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Abstract

One of the major components of any evolutionary system is the eval-
uation function. Evaluation functions are used to assign a quality
measure for individuals in a population. Whereas evolutionary com-
putation techniques assume the existence of an (efficient) evaluation
function for feasible individuals, there is no uniform methodology for
handling (i.e., evaluating) unfeasible ones. The simplest approach,
incorporated by evolution strategies and a version of evolutionary
programming (for numerical optimization problems), is to reject un-
feasible solutions. But several other methods for handling unfeasible
individuals have emerged recently. This paper reviews such methods
(using a domain of nonlinear programming problems) and discusses
their merits and drawbacks.

1 INTRODUCTION

Evolutionary computation techniques have received considerable at-
tention regarding their potential as optimization techniques for com-
plex functions. Many difficult functions have been examined; often
they served as test-beds for different selection methods, various opera-
tors, different representations, and so forth. But evolutionary compu-
tation techniques have not developed any guideliness on how to deal
with unfeasible solutions. For example, in the area of numerical opti-
mization, evolution strategies (e.g., Back et al. 1991) and evolution-
ary programming techniques (modified to handle numerical optimiza-
tion problems, e.g., Fogel and Stayton 1994) simply reject unfeasible
individuals. Genetic algorithms (Holland 1975), on the other hand,
penalize unfeasible individuals (e.g., Goldberg 1989), however, there
is no general rules for designing penalty functions. A few hypothe-
sis were formulated in Richardson et al. (1989), but they are rather



general (e.g., “penalties which are functions of the distance from fea-
sibility are better performers than those which are merely functions
of the number of violated constraints”). At the same time, “because
these problems occur frequently, performing constrained optimization
with GA’s is a very important area of research” (Richardson et al.

1989).

In evolutionary computation methods the evaluation function ser-
ves as the only link between the problem and the algorithm. The
evaluation function rates individuals in the population: better indi-
viduals have better chances for survival and reproduction. In many
cases the process of selection of an evaluation function is straightfor-
ward. For example, if one searches for a minimum value of a function

F2(21,22) = 100(2f — 22)* + (1 — 21)?,

where —2.048 < x; < 2.048, (this is the Rosenbrock function from De
Jong 1975), then every individual (chromosome) is easily evaluated;
for example:

vy = (0.231,—1.892), and F2(vy) = 379.034.!

It is important to note that every individual from the search space
defined by inequalities

—2.048 < z; < 2.048, (i = 1,2),

is feasible. But in most optimization problems there is a significant
distinction between the search space and the feasible search space.
For example, if the above problem has an additional constraint:
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the individual v will violate the constraint and consequently will not

be feasible.

Any evolutionary computation technique applied to a particular
problem should address the issue of handling unfeasible individuals.
In general, a search space § consists of two disjoint subsets of feasible
and unfeasible subspaces, F and U, respectively. We do not make any
assumptions about these subspaces; in particular, they need not be
convex and they need not be connected (e.g., as it is the case in
the example in Figure 1 where feasible part F of the search space
consists of two disjoined subsets). In solving optimization problems
we search for a feasible optimum. During the search process we have
to deal with various feasible and unfeasible individuals; for example
(see Figure 1), at some stage of the evolution process, a population



search space S

unfeasible search space U

feasible search space F

Figure 1: A search space and its feasible part

may contain some feasible (a, ¢, d) and unfeasible individuals (b, e,
f), while the optimum solution is ‘x’.

The problem of how to deal with unfeasible individuals is far from
trivial. In general, we have to design two evaluations functions, evaly
and eval,, for feasible and unfeasible domains, respectively. There
are many important questions to be addressed:

e how should two feasible individuals be compared, e.g., ‘a’ and
‘¢’ from Figure 17 In other words, how should the function
evaly be designed? (This is usually the easiest question: for
most optimization problems, the evaluation function for feasible
solutions is given, e.g., as function F'2 in the earlier example).

