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ABSTRACT

In this paper we discuss a construction of Genocop II, a hybrid optimization system

for general nonlinear programming problems. We present the �rst experimental

results of the system on �ve test cases. These include a variety of objective functions

with nonlinear constraints. The results are encouraging.

1. Introduction

The general nonlinear programming problem NP is to �nd X so as to

optimize f(X), X = (x1; : : : ; xq) 2 Rq,

subject to p � 0 equations:

ci(X) = 0, i = 0; : : : ; p,

and m� p � 0 inequalities:

ci(X) � 0, i = p+ 1; : : : ;m.

In this paper we discuss a new hybrid system, Genocop II, to solve optimization
problems in this class. The name Genocop is taken from the expression \GEnetic al-
gorithm for Numerical Optimization for COnstrainted Problems." The �rst version
of the Genocop system, Genocop I, handled only linear constraints17;18;19, whereas
the current version, Genocop II, handles any set of constraints.

The concept of the presented system is based on the ideas taken from the recent
developments in area of optimization3 combined with iterative execution of the
Genocop I; these executions are controlled by a temperature of the system (which
can be also interpreted as a variable penalty coe�cient).

The prototype of the new system Genocop II was run on several test-cases; the
results of experiments are presented and compared with known optima.

The paper is organized as follows. The next section summarizes one traditional
approach to solve nonlinear programming problems, which was adopted as a basis



for Genocop II. Section 3 introduces the system Genocop II, and the following
section discusses several nonlinear test cases together with the experimental results
of the Genocop II. The �nal section contains conclusions and some directions for
future work.

2. A Traditional Calculus Based Method

Calculus-based methods assume that the objective function f(X) and all con-
straints are twice continuously di�erentiable functions of X . The general approach
of most methods is to transform the nonlinear problem NP into a sequence of solv-
able subproblems. The amount of work involved in a subproblem varies considerably
among methods. These methods require explicit (or implicit) second derivative cal-
culations of the objective (or transformed) function, which in some methods can be
ill-conditioned and cause the algorithm to fail.

During the last 30 years there has been considerable research directed toward
the nonlinear optimization problems and progress has been made in theory and
practice12. Several approaches have been developed in this area, among these
are: the sequential quadratic penalty function7;3, recursive quadratic programming
method6, penalty trajectory methods20, and the SOLVER method10. In this sec-
tion, we discuss brie
y one of these approaches, the sequential quadratic penalty
function method.

The method replaces a problem NP by the problem NP 0:

optimize F (X; r) = f(X) + 1

2r
C

T
C,

where r > 0 and C is a vector of all active constraints c1; : : : ; c`.
Fiacco and McCormick15 have shown that the solutions of NP and NP 0 are

identical in the limit as r �! 0. It was thought that NP 0 could then be solved
simply by minimizing F (X; r) for a sequence of decreasing positive values of r
by Newton's method9. This hope, however, was short-lived, because minimizing
F (X; r) proved to be extremely ine�cient for the smaller values of r; it was shown by
Murray20 that this was due to the Hessian matrix of F (X; r) becoming increasingly
ill-conditioned as r �! 0. As there seemed to be no obvious way of overcoming
this problem, the method gradually fell into disuse. More recently, Broyden and
Attia8;7 o�ered a method that overcomes the numerical di�culties associated with
the simple quadratic penalty function. The computation of the search direction does
not require the solution of any system of linear equations, and can thus be expected
to require less work than is needed for some other algorithms. The method also
provides an automatic technique for calculating the initial value for the parameter
r and its successive values7.

3. The System Genocop II

The technique discussed in the previous section, together with the existing sys-
tem Genocop I, was used in construction of a new system, Genocop II. The structure



of the Genocop II is given in Figure 1. We discuss the steps of this algorithm in the
remaining part of this section.

procedure Genocop II

begin

t � 0
split the set of constraints C into

C = L [Ne [Ni

select a starting point X s

set the set of active constraints, A to
A � Ne [ V

set temperature �  � �0
while (not termination-condition) do
begin

t � t+ 1
execute Genocop I for the function

F (X; � ) = f(X) + 1

2�
A

T
A

with linear constraints L
and the starting point X s

save the best individual X
�

:
X s  � X

�

update A:
A A� S [ V ,

decrease temperature � :
�  g(�; t)

end

end

Figure 1: The structure of Genocop II.

