
Test-case Generator for Nonlinear Continuous Parameter

Optimization Techniques

Zbigniew Michalewicz� , Kalyanmoy Deby , Martin Schmidtz, and Thomas Stidsenx

Abstract

The experimental results reported in many papers suggest that making an appropriate a priori choice
of an evolutionary method for a nonlinear parameter optimization problem remains an open question.
It seems that the most promising approach at this stage of research is experimental, involving a design
of a scalable test suite of constrained optimization problems, in which many features could be easily
tuned. Then it would be possible to evaluate merits and drawbacks of the available methods as well
as test new methods e�ciently.

In this paper we propose such a test-case generator for constrained parameter optimization tech-
niques. This generator is capable of creating various test problems with di�erent characteristics,
like (1) problems with di�erent relative size of the feasible region in the search space; (2) problems
with di�erent number and types of constraints; (3) problems with convex or non-convex objective
function, possibly with multiple optima; (4) problems with highly non-convex constraints consisting
of (possibly) disjoint regions. Such a test-case generator is very useful for analyzing and comparing
di�erent constraint-handling techniques.

Keywords: evolutionary computation, nonlinear programming, constrained optimization, test case
generator

1 Introduction

The general nonlinear programming (NLP) problem is to �nd ~x so as to

optimize f(~x); ~x = (x1; : : : ; xn) 2 IRn; (1)

where ~x 2 F � S. The objective function f is de�ned on the search space S � IRn and the set
F � S de�nes the feasible region. Usually, the search space S is de�ned as a n-dimensional rectangle
in IRn (domains of variables de�ned by their lower and upper bounds):

li � xi � ui; 1 � i � n,

�Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA and at the Institute
of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland, e-mail: zbyszek@uncc.edu

yDepartment of Mechanical Engineering, Indian Institute of Technology, Kanpur, Pin 208 016, India, e-mail:
deb@iitk.ac.in

zDepartment of Computer Science, Aarhus University, DK-8000 Aarhus C, Denmark, e-mail: marsch@daimi.au.dk
xDepartment of Computer Science, Aarhus University, DK-8000 Aarhus C, Denmark, e-mail: stidsen@daimi.au.dk

whereas the feasible region F � S is de�ned by a set of p additional constraints (p � 0):

gj(~x) � 0, for j = 1; : : : ; q, and hj(~x) = 0, for j = q + 1; : : : ; p.

At any point ~x 2 F , the constraints gj that satisfy gj(~x) = 0 are called the active constraints at ~x.
The NLP problem, in general, is intractable: it is impossible to develop a deterministic method

for the NLP in the global optimization category, which would be better than the exhaustive search
(Gregory, 1995). This makes a room for evolutionary algorithms, extended by some constraint-
handling methods. Indeed, during the last few years, several evolutionary algorithms (which aim
at complex objective functions (e.g., non di�erentiable or discontinuous) have been proposed for
the NLP; a recent survey paper (Michalewicz and Schoenauer 1996) provides an overview of these
algorithms.

It is not clear what characteristics of a constrained problem make it di�cult for an evolutionary
technique (and, as a matter of fact, for any other optimization technique). Any problem can be
characterized by various parameters; these may include the number of linear constraints, the number
of nonlinear constraints, the number of equality constraints, the number of active constraints, the
ratio � = jFj=jSj of sizes of feasible search space to the whole, the type of the objective function (the
number of variables, the number of local optima, the existence of derivatives, etc). In (Michalewicz
and Schoenauer 1996) eleven test cases for constrained numerical optimization problems were pro-
posed (G1{G11). These test cases include objective functions of various types (linear, quadratic,
cubic, polynomial, nonlinear) with various number of variables and di�erent types (linear inequal-
ities, nonlinear equations and inequalities) and numbers of constraints. The ratio � between the
size of the feasible search space F and the size of the whole search space S for these test cases vary
from 0% to almost 100%; the topologies of feasible search spaces are also quite di�erent. These test
cases are summarized in Table 1. For each test case the number n of variables, type of the function
f , the relative size of the feasible region in the search space given by the ratio �, the number of
constraints of each category (linear inequalities LI, nonlinear equations NE and inequalities NI),
and the number a of active constraints at the optimum (including equality constraints) are listed.

The results of many tests did not provide meaningful conclusions, as no single parameter (number
of linear, nonlinear, active constraints, the ratio �, type of the function, number of variables)
proved to be signi�cant as a major measure of di�culty of the problem. For example, many tested
methods approached the optimum quite closely for the test cases G1 and G7 (with � = 0:0111%
and � = 0:0003%, respectively), whereas most of the methods experienced di�culties for the test
case G10 (with � = 0:0010%). Two quadratic functions (the test cases G1 and G7) with a similar
number of constraints (9 and 8, respectively) and an identical number (6) of active constraints at
the optimum, gave a di�erent challenge to most of these methods. Also, several methods were quite
sensitive to the presence of a feasible solution in the initial population. Possibly a more extensive
testing of various methods was required.

Not surprisingly, the experimental results of (Michalewicz and Schoenauer 1996) suggested that
making an appropriate a priori choice of an evolutionary method for a nonlinear optimization
problem remained an open question. It seems that more complex properties of the problem (e.g.,
the characteristic of the objective function together with the topology of the feasible region) may
constitute quite signi�cant measures of the di�culty of the problem. Also, some additional measures
of the problem characteristics due to the constraints might be helpful. However, this kind of
information is not generally available. In (Michalewicz and Schoenauer 1996) the authors wrote:

\It seems that the most promising approach at this stage of research is experimental,
involving the design of a scalable test suite of constrained optimization problems, in

2

Function n Type of f � LI NE NI a

G1 13 quadratic 0.0111% 9 0 0 6
G2 k nonlinear 99.8474% 0 0 2 1
G3 k polynomial 0.0000% 0 1 0 1
G4 5 quadratic 52.1230% 0 0 6 2
G5 4 cubic 0.0000% 2 3 0 3
G6 2 cubic 0.0066% 0 0 2 2
G7 10 quadratic 0.0003% 3 0 5 6
G8 2 nonlinear 0.8560% 0 0 2 0
G9 7 polynomial 0.5121% 0 0 4 2
G10 8 linear 0.0010% 3 0 3 6
G11 2 quadratic 0.0000% 0 1 0 1

Table 1: Summary of eleven test cases. The ratio � = jFj=jSj was determined experimentally by
generating 1,000,000 random points from S and checking whether they belong to F (for G2 and
G3 we assumed k = 50). LI, NE, and NI represent the number of linear inequalities, and nonlinear
equations and inequalities, respectively

which many [...] features could be easily tuned. Then it should be possible to test new
methods with respect to the corpus of all available methods."