¢ how should two unfeasible individuals be compared, e.g., ‘b’ and
‘e’? In other words, how should the function eval, be designed?

o should we assume that evals(s) > eval,(p) for any s € F and
any p € U (the symbol > is interpreted as ‘is better than’,
i.e., ‘greater than’ for maximization and ‘smaller than’ for min-
imization problems)? In other words, should we assume that
any feasible solution is better than any unfeasible one? In par-
ticular (see Figure 1), which individual is better: feasible indi-
vidual ‘c’ or unfeasible individual ‘f” (note that the optimum is

‘X’)?



¢ should we consider unfeasible individuals harmful and eliminate
them from the population? Or rather, should we consider them
useful for helping the population to cross unfeasible regions and
to arrive at the optimum point (e.g., from ‘d’ to ‘x’, Figure 1)?

¢ should we ‘repair’ unfeasible solutions by moving them into the
closest point of the feasible space (e.g., the repaired version of
‘f” might be optimum ‘x’, Figure 1)? In other words, should we
assume that eval,(p) = evals(s), where ‘s’ is a repaired version
of ‘p’? If so, should we replace ‘p’ by its repaired version ‘s’ in
the population or rather should we use a repair procedure for
evaluation purpose only?

e since our aim is to find a feasible optimum solution, should
we choose to penalize unfeasible individuals? In other words,
should we extend the domain of function eval; and assume
that eval,(p) = evals(p) + penalty(p)? If so, how should such
a penalty function penalty(p) be designed?

Several trends for handling unfeasible solutions have emerged in
the area of evolutionary computation. We discuss them in the fol-
lowing section using a domain of nonlinear programming problems.
Section 3 provides additional comments and observations, and con-
cludes the paper.

2 NUMERICAL OPTIMIZATION AND
UNFEASIBLE SOLUTIONS

This section discusses several methods for handling unfeasible solu-
tions for continuous numerical optimization problems. Richardson et
al. (1989) claims: “Attempts to apply GA’s with constrained opti-
mization problems follow two different paradigms (1) modification of
the genetic operators; and (2) penalizing strings which fail to satisfy
all the constraints.” This is not longer the case as a variety of methods
have been proposed. Several of them are based on penalty functions,
however, they differ in many important details on how the penalty
function is designed and applied to unfeasible solutions. Other meth-
ods maintain the feasibility of the individuals in the population by
means of specialized operators, impose a restriction that any feasible
solution is ‘better’ than any unfeasible solution, consider constraints
one at the time in a particular linear order, repair unfeasible solutions,
use multiobjective optimization techniques, are based on cultural al-
gorithms, or rate solutions using a particular co-evolutionary model.
The following subsections define the nonlinear programming problem
and discuss these methods in turn.



Nonlinear programming problem

The general nonlinear programming problem for continuous variables
is to find X so as to

optimize f(X), X = (21,...,2,) € R™,

where X € F C S. The set & C R”™ defines the search space and
the set F C § defines a feasible part of the search space. Usually,
the search space & is defined as an n-dimensional rectangle in R"™
(domains of variables defined as lower and upper bounds):

left(i) < x; < right(i), 1<i<n,

whereas the feasible set F is defined by the search space & and an
additional set of constraints:

g9;(X)<0,forj=1,...,¢,and
hi(X)=0,for j=q+1,...,m.

Most research on applications of evolutionary computation techniques
to nonlinear programming problems have aimed at quite complex
objective functions, however, the assumption was that 7 = § (i.e.,
set of constraints is empty). Several test functions used by various
researchers during the last 20 years considered only domains of n
variables; this was the case with five test functions F1-F5 proposed
by De Jong (1975), as well as with many other test cases, e.g., Wright
(1991), Eshelman and Schaffer (1993), Fogel and Stayton (1994). In
the following subsections we survey several techniques that have been
developed for the case of 7 C &. All of these techniques use the
objective function f to evaluate a feasible individual, i.e.,

evaly(X) = f(X), for X € F.

