
Genocop III: A Co-evolutionary Algorithm for Numerical

Optimization Problems with Nonlinear Constraints

Zbigniew Michalewicz and Girish Nazhiyath

Department of Computer Science

University of North Carolina

Charlotte, NC 28223, USA

e-mail: fzbyszek,gnazhiyag@uncc.edu

Abstract

During the last two years several methods have been proposed for handling nonlinear constraints by genetic
algorithms for numerical optimization problems; most of them were based on penalty functions. However,
the performance of these methods is highly problem-dependent; moreover, many methods require additional
tunning of several parameters. In this paper we present a new optimization system (Genocop III), which
is based on concepts of co-evolution and repair algorithms. We present the results of the system on a few
selected test problems and discuss some directions for further research.

I. Introduction

The general nonlinear programming problem (for continuous variables) is to �nd X so as to

optimize f(X ), X = (x1; : : : ; xn) 2 Rn,

where X 2 F � S. The set S � Rn de�nes the search space and the set F � S de�nes a feasible search
space. Usually, the search space S is de�ned as a n-dimensional rectangle in Rn (domains of variables
de�ned by their lower and upper bounds):

l(i) � xi � u(i); 1 � i � n,

whereas the feasible set F � S is de�ned by a set of additional m � 0 constraints:

gj(X) � 0, for j = 1; : : : ; q, and hj(X) = 0, for j = q + 1; : : : ;m.

It is also convenient to divide all constraints into four subsets: linear equations LE, linear inequalities
LI, nonlinear equations NE, and nonlinear inequalities NI. Of course, gj 2 LI [NI and hj 2 LE [NE. In
fact, we need not consider linear equations LE, since we can remove them by expressing values of some
variables as linear functions of remaining variables and making appropriate substitutions [12].

Most research on applications of evolutionary computation techniques to nonlinear programming
problems has been concerned with complex objective functions with F = S. Several test functions
used by various researchers during the last 20 years considered only domains of n variables; this was
the case with �ve test functions F1{F5 proposed by De Jong [2], as well as with many other test cases
proposed since then [3, 4, 19]. Only recently several approaches were reported to handle general nonlinear
programming problems.

This paper surveys brie
y these methods (next two Sections) and provides a description of a new
system, Genocop III, which is based on the concepts of co-evolution and repair algorithms (Section IV).
Section V presents the �rst experimental results of Genocop III and concludes the paper.

II. The original Genocop system

The Genocop (for GEnetic algorithm for Numerical Optimization of COnstrained Problems) system
[12] assumes linear constraints only and a feasible starting point (or feasible initial population). A closed
set of operators maintains feasibility of solutions. For example, when a particular component xi of a
solution vector X is mutated, the system determines its current domain dom(xi) (which is a function of
linear constraints and remaining values of the solution vector X) and the new value of xi is taken from this
domain (either with 
at probability distribution for uniform mutation, or other probability distributions
for non-uniform and boundary mutations). In any case the o�spring solution vector is always feasible.
Similarly, arithmetic crossover, aX + (1 � a)Y , of two feasible solution vectors X and Y yields always



a feasible solution (for 0 � a � 1) in convex search spaces (the system assumes linear constraints only
which imply convexity of the feasible search space F).

The Genocop (its third version, together with all previous versions, is available from anonymous,
ftp.uncc.edu, directory coe/evol, �le genocop3.0.tar.Z) gave surprisingly good performance on many test
functions [8]; for example the following test case (this is a test function G1 with 13 variables from [10]):

minimize G1(X;Y ) = 5x1 + 5x2 + 5x3 + 5x4 � 5
P

4

i=1 x
2

i �
P

9

i=1 yi,

subject to:

2x1 + 2x2 + y6 + y7 � 10, 2x1 + 2x3 + y6 + y8 � 10, 2x2 + 2x3 + y7 + y8 � 10,
�8x1 + y6 � 0, �8x2 + y7 � 0, �8x3 + y8 � 0,
�2x4 � y1 + y6 � 0, �2y2 � y3 + y7 � 0, �2y4 � y5 + y8 � 0,
0 � xi � 1, i = 1; 2; 3; 4, 0 � yi � 1, i = 1; 2; 3; 4;5; 9, 0 � yi, i = 6; 7; 8.

requires less than 1000 generations to get the global solution (X
�

; Y
�

) = (1; 1; 1; 1; 1; 1;1;1; 1; 3; 3;3;1),

where G1(X
�

; Y
�

) = �15.
The method can be generalized to handle nonlinear constraints provided that the resulting feasible

search space F is convex. But the weakness of the method lies in its inability to deal with nonconvex search
spaces (i.e, to deal with nonlinear constraints in general). After surveying other approaches (Section III)
for the general nonlinear programming problem, Section IV describes the most recent extension of the
Genocop method (Genocop III) to overcome the above restriction.