Clearly, there is a need for a parameterized test-case generator which can be used for analyzing
various methods in a systematic way (rather than testing them on a few selected test cases; moreover,
it is not clear whether addition of a few extra test cases is of any help).

In this paper we propose such a test-case generator for constrained parameter optimization
techniques. This generator is capable of creating various test cases with di�erent characteristics:

� problems with di�erent value of �: the relative size of the feasible region in the search space;

� problems with di�erent number and types of constraints;

� problems with convex or non-convex objective function, possibly with multiple optima;

� problems with highly non-convex constraints consisting of (possibly) disjoint regions.

All this can be achieved by setting a few parameters which in
uence di�erent characteristics of the
optimization problem. Such test-case generator should be very useful for analyzing and comparing
di�erent constraint-handling techniques.

There were some attempts in the past to propose a test case generator for unconstrained pa-
rameter optimization (Whitley et al. 1995; Whitley et al. 1996). We are also aware of one attempt
to do so for constrained cases; in (Kemenade 1998) the author proposed so-called stepping-stones
problem de�ned as:

objective: maximize
Pn

i=1(xi=� + 1),

where �� � xi � � for i = 1; : : : ; n and the following constraints are satis�ed:

exi=� + cos(2xi) � 1 for i = 1; : : : ; n.

3

Note that the objective function is linear and that the feasible region is split into 2n disjoint parts
(called stepping-stones). As the number of dimensions n grows, the problem becomes more complex.
However, as the stepping-stones problem has one parameter only, it can not be used to investigate
some aspects of a constraint-handling method. In (Michalewicz et al., 1999a; Michalewicz et al.,
1999b) we reported on preliminary experiments with a test case generator.

The paper is organized as follows. The following section describes the proposed test-case genera-
tor for constrained parameter optimization techniques. Section 3 surveys brie
y several constraint-
handling techniques for numerical optimization problems which have emerged in evolutionary com-
putation techniques over the last years. Section 4 discusses experimental results of one particular
constraint-handling technique on a few generated test cases. Section 5 concludes the paper and
indicates some directions for future research.

2 Test-case generator

As explained in the Introduction, it is of great importance to have a parameterized generator of test
cases for constrained parameter optimization problems. By changing values of some parameters it
would be possible to investigate merits/drawbacks (e�ciency, cost, etc) of many constraint-handling
methods. Many interesting questions could be addressed:

� how the e�ciency of a constraint-handling method changes as a function of the number of
disjoint components of the feasible part of the search space?

� how the e�ciency of a constraint-handling method changes as a function of the ratio between
the sizes of the feasible part and the whole search space?

� what is the relationship between the number of constraints (or the number of dimensions, for
example) of a problem and the computational e�ort of a method?

and many others. In the following part of this section we describe such parameterized test-case
generator

T CG(n;w; �; �; �; �);

the meaning of its six parameters is as follows:

n { the number of variables of the problem
w { a parameter to control the number of optima in the search space
� { a parameter to control the number of constraints (inequalities)
� { a parameter to control the connectedness of the feasible search regions
� { a parameter to control the ratio of the feasible to total search space
� { a parameter to in
uence the ruggedness of the �tness landscape

The following subsection explains the general ideas behind the proposed concepts. Subsection
2.2 describes some details of the test-case generator T CG, and subsection 2.3 graphs a few land-
scapes. Subsection 2.4 discusses further enhancements incorporated in the T CG, and subsection 2.5
summarizes some of its properties.

4

2.1 Preliminaries

The general idea is to divide the search space S into a number of disjoint subspaces Sk and to de�ne
a unimodal function fk for every Sk. Thus the objective function G is de�ned on S as follows:

G(~x) = fk(~x) i� ~x 2 Sk.
The number of subspaces Sk corresponds to the total number of local optima of function G.

Each subspace Sk is divided further into its feasible Fk and infeasible Ik parts; it may happen,
that one of these parts is empty. This division of Sk is obtained by introduction of a double
inequality which feasible points must satisfy. The feasible part F of the whole search space S is
de�ned then as a union of all Fk's.

The �nal issue addressed in the proposed model concerns the relative heights of local optima of
functions fk. The global optimum is always located in S0, but the heights of other peaks (i.e., local
optima) may determine whether the problem would be easier or harder to solve.

Let us discuss now the connections between the above ideas and the parameters of the test-case
generator. The �rst (integer) parameter n of the T CG determines the number of variables of the
problem; clearly, n � 1. The next (integer) parameter w � 1 determines the number of local optima
in the search space, as the search space S is divided into wn disjoint subspaces Sk (0 � k � wn� 1)
and there is a unique unconstrained optimum in each Sk. The subspaces Sk are de�ned in section
2.2; however, the idea is to divide the domain of each of n variables into w disjoint and equal
sized segments of the length 1

w
. The parameter w determines also the boundaries of the domains

of all variables: for all 1 � i � n, xi 2 [� 1
2w ; 1 � 1

2w). Thus the search space S is de�ned as a
n-dimensional rectangle:1

S =
Qn

i=1[� 1
2w ; 1� 1

2w);

consequently jSj = 1.
The third parameter � of the test-case generator is related to the number m of constraints of the

problem, as the feasible part F of the search space S is de�ned by means on m double inequalities,
called \rings" or \hyper-spheres", (1 � m � wn):

r21 � ck(~x) � r22; k = 0; : : : ;m� 1; (2)

where 0 � r1 � r2 and each ck(~x) is a quadratic function:

ck(~x) = (x1 � pk1)2 + : : : + (xn � pkn)2,

where (pk1; : : : ; p
k
n) is the center of the kth ring.