Most of these methods use also constraint violation measures f; (for
the j-th constraint) for the construction of the eval,; these functions
are defined as

v ) max{0,g;(X)}, if1<j<q
f](X)_{ Ihj(Y)l,] ifg+1<j<m

The method of Homaifar, Lai, & Qi

Homaifar et al. (1994) assume that for every constraint we establish
a family of intervals that determines appropriate penalty values. The
method works as follows:



e for each constraint, create several ({) levels of violation,

e for each level of violation and for each constraint, create a
penalty coefficient R;; (¢ = 1,2,...,(, j = 1,2,...,m); higher
levels of violation require larger values of this coeflicient.

e start with a random population of individuals (i.e., these indi-
viduals are feasible or unfeasible),

e evaluate individuals using the following formula
eval(X) = f(X) + ¥JLy Rij [} (X)),

where R;; is a penalty coefficient for the i-th level of violation
and the j-th constraint.

Note, that the function eval is defined on §, i.e., it serves both feasible
and unfeasible solutions.

The weakness of the method is in the number of parameters: for
m constraints the method requires m(2( + 1) parameters in total. In
particular, for m = 5 constraints and ¢ = 4 levels of violation, we
need to set 45 parameters!

Recent experiments (Michalewicz 1995) indicate that the quality
of solutions heavily depends on the values of these parameters. If the
penalty coefficients R;; are moderate, the algorithm may converge to
an unfeasible solution; this may happen if the value of the objective
function (together with all penalties) for such unfeasible solution is
still more attractive than values of the objective function for feasible
solutions (see Michalewicz 1995 for an example of such a case). On
the other hand, if the penalty coefficients R;; are “too large,” the
method is equivalent to rejecting unfeasible solutions.

It is quite likely that for a given problem there exists an optimal
set of parameters for which the system would return a feasible near-
optimum solution, however, it might be quite difficult to find it. It
seems that the above method should be extended by an additional
algorithm that determines all levels of violations and all penalty coef-
ficients on the basis of several components; these include (1) the type
of the objective function, (2) the number of variables, (3) number of
constraints, (4) types of constraints, and (5) the ratio between the
sizes of the feasible search space and the whole search space |F|/|S].

The method of Joines & Houck

Joines and Houck (1994) assume dynamic penalties; individuals are
evaluated (at the iteration ¢) by the following formula:



eval(X) = f(X)+ (C xt)* Y7L, f]ﬁ(Y)7

where C', @ and f are constants. As in Homaifar et al. (1994), the
function eval evaluates both feasible and unfeasible solutions.

The method is quite similar to Homaifar et al. (1994), but it
requires many fewer parameters (C', a and /), and this is independent
of the total number of constraints. Also, the penalty component is
not constant but changes with the generation number. Instead of
defining several levels of violation, the pressure on unfeasible solutions
is increased due to the (C' x t)* component of the penalty term:
towards the end of the process (for high values of ¢), this component
assumes large values.

The results of experiments (see Joines and Houck 1994) indicated
that the quality of of the solution was very sensitive to changes in
values of these three parameters. Also, additional experiments (e.g.,
Michalewicz 1995) with one particular setting (C' = 0.5, a = § = 2)
resulted sometimes in early convergence of the algorithm to either an
unfeasible solution (which was more attractive than feasible ones), or
to a feasible solution which was far away from the global optimum.
It seems that the penalty components (being constantly increased
through the growing value of the generation number) change the ob-
jective function in a significant way. Once the population is trapped
in a feasible (or unfeasible) local optimum, it may stay there forever.
It is interesting to note that in most experiments (Michalewicz 1995)
the algorithm converged in early generations.

The method of Michalewicz & Janikow

Michalewicz and Janikow (1991) assume linear constraints only and
a feasible starting point (or feasible initial population). A closed set
of operators maintains feasibility of solutions. For example, when a
particular component z; of a solution vector X is mutated, the system
determines its current domain dom(z;) (which is a function of linear
constraints and remaining values of the solution vector X) and the
new value of z; is taken from this domain (either with flat probability
distribution for uniform mutation, or other probability distributions
for non-uniform and boundary mutations). In any case the offspring
solution vector is always feasible. Similarly, arithmetic crossover

aX +(1-a)y

of two feasible solution vectors X and Y yields always a feasible
solution (for 0 < @ < 1) in convex search spaces (the system assumes
linear constraints only which imply convexity of the feasible search



space F). Consequently, there is no need to define the function eval,;
the function evaly is (as usual) the objective function f.