III. The other approaches

During the last two years several methods were proposed for handling nonlinear constraints by genetic
algorithms for numerical optimization problems. Most of them are based on the concept of penalty
functions, which penalize unfeasible solutions, i.e.,1

eval(X ) =

�
f(X ); if X 2 F
f(X ) + penalty(X ); otherwise;

where penalty(X ) is zero, if no violation occurs, and is positive, otherwise. In most methods a set of
functions fj (1 � j � m) is used to construct the penalty; the function fj measures the violation of the
j-th constraint in the following way:

fj(X) =

�
maxf0; gj(X)g; if 1 � j � q

jhj(X)j; if q + 1 � j � m:

However, these methods di�er in many important details, how the penalty function is designed and
applied to unfeasible solutions; we discuss them brie
y in turn; for a full discussion, see [10].

One of the methods was proposed by Homaifar, Lai, and Qi [6]. The method assumes that for every
constraint we establish a family of intervals which determine appropriate penalty coe�cient. For each
constraint it creates several levels (`) of violation, and for each level of violation and for each constraint,
it creates a penalty coe�cient Rij (i = 1; 2; : : : ; `, j = 1; 2; : : : ;m); higher levels of violation require larger
values of this coe�cient. It starts with a random population of individuals (feasible or unfeasible), and
evolves the population using the following formula

eval(X ) = f(X ) +
Pm

j=1Rijf
2

j (X).

Another method was proposed by Joines and Houck [7]. As opposed to the previous method, the
authors assumed dynamic penalties. Individuals are evaluated (at the iteration t) by the following
formula:

eval(X ) = f(X ) + (C � t)�
Pm

j=1 f
�
j (X),

where C, � and � are constants.
One of the methods was proposed by Schoenauer and Xanthakis [17]. It starts with a random popula-

tion of individuals (feasible or unfeasible), and tries to minimize violation of the �rst constraint. Once a
given percentage of the population (so-called 
ip threshold �) is feasible for this constraint,2 the current
population is used as the starting point for the next phase of the evolution, where minimization of the

1In the rest of the paper we assume minimization problems.
2The method suggests the use of a sharing scheme (to maintain diversity of the population).



next constraint is attempted. During this phase, points that do not satisfy one of the previously consid-
ered constraints are eliminated from the population. In the �nal iteration, the system tries to optimize
the objective function rejecting unfeasible individuals.

The next method was described by Michalewicz and Attia [11]; it is incorporates the Genocop system
(described in the previous section) and its modi�ed version (Genocop II, see [8] for details) starts by
selecting a random single point as a starting point (the initial population consists of copies of this single
individual), which satis�es linear constraints (LE and LI). The initial temperature � is set and individuals
are evaluated by the following formula

eval(X; � ) = f(X ) + 1

2�

Pm

j=1 f
2

j (X),

After some number of generations the temperature � is decreased and the best solution found so far
serves as a starting point of the next iteration. The process continues until the temperature reaches the
freezing point.

The next method was developed by Powell and Skolnick [15]. The method is a classical penalty
method with one notable exception. Each individual is evaluated by the formula:

eval(X ) = f(X ) + r
Pm

j=1 fj(X) + �(t;X),

where r is a constant; however, there is also a component �(t;X). This is an additional iteration de-
pendent function which in
uences the evaluations of unfeasible solutions. The point is that the method
distinguishes between feasible and unfeasible individuals by adopting an additional heuristic rule (sug-
gested earlier in [16]): for any feasible individualX and any unfeasible individual Y : eval(X ) < eval(Y ),
i.e., any feasible solution is better than any unfeasible one. This can be achieved by adding additional
penalty component �(t;X) to all unfeasible individuals X ; the value of this component is determined by
the values of the best unfeasible and the worst feasible individuals in a given iteration t.

The �nal method rejects unfeasible individuals (death penalty); the method has been used, for exam-
ple, by evolution strategies [1] and simulated annealing.