These m double inequalities de�ne m feasible parts Fk of the search space:

~x 2 Fk i� r21 � ck(~x) � r22,

and the overall feasible search space F = [m�1k=0 Fk. Note, the interpretation of constraints here is
di�erent than the one in the standard de�nition of the NLP problem (see Equation (1)): Here the
search space F is de�ned as a union (not intersection) of all double constraints. In other words, a

1In section 2.4 we de�ne an additional transformation from [� 1

2w
; 1� 1

2w
) to [0; 1) to simplify the usability of the

T CG.

5

point ~x is feasible if and only if there exist an index 0 � k � m� 1 such that double inequality in
Equation (2) is satis�ed. Note also, that if m < wn, then Fk are empty for all m � k � wn � 1.

The parameter 0 � � � 1 determines the number m of constraints as follows:

m = b�(wn � 1) + 1c: (3)

Clearly, � = 0 and � = 1 imply m = 1 and m = wn, i.e., minimum and maximum number of
constraints, respectively.

There is one important implementational issue connected with a representation of the number
wn. This number might be too large to store as an integer variable in a program (e.g., for w = 10 and
n = 500); consequently the value of m might be too large as well. Because of that the Equation (3)
should be interpreted as the expected value of random variable m rather than the exact formula.
This is achieved as follows. Note that an index k of a subspace Sk can be represented in a n-
dimensional w-ary alphabet (for w > 1) as (q1;k; : : : ; qn;k), i.e.,

k =
Pn

i=1 qi;kw
n�i.

Then, for each dimension, we (randomly) select a fraction (�)
1

n of indices; the subspace Sk contains
one of m constraints i� an index qi;k was selected for dimension i (1 � i � n). Note that the
probability of selecting any subspace Sk is �. For the same reason later in the paper (see sections
2.2 and 2.5), new parameters (k0 and k00) replace the original k (e.g., Equations (21) and (28)). The
center (pk1; : : : ; p

k
n) of a hyper-sphere de�ned by a particular ck (0 � k � m � 1) is determined as

follows:
(pk1; : : : ; p

k
n) = (qn;k=w; : : : ; q1;k=w); (4)

where (q1;k; : : : ; qn;k) is a n-dimensional representation of the number k in w-ary alphabet.2

Let us illustrate concepts introduced so far by the following example. Assume n = 2, w = 5,
and m = 22 (note that m � wn). Let us assume that r1 and r2 (smaller and larger radii of all
hyper-spheres (circles in this case), respectively) have the following values:3

r1 = 0:04 and r2 = 0:09.

Thus the feasible search space consists of m = 22 disjoint rings, and the ratio � between the
sizes of the feasible part F and the whole search space S is 0.449. The search space S and the
feasible part F are displayed in Figure 1(a).

Note that the center of the \�rst" sphere de�ned by c0 (i.e., k = 0) is (p01; p
0
2) = (0; 0), as

k = 0 = (0; 0)5. Similarly, the center of the \fourteenth" sphere (out of m = 22) de�ned by c13 (i.e.,
k = 13) is (p131 ; p

13
2) = (3=w; 2=w), as k = 13 = (2; 3)5.

With r2 = 0 (which also implies r1 = 0), the feasible search space would consist of a set of m
points. It is interesting to note that for r1 = 0:

� if 0 � r2 <
1
2w , the feasible search space F consists of m disjoint convex components; however

the overall search space is non-convex;

2We assumed here, that w > 1; for w = 1 there is no distinction between the search space S and the subspace S0,
and consequently m is one (a single double constraint). In the latter case, the center of the only hyper-sphere is the
center of the search space.

3These values are determined by two other parameters of the test-case generator, � and �, as discussed later.

6

x

x
2

1

1/w 2/w 3/w 4/w

w = 5

1/w

2/w

3/w

4/w

(1-1/(2w), 1-1/(2w))

(1-1/(2w), -1/(2w))(-1/(2w), -1/(2w))

(-1/(2w), 1-1/(2w))

(a)

x

x
2

1

1/w 2/w 3/w 4/w

w = 5

1/w

2/w

3/w

4/w

(1-1/(2w), 1-1/(2w))(-1/(2w), 1-1/(2w))

(-1/(2w), -1/(2w)) (1-1/(2w), -1/(2w))

(b)

Figure 1: The search spaces S and their feasible parts F (shaded areas) for test cases with n = 2,
m = 22, r1 = 0:04, and (a) r2 = 0:09 or (b) r2 = 0:12

� if 1
2w � r2 <

p
n

2w , the feasible search space F consists of one connected component; however,
this component is highly non-convex with many \holes" among spheres (see Figure 2(a));

� if r2 =
p
n

2w , most of the whole search space would be feasible (except the \right-top corner" of
the search space due to the fact that the number of spheres m might be smaller than wn; see
Figure 2(b)). In any case, F consists of a single connected component.4

Based on the above discussions, we can assume that radii r1 and r2 satisfy the following inequal-
ities:

0 � r1 � r2 �
p
n

2w
: (5)

Now we can de�ne the fourth and �fth control parameters of the test-case generator T CG:

� =
2wr2p

n
; (6)

� =
r1
r2
: (7)

The operating range for � and � is 0 � �; � � 1. In that way, the radii r1 and r2 are de�ned by
the parameters of the test-case generator:

r1 =
��
p
n

2w
; r2 =

�
p
n

2w
: (8)

Note that if � < 1=
p
n, the feasible `islands' Fk are not connected, as discussed above. On the

other hand, for � � 1=
p
n, the feasible subspaces Fk are connected. Thus, the parameter � controls

the connectedness of the feasible search space.5

4Note that the exact value of � depends on m: if m = wn, then � = 1; otherwise, � < 1.
5We shall see later, that this parameter, together with parameter �, also controls the amount of deviation of the

constrained maximum solution from the unconstrained maximum solution.