The method can be generalized to handle nonlinear constraints
provided that the resulting feasible search space F is convex. The
method does not require any special parameters apart from standard
parameters for any evolutionary system (like population size, proba-
bilities of operators, etc.) It gave surprisingly good performance on
many test functions (see, for example, Michalewicz et al. 1994). But
the weakness of the method lies in its inability to deal with nonconvex
search spaces (i.e, to deal with nonlinear constraints in general).

The method of Michalewicz & Attia

Michalewicz and Attia (1994) take advantage of the previous method:
linear and nonlinear constraints are processed separately. The method
works as follows:

e divide all constraints into four subsets: linear equations, linear
inequalities, nonlinear equations, and nonlinear inequalities,

e select a random single point as a starting point (the initial pop-
ulation consists of copies of this single individual). This initial
point satisfies all linear constraints,

e create a set of active constraints A; include there all nonlinear
equations and all violated nonlinear inequalities.

e set the initial temperature 7 = 79,
e evolve the population using the following formula:
eval(X,7) = f(X) + 37 Zjea F}(X),
(only active constraints are considered),
o if 7 < 7y, stop, otherwise

— decrease temperature 7,

the best solution serves as a starting point of the next
iteration,

update the set of active constraints A,

repeat the previous step of the main part.

This is the only method described here which distinguishes be-
tween linear and nonlinear constraints. As in the previous method,
the algorithm maintains feasibility of all linear constraints using a set



of closed operators. At every iteration the algorithm considers active
constraints only, the pressure on unfeasible solutions is increased due
to the decreasing values of temperature 7.

The method has an additional unique feature: it starts from a sin-
gle point (this feature, however, is not essential. The only important
requirement is that the next population contains the best individual
from the previous population). Consequently, it is relatively easy
to compare this method with other classical optimization methods
whose performance is tested (for a given problem) from some start-
ing point.

The method requires ‘starting’ and ‘freezing’ temperatures, o and
7s, respectively, and the cooling scheme to decrease temperature 7.
Several experiments provided good results for many test functions,
e.g., Michalewicz and Attia (1994), Michalewicz (1995), however, the
method is quite sensitive to values of its parameters. Some experi-
ments (Michalewicz and Attia 1994) indicated that the system may
converge to a near-optimum solution just in one iteration (i.e., for one
temperature 7 = 7p), in a few iterations, or many iterations (even for
problems with two variables only). Other experiments gave different
results for different cooling schemes. The question of how to settle
these parameters for a particular optimization problem remains open.

The method of Powell & Skolnick

Powell and Skolnick (1993) incorporate a heuristic rule (suggested
earlier by Richardson et al. 1989) for processing unfeasible solutions:
“every feasible solution is better than every unfeasible solution.” This
rule is implemented in the following way: evaluations of feasible solu-
tions are mapped into the interval (—oo, 1) and unfeasible solutions —
into the interval (1, c0) (for minimization problems). This is equiva-
lent (for ranking and tournament selection methods) to the following
evaluation procedure:

evaly(X) = f(X), _
eval, (X )= f(X)+ Ty ity Ji(X),

where r is a constant, and

- eval (X)), if X eF
eval(X) = { eval (X)) + p(X,t), if X €S- F.
The function p(X,t) influences unfeasible solutions only; it is defined

as

p(X, 1) = max{0, max{eval;(X)} — min {eval,(X)}.
XeF Xes-F



In other words, unfeasible individuals have increased penalties: they
may not be better than the worst (maxy. s{evaly(X)}) feasible in-
dividual.

The method requires just one parameter r. But the key con-
cept behind this method is the assumption of superiority of feasible
solutions over unfeasible ones. The usefulness of this assumption
can constitute an interesting point for discussion and various ex-
periments. There is no doubt that for many optimization problems
the assumption works very well (see, for example, Powell and Skol-
nick (1993) for experimental results from a numerical optimization
domain, and Michalewicz and Xiao (1995) for experimental results
from a mobile robot domain), however, the topology of the feasible
search space might be an important factor here. Several recent ex-
periments (Michalewicz 1995) indicate that for problems with a small
ratio |F|/|S| the algorithm is often trapped into an unfeasible solu-
tion. The method should require at least one feasible individual to be
placed in the initial population (this would be similar to providing a
starting feasible point for the optimization process) or feasible initial
population (in that case, however, unfeasible individuals are practi-
cally removed from the population due to the selection process). The
question on the influence of a single feasible individual of the initial
population on the quality of the final result remains open.