There are several steps of the algorithm in the �rst phase of its execution (before
it enters the while loop). The parameter t (which counts the number of iterations
of the algorithm, i.e., the number of times the algorithm Genocop I is applied) is
initialized to zero. The set of all constraints C is divided into three subsets: linear
constraints L, nonlinear equationsNe and nonlinear inequalitiesNi. A starting point
Xs (which need not be feasible) for the following optimization process is selected
(or a user is prompted for it). The set of active constraints A consists initially of
elements of Ne and set V � Ni of violated constraints from Ni. A constraint cj 2 Ni

is violated at point X i� cj(X) > � (j = p+1; : : : ;m), where � is a parameter of the
method. Finally, the initial temperature of the system � is set to �0 (a parameter
of the method).

In the main loop of the algorithm we apply Genocop I to optimize a modi�ed
function



F (X; � ) = f(X) + 1

2�
A

T
A

with linear constraints L. Note that the initial population for Genocop I consists
of pop size identical copies (of the initial point for the �rst iteration and of the best
saved point for subsequent ones); several mutation operators introduce diversity in
the population at early stages of the process. When Genocop I converges, its best
individualX

�

is saved and used later as the starting point X s for the next iteration.
However, the next iteration is executed with a decreased value of the temperature
parameter (�  g(�; t)) and a new set of active constraints A:

A A� S [ V ,
where S and V are subsets of Ni satis�ed and violated by X

�

, respectively.
The mechanism of the algorithm is illustrated on the following example. The

problem is to

minimize f(X) = x1 � x22,
subject to one nonlinear constraint:

c1 : 2 � x2
1
� x2

2
� 0.

The known global solution is X
�

= (�0:816497;�1:154701), and f(X
�

) =
�1:088662. The starting feasible point is X0 = (�0:99;�0:99). After the �rst
iteration of Genocop II (A is empty) the system converged to X1 = (�1:5;�1:5),
f(X1) = �3:375. The point X1 violates the constraint c1, which becomes active.
The point X1 is used as the starting point for the second iteration. The second
iteration (� = 10�1, A = fc1g) resulted in X2 = (�0:831595;�1:179690), f(X2) =
�1:122678. The point X2 is used as the starting point for the third iteration. The
third iteration (� = 10�2, A = fc1g) resulted in X3 = (�0:815862;�1:158801),
f(X3) = �1:09985. The sequence of points X t (where t = 4; 5; : : : is the iteration
number of the algorithm) approaches the optimum.

4. Test Cases

In order to evaluate the method of Genocop II, a set of test problems has been
carefully selected to indicate the performance of the algorithm and to illustrate that
it has been successful in practice. The �ve test cases include quadratic, nonlinear,
and discontinuous functions with several nonlinear constraints.

All runs of the system were performed on SUN SPARC station 2. We used the
following parameters for Genocop I in all experiments:

pop size = 70, k = 28 (number of parents in each generation), b = 2
(coe�cient for non-uniform mutation), a = 0:25 (parameter of arith-
metical crossover), � = 0:01 (parameter which determines whether or
not a constraint is active).



In most cases, the initial temperature �0 was set at 1 (i.e., g(�; 0) = 1); additionally,
g(�; t) = 10�1 � g(�; t� 1).

Genocop II was executed ten times for each test case. For most problems,
the number of generations necessary for Genocop I to converge was 1000 (more
di�cult problems required larger number of iterations). We did not report the
computational times for these test cases, since we do not have full implementation of
Genocop II yet. The actions of the system were simulated by executing its external
loop in manual fashion: when Genocop I converges, the best point is incorporated
as the starting point for the next iteration, the constraints are checked for their
activity status, and the evaluation function is adjusted accordingly.