7

x

x
2

1

1/w 2/w 3/w 4/w

w = 5

1/w

2/w

3/w

4/w

(-1/(2w), 1-1/(2w)) (1-1/(2w), 1-1/(2w))

(-1/(2w), -1/(2w)) (1-1/(2w), -1/(2w))

(a)

x

x
2

1

1/w 2/w 3/w 4/w

w = 5

1/w

2/w

3/w

4/w

(-1/(2w), 1-1/(2w)) (1-1/(2w), 1-1/(2w))

(-1/(2w), -1/(2w)) (1-1/(2w), -1/(2w))

(b)

Figure 2: The search spaces S and their feasible parts F (shaded areas) for test cases with n = 2,

m = 22, r1 = 0, and (a) r2 = 0:12 or (b) r2 =
p
2

2w
=

p
2

10

For � = 0 the feasible parts Fk are convex and for � > 0 | always non-convex (see (a) and
(b) of Figure 1). If � = 1 (i.e, r1 = r2), the feasible search space consists of (possibly parts of)
boundaries of spheres; this case corresponds to an optimization problem with equality constraints.
The parameter � is also related to the proportion of the ratio � of the feasible to the total search
space (� = jFj=jSj). For an n-dimensional hyper-sphere, the enclosed volume is given as follows
(Rudolph, 1996):

Vn(r) =
�n=2rn

�(n=2 + 1)
: (9)

When � � 1=
p
n, the ratio � can be written as follows6 (note that jSj = 1):

� = m (Vn(r2)� Vn(r1)) =
(�n)n=2�n

2n�(n=2 + 1)

m

wn
(1� �n) : (10)

When � � 1 (Fk's are rings of a small width), the above ratio is

� � (�n)n=2�n

2n�(n=2 + 1)

m

wn
n(1� �): (11)

In the following subsection, we de�ne the test-case generator T CG in detail; we provide de�nitions
of functions fk and discuss the sixth parameter � of this test-case generator.

6For � > 1, the hyper-spheres overlap and it is not trivial to compute this ratio. However, this ratio gets closer
to one as � increases from one.

8

2.2 Details

As mentioned earlier, the search space S =
Qn

i=1[� 1
2w
; 1� 1

2w
) is divided into wn subspaces Sk, k =

0; 1; : : : ; (wn � 1). Each subspace Sk is de�ned as a n-dimensional cube: Sk = fxi : lki � xi < uki g,
where the bounds lki and uki are de�ned as:

lki =
2qn�i+1;k � 1

2w
and uki =

2qn�i+1;k + 1

2w
; (12)

for k = 0; 1; : : : ; (wn�1). The parameter qn�i+1;k is the (n� i+1)-th component of a n-dimensional
representation of the number k in w-ary alphabet. For example, the boundaries of the subspace S13
(see Figure 1) are

5
2w
� x1 <

7
2w

and 3
2w
� x2 <

5
2w

,

as (2; 3)5 = 13, i.e., (2; 3) is a 2-dimensional representation of k = 13 in w = 5-ary alphabet.
For each subspace Sk, there is a function fk de�ned on this subspace as follows:

fk(x1; : : : ; xn) = ak
�
�n

i=1(u
k
i � xi)(xi � lki)

� 1

n ; (13)

where ak's are prede�ned positive constants. Note that for any ~x 2 Sk, fk(~x) � 0; moreover,
fk(~x) = 0 i� ~x is a boundary point of the subspace Sk.

The objective function (to be maximized) of the test-case generator T CG is de�ned as follows:

G(x1; : : : ; xn) =

8>>>>>>>><
>>>>>>>>:

f0(x1; : : : ; xn) if (x1; : : : ; xn) 2 S0
f1(x1; : : : ; xn) if (x1; : : : ; xn) 2 S1
:
:
:
fwn�1(x1; : : : ; xn) if (x1; : : : ; xn) 2 Swn�1,

(14)

where

� � 1
2w � xi < 1 � 1

2w for all 1 � i � n, i.e., ~x = (x1; : : : ; xn) 2 S, and

� F = F0 [::: [Fwn�1, i.e., one of the following m double constraints is satis�ed:

r21 � ck � r22 (0 � k � m� 1).

Now we are ready to discuss the signi�cance of the prede�ned constants ak (Equation (13)). Let
us introduce the following notation:

� (xk1; : : : ; x
k
n) { is the maximum solution for unconstrained function fk, i.e., when the constraint

r21 � ck(~x) � r22 is ignored (with r1 > 0),

� (�xk1; : : : ; �xkn) { is the maximum solution for constrained function fk, i.e., when the constraint
r21 � ck(~x) � r22 is taken into account.

It is obvious, that the function fk has its unconstrained maximum at the center of Sk, i.e.,

9

xki = (lki + uki)=2.

The corresponding function value at this point is

fk(x
k) =

ak
4w2

: (15)

Thus, if constraints (with r1 > 0) are not taken into account, the function G has exactly wn

local maxima points: one maximum for each subspace Sk. The global maximum (again, without
considering constraints) lies in the subspace Sk, for which the corresponding function fk has the
largest constant ak (see Equation (13)).

When constraints are taken into account (with r1 > 0) the unconstrained maximum is not
feasible anymore. By using �rst and second-order optimality conditions (Deb, 1995), it can be
shown that the new (feasible) maximum at each subspace moves to:

�xki = (lki + uki)=2� r1=
p
n,

which is located on the inner ring. The corresponding maximum function value in subspace Sk is
then

fk(�xk) = ak � (1=(4w2)� r21=n) = ak �

1� �2�2

4w2

!
=

Aak
4w2

; (16)

where A = 1 � �2�2 (the constant A is important in our further discussion). Clearly, for r1 > 0,
A < 1. For an n-dimensional problem, there are a total of 2n maxima points in each subspace, each
having the same above maximum function value. Thus, there are a total of (2w)n maxima in the
entire search space.

To control the heights of these local maxima, the values of ak can be arranged in a particular
sequence, so that the global maximum solution always occurs in the �rst subspace (or S0) and the
worst local maximum solution occurs in the subspace Swn�1. Di�erent sequences of this type result
in landscapes of di�erent complexity. This is the role of the sixth parameter � of the test-case
generator T CG: by changing its value we should be able to change the landscape from di�cult to
easy.