The method of Schoenauer & Xanthakis

Another approach is based on the idea of handling constraints in a
particular order; Schoenauer and Xanthakis (1993) called this method
a “behavioural memory” approach.

The initial steps of the method are devoted to sampling the feasi-
ble region; only in the final step the objective function f is optimized.

e start with a random population of individuals (i.e., these indi-
viduals are feasible or unfeasible),

e set j = 1 (j is constraint counter),

e evolve this population to minimize the violation of the j-th
constraint, until a given percentage of the population (so-called
flip threshold ¢) is feasible for this constraint. In this case

eval(X) = g1(X).
e set j=7+1,

e the current population is the starting point for the next phase
of the evolution, minimizing the violation of the j-th constraint:



eval(X) = ¢;(X).?

During this phase, points that do not satisfy at least one of
the 1st, 2nd, ... ,(j — 1)-th constraints are eliminated from the
population. The halting criterion is again the satisfaction of
the j-th constraint by the flip threshold percentage ¢ of the
population.

o if j < m, repeat the last two steps, otherwise (j = m) optimize
the objective function f rejecting unfeasible individuals.

The method requires that there is a linear order of all constraints;
these constraints are processed in turn. It is unclear what is the in-
fluence of the order of constraints on the results of the algorithm;
experiments (Michalewicz 1995) indicated that different orders pro-
vide different results (different in the sense of the total running time
and precision). Also, the authors recommended a sharing scheme
(to maintain diversity of the population). In total, the method re-
quires 3 parameters: the sharing factor o, the flip threshold ¢, and a
particular permutation of constraints, which determine their order.

The method has a few merits. One of them is that in the final
step of the algorithm the objective function f is optimized (as op-
posed to its modified form). But for larger feasible spaces the method
just provides additional computational overhead, and for very small
feasible search spaces it is essential to maintain a diversity in the
population. As Schoenauer and Xanthakis (1993) wrote: “We do not
claim to outperform all other methods for constraints handling us-
ing GAs. In particular when feasible region is large, using penalty
function may be a cheaper strategy. [...] But in many problems, like
in engineering optimization for instance, the feasible region is small
and quite sparse in the whole search space [...].” Recent experiments
(Michalewicz 1995) indicate that the method provides a reasonable
performance except when the feasible search space is “too small”: in
such cases the method is likely to fail (due to computational effort to
generate feasible solutions).

Rejection of unfeasible individuals

This “death penalty” method is a popular option in many evolution-
ary techniques like evolution strategies or evolutionary programming.
The method of eliminating unfeasible solutions from a population
may work reasonably well when the feasible search space F is convex
and it constitutes a reasonable part of the whole search space (e.g.,
evolution strategies do not allow equality constraints since with such



constraints the ratio between the sizes of 7 and § is zero). Otherwise
such an approach has serious limitations. For example, for problems
where the ratio between the sizes of F and § is small and an initial
population consists of unfeasible individuals only, it might be essen-
tial to improve them (as oppose to ‘reject’ them). Moreover, quite
often the system can reach the optimum solution easier if it is possi-
ble to “cross” an unfeasible region (especially in non-convex feasible
search spaces).

The method of rejection of unfeasible individuals was recently
tested (Michalewicz 1995) for several numerical optimization prob-
lems, where the ratio of |F|/|S| was between 0% and 0.5% for all
(five) test cases. As expected, the method performed worse than
other methods discussed earlier, despite its additional advantage of
starting from a feasible initial population. It seems that limiting the
search to feasible part of the search space does not always enhance
the search. Similar observation was made in connection with the
method of Michalewicz and Attia (1994); in this method the search
was limited to a feasible search space with respect to linear con-
straints. Surprisingly, for one test case (which consisted of linear and
nonlinear inequalities) the results were worse than results of methods
which considered the whole search space and just penalized unfea-
sible solutions without any distinction between linear and nonlinear
constraints. This result confirms an observation by Richardson et
al. (1989): “Many seem to believe that penalty functions should be
harsh, so that the GA will avoid the forbidden spaces. The founda-
tions of GA theory, however, say that GA’s optimize by combining
partial information from all the population. Therefore, the unfeasible
solutions should provide information and not just be thrown away.”