IV. Genocop III

This method incorporates the original Genocop system (described in Section II), but also extends it by
maintaining two separate populations, where a development in one population in
uences evaluations of
individuals in the other population. The �rst population consists of so-called search points from S which
satisfy linear constraints of the problem (as in the original Genocop system). The feasibility (in the
sense of linear constraints) of these points is maintained, as before, by specialized operators. The second
population consists of so-called reference points from F ; these points are fully feasible, i.e., they satisfy
all constraints.3 Reference points R, being feasible, are evaluated directly by the objective function (i.e.,
eval(R) = f(R)). On the other hand, unfeasible search points are \repaired" for evaluation and the
repair process works as follows. Assume, there is a search point S 62 F . In such a case the system selects4

one of the reference points, say R, and creates random points Z from a segment between S and R by
generating random numbers a from the range h0; 1i: Z = aS + (1 � a)R. Once a feasible Z is found,
eval(S) = eval(Z) = f(Z).5 Additionally, if f(Z) is better than f(R), then the point Z replaces R as a
new reference point. Also, Z replaces S with some probability of replacement pr .

The Genocop III avoids many disadvantages of other systems (see Section III). It introduces few
additional parameters (the population size of reference points, probability of replacement) only. It always
returns a feasible solution. A feasible search space F is searched by making references from the search
points. The neighborhoods of better reference points are explored more often. Some reference points are
moved into the population of search-points, where they undergo transformation by specialized operators
(which preserve linear constraints).

V. Experiments, results, and conclusions

Recently a set of �ve test problems (G1{G5) was proposed [10] for constrained numerical optimization.
All test cases are summarized in Table 1; for each problem Gi we list number n of variables, type of
the function f , the ratio � = jF=jSj, the number of constraints of each category (linear inequalities LI,

3If Genocop III has di�culties in locating such a reference point for the purpose of initialization, the user is prompted
for it. In cases, where the ratio jFj=jSj is very small, it may happen that the initial set of reference points consists of a
multiple copies of a single feasible point.

4Better reference points have better chances to be selected; a selection method based on nonlinear ranking was used.
5Clearly, in di�erent generations the same search point S can evaluate to di�erent values due to the random nature of

the repair process.



nonlinear equations NE and inequalities NI), the number a of active constraints at the optimum, and the
optimum value of the objective function. For the full description of these test cases the reader is referred
to [10].

Problem n Type of f � LI NE NI a Optimum
G1 13 quadratic 0.0111% 9 0 0 6 �15.000
G2 8 linear 0.0010% 3 0 3 6 7049.331
G3 7 polynomial 0.5121% 0 0 4 2 680.630
G4 5 nonlinear 0.0000% 0 3 0 3 0.054
G5 10 quadratic 0.0003% 3 0 5 6 24.306

Table 1: Summary of �ve test cases. The ratio � = jF \ Sj=jSj was determined experimentally by
generating 1,000,000 random points from S and checking whether they belong to F . LI, NE, and NI
represent the number of linear inequalities, and nonlinear equations and inequalities, respectively.

The �rst problem G1 was presented in Section II. The results of Genocop III on G1 are identical to
these of the original Genocop: since there are no nonlinear constraints, there is no need for a population
of reference points. Out of remaining four test cases, we experimented with three (G2, G3, and G5); the
problem G4 contains nonlinear equations NE, and the current version of Genocop III does not handle
them yet.

The Genocop III was run for 5,000 iterations (as other systems discussed in [10]). The probabilities
of all operators were set at 0.08, and the both population sizes were 70.

The results were very good. For example, for the problem G2 the best result was 7286.650: much
better than the best result of the best system from these discussed in Section III (for this problem, it
was Genocop II with 7377.976). Similar performance was observed on two other problems, G3 (with
680.640) and G5 (with 25.883). Additional interesting observation was connected with stability of the
system. Genocop III had a very low standard deviation of results. For example, for problem G3, all
results were between 680.640 and 680.889; on the other hand, other system produced variety of results
(between 680.642 and 689.660, see [10]).

Of course, all resulting points X were feasible, which was not the case with other systems (e.g.,
Genocop II produced a value of 18.917 for the problemG5, the systems based on the methods of Homaifar,
Lai, and Qi [6] and Powell and Skolnick [15] gave results of 2282.723 and 2101.367, respectively, for the
problem G2).

Clearly, Genocop III is a promising tool for constrained nonlinear optimization problems. However,
there are many issues which require further attention and experiments. These include investigation of
the signi�cance of the ratio of � = jFj=jSj. Note that it is possible to represent some linear constraints
as nonlinear constraints; this change in the input �le would change the space of reference points making
it smaller and the space of linearly feasible search points would be larger. However, it is unclear, how
these changes would a�ect the performance of the system.

Another group of experiments is connected with a single parameter: probability of replacement pr.
Recently [13] a so-called 5%-rule was reported: this heuristic rule states that in many combinatorial
optimization problems, an evolutionary computation technique with a repair algorithm provides the best
results when 5% of repaired individuals replace their unfeasible originals. It would be interesting to check
this rule in numerical domains. Current version of Genocop III used pr = 0:20.