Let us consider �rst two possible scenarios, which would serve as two extreme cases (i.e., di�cult
and easy landscapes, respectively) for the parameter �. In both these cases we assume that r1 > 0
(otherwise, unconstrained maximum overlaps with the constrained one).

Case 1: It seems that a challenging landscape would have the following feature: the constrained
maximum solution is no better than the worst local maximum solution of the unconstrained
function. This way, if a constraint handling optimizer does not work properly to search in
the feasible region, one of many local maximum solutions can be found, instead of the global
constrained optimum solution. Realizing that the global maximum solution lies in subspace
S0 and the worst local maximum solutions lies in subspace Swn�1, we have the following
condition:

f0(�x01; �x02; : : : ; �x0n) � fwn�1(x
wn�1
1 ; xw

n�1
2 ; : : : ; xw

n�1
n): (17)

Substituting the function values, we obtain the following:

awn�1
a0

� A: (18)

10

Case 2: On the other hand, let us consider an easy landscape, where the constrained maximum
solution is no worse than the unconstrained local maximum solution of the next-best subspace.
This makes the function easy to optimize, because the purpose is served even if the constraint
optimizer is incapable of distinguishing feasible and infeasible regions in the search space, as
long as it can �nd the globally best subspace in the entire search space and concentrate its
search there. Note that even in this case there are many local maximum solutions where the
optimizer can get stuck to. Thus, this condition tests more an optimizer's ability to �nd the
global maximum solution among many local maximum solutions and does not test too much
whether the optimizer can distinguish feasible from infeasible search regions. Mathematically,
the following condition must be true:

f0(�x01; �x02; : : : ; �x0n) � f1(x
1
1; x

1
2; : : : ; x

1
n); (19)

assuming that the next-base subspace is S1. Substituting the function values, we obtain

a1
a0
� A: (20)

Thus, to control the degree of di�culty in the function, i.e., to vary between cases 1 and 2, the
parameter � is introduced. It can be adjusted at di�erent values to have the above two conditions
as extreme cases. To simplify the matter, we may like to have Condition (18) when � is set to one
and have Condition (20) when � is set to zero. One such possibility is to have the following term
for de�ning ak:7

ak = (1� �2�2)(1��
0)k0

= A(1��0)k0

: (21)

The value of k0 is given by the following formula

k0 = log2(
nX
i=1

qi;k + 1); (22)

where (q1;k; : : : ; qn;k) is a n-dimensional representation of the number k in w-ary alphabet. The
value of �0 is de�ned as

�0 =

1� 1

log2(nw � n + 1)

!
�; (23)

for � 2 [0; 1]. The term from Equation (21) has the following properties:

1. All ak are non-negative.

2. The value of a0 for the �rst subspace S0 is always one as a0 = A0 = 1.

3. The sequence ak takes n(w � 1) + 1 di�erent values (for k = 0; : : : ; wn � 1).

4. For � = 0, the sequence ak = Ak0

lies in [Alog
2
(nw�n+1); 1] (with a0 = 1 and awn�1 =

Alog
2
(nw�n+1)). Note that a1 = A1 = A, so Condition (20) is satis�ed. Thus, setting �0 = 0

makes the test function much easier, as discussed above.

7Although this term can be used for any w � 1, we realize that for w = 1 there is only one subspace S0 and a0 is
1, irrespective of �. For completeness, we set � = 1 in this case.

11

5. For � = 1, the sequence ak = Ak0= log
2
(nw�n+1) lies in the range [A; 1] (with a0 = 1 and

awn�1 = A) and Condition (18) is satis�ed with the equality sign. Thus we have Case 1
established which is the most di�cult test function of this generator, as discussed above.

Since � = 0 and � = 1 are two extreme cases of easiness and di�culty, test functions with various
levels of di�culties can be generated by using � 2 [0; 1]. Values of � closer to one will create more
di�cult test functions than values closer to zero. In the next section, we show the e�ect of varying
� in some two-dimensional test functions.

To make the global constrained maximum function value always at 1, we normalize the ak
constants as follows:

a0k =
ak

(1=(4w2)� r21=n)
=

4w2

1� �2�2

!
� ak = 4w2(1� �2�2)k

0(1��0)�1; (24)

where k0 and �0 are de�ned by Equations (22) and (23), respectively. Thus, the proposed test
function generator is de�ned in Equation (14), where the functions fk are de�ned in Equation (13).
The term ak in Equation (13) is replaced by a0k de�ned in Equation (24). The global maximum
solution is at xi = �r1=

p
n = ���=(2w) for all i = 1; 2; : : : ; n and the function values at these

solutions are always equal to one. It is important to note that there are a total 2n global maximum
solutions having the same function value of one and at all these maxima, only one constraint
(c0(~x) � r21) is active.

Let us emphasize again that the above discussion is relevant only for r1 > 0. If r1 = 0, then
A = 1��2�2 = 1, and all ak's are equal to one. Thus we need a term de�ning ak if �� = 0 to make
peaks of variable heights. In this case we can set

ak =
(�� 1)k00

n(w � 1)
+ 1; (25)

The value of k00 is given by the following formula

k00 =
Pn

i=1 qi;k,

where (q1;k; : : : ; qn;k) is a n-dimensional representation of the number k in w-ary alphabet. Thus,
for � = 0 we have a0 = 1 and awn�1 = 0 (the steepest decline of heights of the peaks), whereas for
� = 1, a0 = a1 = : : : = awn�1 = 1 (no decline). To make sure the global maximum value of the
constrained function is equal to 1, we can set

a0k = 4w2ak (26)

for all k.

2.3 A few examples

In order to get a feel for the objective function at this stage of building the T CG, we plot the surface
for di�erent values of control parameters and with n = 2 (two variables only). A very simple uni-
modal test problem can be generated by using the following parameter setting: T CG(2; 1; 0; 1p

2
; 0; 1)

(see Figure 3). Note that in this case � = 0 which implies r1 = 0 (see (21)). To show the reducing
peak e�ect we need w > 1 and � > 0, as for � = 0 all peaks have the same height. Thus we assume

12

Feasible island

-0.5

0

0.5 -0.5

0

0.5

0

0.5

1

x_1

x_2

G(x_1,x_2)

Figure 3: A test case T CG(2; 1; 0; 1p
2
; 0; 1)

Feasible islands

-0.125
0.125

0.375
0.625

0.875 -0.125
0.125

0.375
0.625

0.875

0

0.5

1

x_1

x_2

G(x_1, x_2)

Figure 4: A test case T CG(2; 4; 1; 1p
2
; 0:8; 1)

� = 0:8, w = 4, and � = 1 (i.e., m = wn) in all remaining test cases depicted in the �gures of this
section.