Repair methods

Repair algorithms enjoy a particular popularity in the evolutionary
computation community: for many combinatorial optimization prob-
lems (e.g., traveling salesman problem, knapsack problem, set cov-
ering problem, etc.) it is relatively easy to ‘repair’ an unfeasible
individual. Such repaired version can be used either for evaluation
only, i.e.,

eval (X ) = eval;(Y),

where Y is a repaired (i.e., feasible) version of X, or it can also replace
the original individual in the population (with some probability). Re-
cently (see Orvosh and Davis 1993) a so-called 5%-rule was reported:
this heuristic rule states that in many combinatorial optimization



problems, an evolutionary computation technique with a repair al-
gorithm provides the best results when 5% of repaired individuals
replace their unfeasible originals.

However, the author is not aware of any evolutionary computation
techniques for numerical optimization problems which repair unfea-
sible individuals (whether for evaluation or a replacement). Clearly,
there are some possibilities here. Omne can incorporate some con-
straint satisfaction methods and/or classical optimization techniques
to determine a feasible (not necessarily closest in the Euclidean sense)
point Y of a given unfeasible solution X. It would be interesting
to experiment with different repair algorithms and different replace-
ments ratios for numerical problems with various characteristics (e.g.,
number of variables, types of constraints, relative size of the feasible
search space, etc.)

Multi-objective optimization methods

One possible constraint handling technique may utilize multi-objective
optimization methods, where the objective function f and constraint
violation measures f; constitute a (m + 1)-dimensional vector 7

?7:(f7f17"'7fm)-

Using some multi-objective optimization method, we can attempt to
minimize its components: an ideal solution X would have f;(X) =0

for 1 <i<mand f(X)< f(Y)forall Y € F.

The classical methods for multiobjective optimization include a
method of objective weighting, where multiple objective functions f;
are combined into one overall objective function eval:

eval(X) = Yo w; f;(X),

where fo = f, the weights w; € [0..1] and 37, w; = 1. Different
weight vectors provide different Pareto-optimal solutions. Another
method (method of distance functions) combines multiple objective
functions into one on the basis of demand-level vector Y:

eval(X) = (70 |/i(X) = yil")7,

where (usually) r = 2 (Euclidean metric). But these classical meth-
ods applied to constrained optimization problems are equivalent to
penalty approaches.



It is also possible to experiment with evolutionary techniques
for multi-objective optimization, e.g., with Schaffer’s VEGA (Vec-
tor Evaluated Genetic Algorithm) system for multi-objective opti-
mization (Schaffer 1984). The main idea behind the VEGA system
was a division of the population into (equal sized) subpopulations;
each subpopulation was “responsible” for a single objective. The
selection procedure was performed independently for each objective,
but crossover was performed across subpopulation boundaries. Addi-
tional heuristics were developed (e.g., wealth redistribution scheme,
crosshreeding plan) and studied to decrease a tendency of the sys-
tem to converge towards individuals which were not the best with
respect to any objective. But analysis of VEGA shows (Richardson
et al. 1989) that the effect is the same as if fitness were a linear
combination of f;’s.

Recently, Srinivas and Deb (1993) proposed a technique, NSGA,
(Nondominated Sorting Genetic Algorithm), which is based on sev-
eral layers of classifications of the individuals. Before the selection is
performed, the population is ranked on the following basis: all non-
dominated individuals are classify into one category (with a dummy
fitness value, which is proportional to the population size, to provide
an equal reproductive potential for these individuals). To maintain
the diversity of the population, these classified individuals are shared
with with their dummy fitness values (see previous subsection). Then
this group of classified individuals are ignored and another layer of
nondominated individuals is considered. The process continues until
all individuals in the population are classified.