Also, we plan (in a very near future) to extend Genocop III to handle nonlinear equations. This
would require an additional parameter (�) to de�ne the precision of the system. All nonlinear equations
hj(X) = 0 (for j = q + 1; : : : ;m) would be replaced by a pair of inequalities:

�� � hj(X) � �.

This new version of Genocop III should handle directly the problem G4.

Acknowledgments:

This material is based upon work supported by the National Science Foundation under Grant IRI-
9322400. The �rst author is also at the Institute of Computer Science, Polish Academy of Sciences, ul.
Ordona 21, 01-237 Warsaw, Poland; e-mail: zbyszek@ipipan.waw.pl.



References

[1] B�ack, T., Ho�meister, F., and Schwefel, H.-P., A Survey of Evolution Strategies, Proceedings of the
Fourth ICGA, Morgan Kaufmann Publishers, Los Altos, CA, 1991, pp.2{9.

[2] De Jong, K.A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, (Doctoral
dissertation, University of Michigan), Dissertation Abstract International, 36(10), 5140B. (University
Micro�lms No 76-9381).

[3] Eshelman, L.J. and Scha�er, J.D, Real-Coded Genetic Algorithms and Interval Schemata, Founda-
tions of Genetic Algorithms { 2, Morgan Kaufmann, Los Altos, CA, 1993, pp. 187{202.

[4] Fogel, D.B. and Stayton, L.C., On the E�ectiveness of Crossover in Simulated Evolutionary Opti-
mization, BioSystems, Vol.32, 1994, pp.171{182.

[5] Hock, W. and Schittkowski K., Test Examples for Nonlinear Programming Codes, Springer-Verlag,
Lecture Notes in Economics and Mathematical Systems, Vol.187, 1981.

[6] Homaifar, A., Lai, S. H.-Y., Qi, X., Constrained Optimization via Genetic Algorithms, Simulation,
Vol.62, No.4, 1994, pp.242{254.

[7] Joines, J.A. and Houck, C.R., On the Use of Non-Stationary Penalty Functions to Solve Nonlinear
Constrained Optimization Problems With GAs, Proceedings of the IEEE ICEC 1994, pp.579{584.

[8] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New
York, 2nd edition, 1994.

[9] Michalewicz, Z., A Survey of Constraint Handling Techniques in Evolutionary Computation Methods,
Proceedings of the 4th Annual Conference on EP, MIT Press, Cambridge, MA, 1995.

[10] Michalewicz, Z., Genetic Algorithms, Numerical Optimization, and Constraints, Proceedings of the
Sixth ICGA, Morgan Kaufmann, 1995, pp.151{158.

[11] Michalewicz, Z., and Attia, N., Evolutionary Optimization of Constrained Problems, Proceedings of
the 3rd Annual Conference on EP, World Scienti�c, 1994, pp.98{108.

[12] Michalewicz, Z. and Janikow, C., Handling Constraints in Genetic Algorithms, Proceedings of the
Fourth ICGA, Morgan Kaufmann, 1991, pp.151{157.

[13] Orvosh, D. and Davis, L., Shall We Repair? Genetic Algorithms, Combinatorial Optimization, and
Feasibility Constraints, Proceedings of the Fifth ICGA, Morgan Kaufmann, 1993, p.650.

[14] Paredis, J., Co-evolutionary Constraint Satisfaction, Proceedings of the 3rd PPSN Conference,
Springer-Verlag, 1994, pp.46{55.

[15] Powell, D. and Skolnick, M.M., Using Genetic Algorithms in Engineering Design Optimization with
Non-linear Constraints, Proceedings of the Fifth ICGA, Morgan Kaufmann, 1993, pp.424{430.

[16] Richardson, J.T., Palmer, M.R., Liepins, G., and Hilliard, M., Some Guidelines for Genetic Al-
gorithms with Penalty Functions, in Proceedings of the Third ICGA, Morgan Kaufmann, 1989,
pp.191{197.

[17] Schoenauer, M., and Xanthakis, S., Constrained GA Optimization, Proceedings of the Fifth ICGA,
Morgan Kaufmann, 1993, pp.573{580.

[18] Schwefel, H.-P., Numerical Optimization for Computer Models, Wiley, Chichester, UK, 1981.
[19] Wright, A.H., Genetic Algorithms for Real Parameter Optimization, First Workshop on the Foun-

dations of Genetic Algorithms and Classi�er Systems, Morgan Kaufmann, 1991, pp. 205{218.