All test cases and the results of the Genocop II system are reported in the
following subsections.

4.1. Test Case #1

The problem14 is

minimize f(X) = 100(x2 � x2
1
)2 + (1� x1)2,

subject to nonlinear constraints:

c1 : x1 + x2
2
� 0,

c2 : x2
1
+ x2 � 0,

and bounds:

�0:5 � x1 � 0:5, and x2 � 1:0.

The known global solution is X
�

= (0:5; 0:25), and f(X
�

) = 0:25. The starting
feasible point is X0 = (0; 0).

Genocop II found the exact optimum in one iteration, since none of the nonlinear
constraints are active at the optimum.

4.2. Test Case #2

The problem11 is

minimize f(x; y) = �x� y,

subject to nonlinear constraints:

c1 : y � 2x4 � 8x3 + 8x2 + 2,
c2 : y � 4x4 � 32x3 + 88x2 � 96x + 36,

and bounds:

0 � x � 3 and 0 � y � 4.



Iteration The best Active
number point constraints

0 (0,0) none
1 (3,4) c2
2 (2.06, 3.98) c1, c2
3 (2.3298, 3.1839) c1, c2
4 (2.3295, 3.1790) c1, c2

Table 1: Progress of Genocop II on test case #2; for iteration 0 the best point is the
starting point.

The known global solution is X
�

= (2:3295; 3:1783), and f(X
�

) = �5:5079. The
starting feasible point is X0 = (0; 0). The feasible region is almost disconnected.

Genocop II approached the optimum very closely at the 4th iteration. The
progress of the system is reported in the table 1.

4.3. Test Case #3

The problem11 is

minimize f(X) = (x1 � 10)3 + (x2 � 20)3,

subject to nonlinear constraints:

c1 : (x1 � 5)2 + (x2 � 5)2 � 100 � 0,
c2 : �(x1 � 6)2 � (x2 � 5)2 + 82:81 � 0,

and bounds:

13 � x1 � 100 and 0 � x2 � 100.

The known global solution is X
�

= (14:095; 0:84296), and f(X
�

) = �6961:81381
(see �gure 2). The starting point, which is not feasible, is X0 = (20:1; 5:84).

Genocop II approached the optimum very closely at the 12th iteration. The
progress of the system is reported in the table 2.

4.4. Test Case #4

The problem5 is

minimize f(x1; x2) = 0:01x2
1
+ x2

2
,

subject to nonlinear constraints:

c1 : x1x2 � 25 � 0,
c2 : x2

1
+ x2

2
� 25 � 0,



Figure 2: A feasible space for test case #3.

and bounds:

2 � x1 � 50 and 0 � x2 � 50.

The global solution is X
�

= (
p
250;
p
2:5) = (15:811388; 1:581139), and f(X

�

) =
5:0. The starting point (not feasible) is X0 = (2; 2).

It is interesting to note that the standard cooling scheme (i.e., g(�; t) = 10�1 �
g(�; t � 1)) did not produce good results, however, when the cooling process was
slowed down (i.e., g(�; 0) = 5 and g(�; t) = 2�1 � g(�; t� 1)), the system approached
optimum easily (table 3). This, of course, leeds to some questions about how to
control the temperature for a given problem: this is one of the topics for future
research.

4.5. Test Case #5

The �nal test problem14 is

minimize f(X) = (x1 � 2)2 + (x2 � 1)2,

subject to a nonlinear constraint:

c1 : �x2
1
+ x2 � 0,

and a linear constraint:

x1 + x2 � 2.