It might be interesting to experiment with such techniques in the
context of constrained numerical optimization; the autor is not aware
of any results in this area.

The method of Paredis

An interesting approach was recently reported by Paredis (1994). The
method (described in the context of constraint satisfaction problems)
is based on a co-evolutionary model, where a population of potential
solutions co-evolves with a population of constraints: fitter solutions
satisfy more constraints, whereas fitter constraints are violated by
more solutions. It means, that individuals from the population of
solutions are considered from the whole search space &, and that
there is no distinction between feasible and unfeasible individuals
(i.e., there is only one evaluation function eval without any split into
evaly or eval,). The value of eval is determined on the basis of
constraint violations measures f;’s;® however, better f;’s (e.g., active
constraints) would contribute more towards the value of eval.



It would be interesting to adopt this approach to constrained nu-
merical optimization problems and compare it with the other meth-
ods. But the major difficulty to be resolved in such adaptation seems
very much the same as in many other methods: how to balance the
pressure of feasibility of a solution with the pressure to minimize the
objective function.

Use of cultural algorithms

The research on cultural algorithms (Reynolds 1994) was triggered
by observations that culture might be another kind of inheritance
system. But it is not clear what the appropriate structures and units
to represent the adaptation and transmission of cultural information
are. Neither it is clear how to describe the interaction between natural
evolution and culture. Reynolds developed a few models to investi-
gate the properties of cultural algorithms; in these models, the belief
space is used to constrain the combination of traits that individuals
can assume. Changes in the belief space represent macroevolution-
ary change and changes in the population of individuals represent
microevolutionary change. Both changes are moderated by the com-
munication link.

The general intuition behind belief spaces is to preserve those
beliefs associated with “acceptable” behavior at the trait level (and,
consequently, to prune away unacceptable beliefs). The acceptable
beliefs serve as constraints that direct the population of traits. It
seems that the cultural algorithms may serve as a very interesting
tool for numerical optimization problems, where constraints influence
the search in a direct way (consequently, the search in constrained
spaces may be more efficient than in unconstrained ones!). Very
recently Reynolds et al. (1995) investigated a possibility of applying
cultural algorithms for constrained numerical optimization. The first
experiments indicate a great potential behind this approach.

3 FURTHER DISCUSSION

The previous section surveyed several constraint handling methods
for numerical optimization problems. A few of these methods share
some similarities, however, the majority of these methods are based
on different methodologies; they can be classified into several cate-
gories:

e methods based on penalty functions,

e methods based on rejection of unfeasible individuals,



e methods based on specialized operators,

e methods based on the assumption of the superiority of feasible
solutions over unfeasible solutions,

e methods based on behavioral memory,

e methods based on repair algorithms,

e methods based on multi-objective optimization techniques,
e methods based on co-evolutionary models, and

e methods based on cultural algorithms.

It seems that the majority of methods proposed for constraint
handling for the continuous numerical optimization problems are
based on penalty functions. In general, we can classify penalty func-
tions into two classes: (1) static penalties, where penalties are func-
tions of the degree of violation of constraints (e.g., the method of
Homaifar et al.); and (2) dynamic penalties, where penalties are func-
tions of the degree of violation of constraints as well as the genera-
tion number ¢ (e.g., Joines & Houck 1994 and Michalewicz & Attia
1994). In addition, a promising direction for applying penalty func-
tions is the use of adaptive penalties: penalty factors can be incorpo-
rated in the chromosome structures in a similar way as some control
parameters are represented in the structures of evolution strategies
and evolutionary programming. All the above penalties are based
on the degree of constraint violation, however, this need not be al-
ways the case. It might be worthwhile to experiment with methods
where penalties are based rather on the distance between a point and
the feasible search space: penalty(X) = dist(X,F)—such methods
provide better results in many combinatorial optimization problems
(Richardson et al. 1989). The appropriate choice of the penalty func-
tion may depend on (1) the ratio between sizes of the feasible and
the whole search space, (2) the topological properties of the feasible
search space, (3) the type of the objective function, (4) the number
of variables, (5) number of constraints, (6) types of constraints, and
(7) number of active constraints at the optimum. Thus the use of
penalty functions is not trivial and only some partial analysis of their
properties (e.g., Richardson et al. 1989, Siedlecki and Sklanski 1989)
is available.