In Figure 4 we show T CG(2; 4; 1; 1p
2
; 0:8; 1:0), thereby having r2 = 0:125 and r1 = 0:1. Using

Equation (10), we obtain the ratio � of feasible to total search space is 0:1875� or 0.589.
Let us discuss the e�ect of the parameter � on the shape of the landscape. Figures 4, 5, and

6 are plotted with w = 4, but di�erent � values are used. Recall that the optimal solution always
lies in the island closest to the origin. As the � value is decreased, the feasible island containing
the global optimum solution gets more emphasized. The problem depicted in Figure 4 will be more
di�cult to optimize for global solution than that in Figure 6, because in Figure 4 other feasible
islands also contain comparably-good solutions.

Feasible islands

-0.125
0.125

0.375
0.625

0.875 -0.125
0.125

0.375
0.625

0.875

0

0.5

1

x_1

x_2

G(x_1, x_2)

Figure 5: A test case T CG(2; 4; 1; 1p
2
; 0:8; 0:5)

Feasible islands

-0.125
0.125

0.375
0.625

0.875 -0.125
0.125

0.375
0.625

0.875

0

0.5

1

x_1

x_2

G(x_1, x_2)

Figure 6: A test case T CG(2; 4; 1; 1p
2
; 0:8; 0)

Note again, that for a non-zero r1, the optimal solutions move to the inner boundary (exactly
at xi = ���=(2w). Consequently, these problems are harder for optimization algorithms than
problems with r1 = 0. A nice aspect of these test functions is that the global feasible function value
is always one, no matter what control parameter values are chosen. Figure 7 shows a slice of the
function at x2 = 0 for a test problem T CG(2; 4; 1; 1p

2
; 0:8; 1:0), thus having r2 = 0:125 and r1 = 0:1.

Function values corresponding to infeasible solutions are marked using dashed lines. The point `P'

13

is the globally optimal function value. The infeasible function values (like point `Q') higher than one
are also shown. If the constraint handling strategy is not proper, an optimization algorithm may
get trapped in local optimal solutions, like `Q', which has better function value but is infeasible.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-0.125 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

F
un

ct
io

n
va

lu
e

x_1

Infeasible function values

P

Q

Figure 7: A slice through x2 = 0 of a test problem with w = 4, � = 1:0, and r1 = 0:1 is shown. The
global optimum solution is in the left-most attractor

2.4 Further enhancements

As explained in section 2.1, the general idea behind the test-case generator T CG was to divide the
search space S into a number of disjoint subspaces Sk and to de�ne an unimodal function fk for
every Sk. The number of subspaces Sk corresponds to the total number of local optima of function
G. To control the heights of these local maxima, the values of ak were arranged in a particular
sequence, so that the global maximum solution always occurs in the �rst subspace (for k = 0, i.e., in
S0) and the worst local maximum solution occurs in the last subspace (for k = wn�1, i.e., in Swn�1).
Note also that subspaces Sk of the test-case generator T CG are arranged in a particular order. For
example, for n = 2 and w = 4, the highest peak is located in subspace S0, two next-highest peaks
(of the same height) are in subspaces S1 and S4, three next-highest peaks are in S2, S5, S8, etc.
(see Figures 4{6).

To remove this �xed pattern from the generated test cases, we need an additional mechanism:
a random permutation of subspaces Sk. Thus we need a procedure Transform which randomly
permutes indices of subspaces; this is any function

Transform: [0::N] �! [0::N],

such that for any 0 � p 6= q � N , Transform(p) 6= Transform(q). The advantage of such a procedure
Transform is that we do not need any memory for storing the mapping between indices of subspaces
(the size of such memory, for w > 1 and large n, may be excessive); however, there is a need to
re-compute the permuted index of a subspace Sk every time we need it.

The procedure Transform can be used also to generate a di�erent allocation for m constraints.
Note that the T CG allocates m rings (each de�ned by a pair of constraints) always to the �rst m

14

subspaces Sk, k = 0; 1; : : : ;m�1 (see, for example, Figure 1). However, care should be taken always
to allocate a ring in the subspace containing the higest peak (thus we know the value of the global
feasible, solution).

For example, for n = 2 and w = 4, our implementation of the procedure Transform generated
the following permutation of peaks of fk's:

0! 5 1! 13 2! 9 3! 8
4! 10 5! 14 6! 15 7! 7
8! 6 9! 3 10! 0 11! 2
12! 1 13! 4 14! 12 15! 11

Figure 8 shows the �nal outcome (landscape with transformed peaks; see Figure 6 for the original
landscape) for the test case T CG(2; 4; 1; 1p

2
; 0:8; 0).

Feasible islands

-0.125
0.125

0.375
0.625

0.875 -0.125
0.125

0.375
0.625

0.875

0

0.5

1

x_1

x_2

G(x_1,x_2)

Figure 8: Transformed peaks for the test case T CG(2; 4; 1; 1p
2
; 0:8; 0)

The �nal modi�cation of the T CG maps the domains of parameters xi from [� 1
2w ; 1� 1

2w) into
[0; 1); thus the new search space S 0 is

S 0 =
Qn

i=1[0; 1),

which is more \user-friendly" than the original S. The mapping is a straightforward linear trans-
formation:

x0i xi + 1
2w

for all parameters xi (i = 1; : : : ; n). This means that the user supply an input vector ~x 2 [0; 1)n,
whereas T CG returns the objective value and a measure of the constraint violation.

15

2.5 Summary

Based on the above presentations, we now summarize the properties of the test-case generator

T CG(n;w; �; �; �; �).