Iteration The best Active
number point constraints

0 (20.1, 5.84) c1, c2
1 (13.0, 0.0) c1, c2
2 (13.63, 0.0) c1, c2
3 (13.63, 0.0) c1, c2
4 (13.73, 0.16) c1, c2
5 (13.92, 0.50) c1, c2
6 (14.05, 0.75) c1, c2
7 (14.05, 0.76) c1, c2
8 (14.05, 0.76) c1, c2
9 (14.10, 0.87) c1, c2
10 (14.10, 0.86) c1, c2
11 (14.10, 0.85) c1, c2
12 (14.098, 0.849) c1, c2

Table 2: Progress of Genocop II on test case #3; for iteration 0 the best point is the
starting point.

Iteration The best Active
number point constraints

0 (2,2) c1, c2
1 (3.884181, 3.854748) c1
2 (15.805878, 1.581057) c1
3 (15.811537, 1.580996) c1

Table 3: Progress of Genocop II on test case #4; for iteration 0 the best point is the
starting point.

The global solution is X
�

= (1; 1) and f(X
�

) = 1. The starting (feasible) point
is X0 = (0; 0).

Genocop II approached the optimum very closely at the 6th iteration. The
progress of the system is reported in the table 4.

5. Conclusions

There are several interesting points connected with the above method. First, as
with any other method based on genetic algorithms, it does not require any implicit
(or explicit) calculations of gradient or Hessian matrix of the objective function
and constraints. Consequently, the method does not su�er from the ill-conditioned
Hessian problem usually associated with some calculus-based methods.

Any genetic algorithm can be used in place of Genocop I for the inner loop of



Iteration The best Active
number point constraints

0 (0, 0) c1
1 (1.496072, 0.503928) c1
2 (1.020873, 0.979127) c1
3 (1.013524, 0.986476) c1
4 (1.002243, 0.997757) c1
5 (1.000217, 0.999442) c1
6 (1.000029, 0.999971) c1

Table 4: Progress of Genocop II on test case #5; for iteration 0 the best point is the
starting point.

Genocop II. In such a case all constraints (linear and nonlinear) should be con-
sidered for placement in the set of active constraints A (the elements of L should
be distributed between Ne and Ni). However, such method is much slower and
less e�ective: for e�ciency reasons, it is much better to process linear constraints
separately (as it is done in Genocop I).

Further research includes experimenting with (1) problems of higher dimensions,
(2) di�erent cooling schemes and (3) di�erent values of parameter � which decides
whether a constraint is active or not.

It might be worthwhile to search for other constraint handling paradigms as well.
Recently, two interesting new approaches were proposed based on the behavioural
memory paradigm and the re-mapping the �tness measures. The �rst method 22

acts in two stages: (1) a population evolves with some standard GA, where the
�tness function is related to the constraint satisfaction, and (2) the �nal population
from the previous stage (viewed as a memory containing some essential information
about the constraints) is accepted as initial population for a GA with the objective
function as �tness function, which is overridden by assigning zero �tness whenever
the constraints are not satis�ed. The second method 21 re-maps the �tness measures
so that all feasible points have higher �tness than infeasible points (which ensures
that feasible points are always preferred).

Also, it might be interesting to experiment with \adaptive penalty functions".
After all, probabilities of applied operators might be adaptive (as in evolution strate-
gies 23); some initial experiments indicate that adaptive population sizes may have
some merit 2; so the idea of adaptive penalty functions may deserve some attention.
In its simplest version, a penalty coe�cient would be part of the solution vector
and undergo all opertors (as opposed the idea of Genocop II, where such penalty
coe�cient is changed on regular basis).

Currently, a complete version of GENOCOP II is being implemented, which
would include (as options) all above constraint handling methods. Interesting com-
parisons between these approaches should be reported shortly.



Acknowledgements:

The author wishes to thank David Fogel for his constructive comments.

References:

1. Aarts, E.H.L. and Korst, J., Simulated Annealing and Boltzmann Machines,
Wiley, Chichester, UK, 1989.

2. Arabas, J., Michalewicz, Z., and Mulawka, J., GAVaPS | a Genetic algo-

rithm with Varying Population Size, Technical Report 001-1994, Department
of Computer Science, University of North Carolina, Charlotte, 1994.

