the Evolutionary Computation Conference|Poster
Sessions, part of the IEEE World Congress on Computa-
tional Intelligence, Orlando, 26{29 June 1994, 579{584.

Keane, A., (1994). Genetic Algorithms Digest, Thurs-
day, May 19, 1994, Volume 8, Issue 16.

Kelly, J.P., B.L. Golden, and A.A. Assad (1993). Large
Scale Controlled Rounding Using Tabu Search with Strate-
gic Oscillation. Annals of Operations Research, Vol.41,
pp.69{84.

7

Le Riche, R., C. Knopf-Lenoir, and R.T. Haftka (1995).
A Segregated Genetic Algorithm for Constrained Opti-
mization in Structural Mechanics. In Proceedings of the
Sixth International Conference on Genetic Algorithms,
Los Altos, CA, Morgan Kaufmann Publishers, pp.558{
565.

Michalewicz, Z., (1995). Genetic Algorithms, Numerical
Optimization, and Constraints. In Proceeding of the 6th
International Conference on Genetic Algorithms, Mor-
gan Kaufmann Publishers, pp.151{158.

Michalewicz, Z. and N. Attia (1994). In Evolutionary
Optimization of Constrained Problems. Proceedings of
the 3rd Annual Conference on Evolutionary Program-
ming, eds. A.V. Sebald and L.J. Fogel, River Edge, NJ,
World Scienti�c Publishing, 98{108.

Michalewicz, Z., T.D. Logan and S. Swaminathan (1994).
Evolutionary Operators for Continuous Convex Parame-
ter Spaces. In Proceedings of the 3rd Annual Conference
on Evolutionary Programming, eds. A.V. Sebald and
L.J. Fogel, River Edge, NJ, World Scienti�c Publishing,
84{97.

Michalewicz, Z. and G. Nazhiyath, G. (1995). Genocop
III: A Co-evolutionary Algorithm for Numerical Opti-
mization Problems with Nonlinear Constraints. In Pro-
ceedings of the 2nd IEEE International Conference on
Evolutionary Computation, Perth, 29 November { 1 De-
cember 1995.

M�uhlenbein, H. and H.-M. Voigt (1995). Gene Poool
Recombination for the Breeder Genetic Algorithm. In
Proceedings of the Metaheuristics International Confer-
ence, Breckenridge, Colorado, July 22{26, pp.19{25.

Powell, D. and M.M. Skolnick (1993). Using Genetic Al-
gorithms in Engineering Design Optimization with Non-
linear Constraints. In Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, Los Altos, CA,
Morgan Kaufmann Publishers, 424{430.

Renders, J.-M., and H. Bersini (1994). Hybridizing Ge-
netic Algorithms with Hill-climbing Methods for Global
Optimization: Two Possible Ways. In Proceedings of the
First IEEE ICEC, pp.312{317.

Richardson, J.T., M.R. Palmer, G. Liepins andM. Hilliard
(1989). Some Guidelines for Genetic Algorithms with
Penalty Functions. In Proceedings of the Third Inter-
national Conference on Genetic Algorithms, Los Altos,
CA, Morgan Kaufmann Publishers, 191{197.

Schoenauer, M., and S. Xanthakis (1993). Constrained
GA Optimization. In Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, Los Altos, CA,
Morgan Kaufmann Publishers, 573{580.

Schwefel, H.-P. (1981). Numerical Optimization for Com-
puter Models. Chichester, UK, Wiley.

Smith, A. and D. Tate (1993). Genetic Optimization
Using A Penalty Function. In Proceedings of the Fifth
International Conference on Genetic Algorithms, Los Al-
tos, CA, Morgan Kaufmann Publishers, pp.499{503.

Wright, A.H. (1991). Genetic Algorithms for Real Pa-
rameter Optimization. In Foundations of Genetic Algo-
rithms, ed. G. Rawlins, First Workshop on the Founda-
tions of Genetic Algorithms and Classi�er Systems, Los
Altos, CA, Morgan Kaufmann Publishers, 205{218.

8