The parameters are:

n � 1; integer w � 1; integer 0 � � � 1;
oat
0 � � � 1;
oat 0 � � � 1;
oat 0 � � � 1;
oat

The objective function G is de�ned by formula (14), where each fk (k = 0; : : : ; wn � 1) is de�ned
on Sk as

fk(x
0
1; : : : ; x

0
n) = a0k

�
�n

i=1(u
k
i � xi)(xi � lki)

� 1

n : (27)

All variables x0i's have the same domain:

x0i 2 [0; 1).

Note, that x0i = xi + 1
2w

. The constants a0k are de�ned as follows:

a0k =

(
4w2(1� �2�2)k

0[(1��)+�=(log2(wn�n+1)]�1 if �� > 0

4w2
�
(��1)k00

n(w�1) + 1
�

if �� = 0,
(28)

where

k0 = log2(
Pn

i=1 qi;k + 1), and
k00 =

Pn
i=1 qi;k,

where (q1;k; : : : ; qn;k) is a n-dimensional representation of the number k in w-ary alphabet.
If r1 > 0 (i.e., �� > 0), the function G has 2n global maxima points, all in permuted S0. For

any global solution (x1; : : : ; xn), xi = ���=(2w) for all i = 1; 2; : : : ; n. The function values at these
solutions are always equal to one.

On the other hand, if r1 = 0 (i.e., �� = 0), the function G has either one global maximum (if
� < 1) or m maxima points (if � = 1), one in each of permuted S0; : : : ;Sm�1. If � < 1, the global
solution (x1; : : : ; xn) is always at

(x1; : : : ; xn) = (0; 0; : : : ; 0).

The interpretation of the six parameters of the test-case generator T CG is as follows:

1. Dimensionality n: By increasing the parameter n the dimensionality of the search space can
be increased.

2. Multimodality w: By increasing the parameter w the multimodality of the search space can
be increased. For the unconstrained function, there are wn local maximum solutions, of which
one is globally maximum. For the constrained test function with �� > 0, there are (2w)n

di�erent local maximum solutions, of which 2n are globally maximum solutions.

3. Number of constraints �: By increasing the parameter � the number m of constraints is
increased.

16

4. Connectedness �: By reducing the parameter � (from 1 to 1=
p
n and smaller), the con-

nectedness of the feasible subspaces can be reduced. When � < 1=
p
n, the feasible subspaces

Fk are completely disconnected. Additionally, parameter � (with �xed �) in
uences the
proportion of the feasible search space to the complete search space (ratio �).

5. Feasibility �: By increasing the ratio � the proportion of the feasible search space to the
complete search space can be reduced. For � values closer to one, the feasible search space
becomes smaller and smaller. These test functions can be used to test an optimizer's ability
to be �nd and maintain feasible solutions.

6. Ruggedness �: By increasing the parameter � the function ruggedness can be increased
(for �� > 0). A su�ciently rugged function will test an optimizer's ability to search for the
globally constrained maximum solution in the presence of other almost equally signi�cant
local maxima.

Increasing the each of the above parameters (except �) and decreasing � will cause an increased
di�culty for any optimizer. However, it is di�cult to conclude which of these factors most pro-
foundly a�ects the performance of an optimizer. Thus, it is recommended that the user should �rst
test his/her algorithm with the simplest possible combination of the above parameters (small n,
small w, small �, large �, small �, and small �). Thereafter, the parameters may be changed in a
systematic manner to create more di�cult test functions. The most di�cult test function is created
when large values of parameters n, w, �, �, and � together with a small value of parameter � are
used.

3 Constraint-handling methods

During the last few years several methods were proposed for handling constraints by genetic algo-
rithms for parameter optimization problems. These methods can be grouped into �ve categories:
(1) methods based on preserving feasibility of solutions, (2) methods based on penalty functions,
(3) methods which make a clear distinction between feasible and infeasible solutions, (4) methods
based on decoders, and (5) other hybrid methods. We discuss them brie
y in turn.

3.1 Methods based on preserving feasibility of solutions

The best example of this approach is Genocop (for GEnetic algorithm for Numerical Optimization
of COnstrained Problems) system (Michalewicz and Janikow, 1991; Michalewicz et al., 1994). The
idea behind the system is based on specialized operators which transform feasible individuals into
feasible individuals, i.e., operators, which are closed on the feasible part F of the search space. The
method assumes linear constraints only and a feasible starting point (or feasible initial population).
Linear equations are used to eliminate some variables; they are replaced as a linear combination
of remaining variables. Linear inequalities are updated accordingly. A closed set of operators
maintains feasibility of solutions. For example, when a particular component xi of a solution vector
~x is mutated, the system determines its current domain dom(xi) (which is a function of linear
constraints and remaining values of the solution vector ~x) and the new value of xi is taken from
this domain (either with
at probability distribution for uniform mutation, or other probability
distributions for non-uniform and boundary mutations). In any case the o�spring solution vector

17

is always feasible. Similarly, arithmetic crossover, a~x + (1 � a)~y, of two feasible solution vectors ~x
and ~y yields always a feasible solution (for 0 � a � 1) in convex search spaces (the system assumes
linear constraints only which imply convexity of the feasible search space F).

Recent work (Michalewicz et al., 1996; Schoenauer and Michalewicz, 1996; Schoenauer and
Michalewicz, 1997) on systems which search only the boundary area between feasible and infeasi-
ble regions of the search space, constitutes another example of the approach based on preserving
feasibility of solutions. These systems are based on specialized boundary operators (e.g., sphere
crossover, geometrical crossover, etc.): it is a common situation for many constrained optimization
problems that some constraints are active at the target global optimum, thus the optimum lies on
the boundary of the feasible space.