3. Attia, N.F., New Methods of Constrained Optimization using Penalty Func-

tions, Ph.D. Thesis, Essex University, England, 1985.
4. Belew, R. and Booker, L. (Editors), Proceedings of the Fourth International

Conference on Genetic Algorithms, R.K. Belew and L. Booker (Eds.), Morgan
Kaufmann Publishers, Los Altos, CA, 1991.

5. Betts, J.T., An Accelarated Multiplier Method for Nonlinear Programming,
Journal of Optimization Theory and Applications, 21, No.2, pp.137{174,
1977.

6. Biggs, M.C., Constrained Minimization using Recursive Quadratic Program-

ming: Some Alternative Subproblem Formulations, Towards Global Optimiza-
tion, L.C.W. Dixon and G.P. Szego (Eds.), North-Holand, 1975.

7. Broyden, C.G. and Attia, N.F., A Smooth Sequential Penalty Function Method

for Solving Nonlinear Programming Problem, Lecture Notes in Control and
Information Science 59, System Modelling and Optimization, Proceedings of
the 11th IFIP Conference, July 1983. Springer-Verlag, Berlin and New York,
1983.

8. Broyden, C.G. and Attia, N.F., Penalty Functions, Newton's Method, and

Quadratic Programming, Journal of Optimization Theory and Applications,
58, No.3., 1988.

9. Fiacco, A.V., and McCormick, G.P., Nonlinear Programming, John Wiley,
New York, 1968.

10. Fletcher, R., Practical Methods of Optimization, Vol.2, of Constrained Opti-

mization, John Wiley and Sons, Chichester and New York, 1981.
11. Floudas, C.A. and Pardalos, P.M., A Collection of Test Problems for Con-

strained Global Optimization Algorithms, Springer-Verlag, Lecture Notes in
Computer Science, 455, 1987.

12. Floudas, C.A. and Pardalos, P.M., Recent Advances in Global Optimization,
Princeton Series in Computer Science, Princeton University Press, Princeton,
NJ, 1992.

13. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, Reading, MA, 1989.
14. Hock, W. and Schittkowski K., Test Examples for Nonlinear Programming

Codes, Lecture Notes in Economics and Mathematical Systems, Vol.187,
Springer-Verlag, 1981.



15. McCormick, G.P., Computability of Global Solutions to Factorable Nonconvex
Programs, Part I: Convex Underestimating Problems, Mathematical Pro-
gramming, 10, No.2 (1976), pp.147{175.

16. Michalewicz, Z. and Janikow, C., Genetic Algorithms for Numerical Opti-

mization, Statistics and Computing, 1, No.2, pp.75{91, 1991.
17. Michalewicz, Z. and Janikow, C., Handling Constraints in Genetic Algorithms,

Proceedings of the Fourth International Conference on Genetic Algorithms,
R.K. Belew and L. Booker (Eds.), Morgan Kaufmann Publishers, Los Altos,
CA, 1991, pp.151{157.

18. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, AI Series, New York, 1992.

19. Michalewicz, Z. and Swaminathan, S., Evolutionary Operators for Continuous
Convex Parameter Spaces, in this volume.

20. Murray, W., An Algorithm for Constrained Minimization, Optimization, (Ed:
R. Fletcher), pp.247{258, Academic Press, London and New York, 1969.

21. Powell, D. and Skolnick, M.M., Using Genetic Algorithms in Engineering

Design Optimization with Non-linear Constraints, Proceedings of the Fifth
International Conference on Genetic Algorithms, S. Forrest (Ed.), Morgan
Kaufmann Publishers, Los Altos, CA, 1993, pp.424{430.

22. Schoenauer, M., and Xanthakis, S., Constrained GA Optimization, Proceed-
ings of the Fifth International Conference on Genetic Algorithms, S. Forrest
(Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 1993, pp.573{580.

23. Schwefel, H.-P., Numerical Optimization for Computer Models, Wiley, Chich-
ester, UK, 1981.