The rejection methods (death penalty methods) do not belong
to the category of penalty-based methods, since they do not con-
struct eval, at all. These methods are not concerned with the basic
problem of all penalty approaches: how to design an evaluator eval,



that balances the preservation of information with the pressure for
feasibility.

The penalty approaches define eval, on the basis of eval;. It
might be worthwhile to experiment with an independent evaluation
function ewval, for unfeasible individuals. The function may take sev-
eral parameters into account, e.g., number of violated constraints, the
amount of violation, the distance from the feasible region (assuming
that some metric is introduced), and so forth. There are two main
issues to be resolved here. First, it is necessary to build an evaluation
function that would distinguish between two unfeasible individuals in
a meaningful way. Secondly, we should be able to compare a feasi-
ble and unfeasible solutions, since different functions would apply for
their evaluations (evaly and eval,, respectively). We discuss briefly
these two issues in turn.

It is difficult to compare two unfeasible solutions; this is gener-
ally true for most optimization problems (e.g., scheduling, traveling
salesman problem, path evaluation, numerical optimization). There
are a few possibilities for constructing evaluation functions for un-
feasible individuals; an evaluation function eval, may (1) count the
number of violations for a given solution, (2) consider the ‘amount’
of unfeasibility in terms of constraint violation measures f;’s, or (3)
compute the effort of ‘repairing’ the individual. It seems that in the
area of numerical optimization, so far only the second approach has
been examined.

As mentioned earlier, it is important to address the issue of com-
paring feasible and unfeasible solutions. This issue requires the an-
swer for the following question: “Is it possible that some unfeasible
solution is ‘better’ than some feasible one?” It seems that the (some-
what risky) answer ‘no’ would help us in such comparisons, e.g., we
can increase the value of eval, (i.e., making it less attractive) for any
unfeasible individual X by a constant (within a given generation of
the evolutionary process); this constant represents the difference in
values between the best unfeasible and the worst feasible individuals.
This was precisely the approach of the method by Powell & Skol-
nick. The answer ‘yes’ for the above question (i.e., allowing some
unfeasible solutions be better than some feasible ones) may lead to
complex calculations. Moreover, judging from difficulties in compar-
ing two unfeasible solutions, any proposed method would have its
drawbacks.

The methods which incorporate specialized operators usually ex-
plore some regularities of the feasible search space. For example, the
method of Michalewicz & Janikow takes advantage of the properties
of convex feasible spaces F: (1) for any internal point X and any



line v such that X € v, the line line v intersects F in precisely two
points (which determine the left and right boundaries of a domain for
a variable — component of vector X — being mutated); and (2) for
any X € F and Y € F, their linear combination aX + (1 —a)Y € F
for 0 < a < 1. The methods that use specialized operators are quite
effective, but it is quite difficult to generalize them for arbitrary fea-
sible search spaces.

It seems that many other methods have an interesting potential
for constrained numerical optimization problems. The methods that
repair unfeasible individuals (whether for evaluation only or for both,
evaluation and replacement) deserve much greater attention. As dis-
cussed previously, it would be interesting to experiment with differ-
ent repair algorithms and different replacements ratios for numerical
problems with various characteristics. It is also worthwhile to exper-
iment further with methods based on multi-objective optimization
models, co-evolution models, and cultural algorithms.

Footnotes

! In genetic algorithms, the individual v; is represented as a binary
string; in this particular case each variable is represented as a string
of 12 bits, where the strings (000000000000) and (111111111111) cor-
respond to the left and right boundaries of the domain, i.e., —2.047
and 2.048, respectively. In this representation,

z1 = 0.231 = (1000011100110), 23 = —1.892 = (000010011011)
and consequently »; = (1000011100110000010011011).

2 To simplify notation, we do not distinguish between inequality con-
straints g; and equations h;; all m constraints are denoted by g;.

3 In the original approach, the author proposes so-called life-time
fitness evaluation, where the score of an individual is defined as the
sum of the payoffs it received during some number of last evaluations.
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