3.2 Methods based on penalty functions

Many evolutionary algorithms incorporate a constraint-handling method based on the concept of
(exterior) penalty functions, which penalize infeasible solutions. Usually, the penalty function is
based on the distance of a solution from the feasible region F , or on the e�ort to \repair" the
solution, i.e., to force it into F . The former case is the most popular one; in many methods a set
of functions fj (1 � j � m) is used to construct the penalty, where the function fj measures the
violation of the j-th constraint in the following way:

fj(~x) =

(
maxf0; gj(~x)g; if 1 � j � q
jhj(~x)j; if q + 1 � j � m:

However, these methods di�er in many important details, how the penalty function is designed and
applied to infeasible solutions. For example, a method of static penalties was proposed (Homaifar
et al., 1994); it assumes that for every constraint we establish a family of intervals which determine
appropriate penalty coe�cient. The method of dynamic penalties was examined (Joines and Houck,
1994), where individuals are evaluated (at the iteration t) by the following formula:

eval(~x) = f(~x) + (C � t)�
Pm

j=1 f
�
j (~x),

where C, � and � are constants. Another approach (Genocop II), also based on dynamic penalties,
was described (Michalewicz and Attia, 1994). In that algorithm, at every iteration active constraints
only are considered, and the pressure on infeasible solutions is increased due to the decreasing values
of temperature � . In (Eiben and Ruttkay, 1996) a method for solving constraint satisfaction prob-
lems that changes the evaluation function based on the performance of a EA run was described: the
penalties (weights) of those constraints which are violated by the best individual after termination
are raised, and the new weights are used in the next run. A method based on adaptive penalty
functions was developed in (Bean and Hadj-Alouane, 1992; Hadj-Alouane and Bean, 1992): one
component of the penalty function takes a feedback from the search process. Each individual is
evaluated by the formula:

eval(~x) = f(~x) + �(t)
Pm

j=1 f
2
j (~x),

where �(t) is updated every generation t with respect to the current state of the search (based on
last k generations). The adaptive penalty function was also used in (Smith and Tate, 1993), where
both the search length and constraint severity feedback was incorporated. It involves the estimation
of a near-feasible threshold qj for each constraint 1 � j � m); such thresholds indicate distances

18

from the feasible region F which are \reasonable" (or, in other words, which determine \interesting"
infeasible solutions, i.e., solutions relatively close to the feasible region). An additional method (so-
called segregated genetic algorithm) was proposed in (Leriche et al., 1995) as yet another way to
handle the problem of the robustness of the penalty level: two di�erent penalized �tness functions
with static penalty terms p1 and p2 were designed (smaller and larger, respectively). The main idea
is that such an approach will result roughly in maintaining two subpopulations: the individuals
selected on the basis of f1 will more likely lie in the infeasible region while the ones selected on the
basis of f2 will probably stay in the feasible region; the overall process is thus allowed to reach the
feasible optimum from both sides of the boundary of the feasible region.

3.3 Methods based on a search for feasible solutions

There are a few methods which emphasize the distinction between feasible and infeasible solutions
in the search space S. One method, proposed in (Schoenauer and Xanthakis, 1993) (called a
\behavioral memory" approach) considers the problem constraints in a sequence; a switch from
one constraint to another is made upon arrival of a su�cient number of feasible individuals in the
population.

The second method, developed in (Powell and Skolnick, 1993) is based on a classical penalty
approach with one notable exception. Each individual is evaluated by the formula:

eval(~x) = f(~x) + r
Pm

j=1 fj(~x) + �(t; ~x),

where r is a constant; however, the original component �(t; ~x) is an additional iteration dependent
function which in
uences the evaluations of infeasible solutions. The point is that the method
distinguishes between feasible and infeasible individuals by adopting an additional heuristic rule
(suggested earlier in (Richardson et al., 1989)): for any feasible individual ~x and any infeasible
individual ~y: eval(~x) < eval(~y), i.e., any feasible solution is better than any infeasible one.8 In a
recent study (Deb, in press), a modi�cation to this approach is implemented with the tournament
selection operator and with the following evaluation function:

eval(~x) =

(
f(~x); if ~x is feasible;
fmax +

Pm
j=1 fj(~x); otherwise,

where fmax is the function value of the worst feasible solution in the population. The main di�erence
between this approach and Powell and Skolnick's approach is that in this approach the objective
function value is not considered in evaluating an infeasible solution. Additionally, a niching scheme
is introduced to maintain diversity among feasible solutions. Thus, initially the search focuses
on �nding feasible solutions and later when adequate number of feasible solutions are found, the
algorithm �nds better feasible solutions by maintaining a diversity in solutions in the feasible region.
It is interesting to note that there is no need of the penalty coe�cient r here, because the feasible
solutions are always evaluated to be better than infeasible solutions and infeasible solutions are
compared purely based on their constraint violations. However, normalization of constraints fj(~x)
is suggested. On a number of test problems and on an engineering design problem, this approach
is better able to �nd constrained optimum solutions than Powell and Skolnick's approach.

The third method (Genocop III), proposed in (Michalewicz and Nazhiyath, 1995) is based on the
idea of repairing infeasible individuals. Genocop III incorporates the original Genocop system, but

8For minimization problems.

19

also extends it by maintaining two separate populations, where a development in one population
in
uences evaluations of individuals in the other population. The �rst population Ps consists of
so-called search points from Fl which satisfy linear constraints of the problem. The feasibility (in
the sense of linear constraints) of these points is maintained by specialized operators. The second
population Pr consists of so-called reference points from F ; these points are fully feasible, i.e., they
satisfy all constraints. Reference points ~r from Pr, being feasible, are evaluated directly by the
objective function (i.e., eval(~r) = f(~r)). On the other hand, search points from Ps are \repaired"
for evaluation.

3.4 Methods based on decoders

Decoders o�er an interesting option for all practitioners of evolutionary techniques. In these tech-
niques a chromosome \gives instructions" on how to build a feasible solution. For example, a
sequence of items for the knapsack problem can be interpreted as: \take an item if possible"|such
interpretation would lead always to a feasible solution.

However, it is important to point out that several factors should be taken into account while using
decoders. Each decoder imposes a mapping M between a feasible solution and decoded solution. It
is important that several conditions are satis�ed: (1) for each solution s 2 F there is an encoded
solution d, (2) each encoded solution d corresponds to a feasible solution s, and (3) all solutions
in F should be represented by the same number of encodings d.9 Additionally, it is reasonable to
request that (4) the mapping M is computationally fast and (5) it has locality feature in the sense
that small changes in the coded solution result in small changes in the solution itself. An interesting
study on coding trees in genetic algorithm was reported in (Palmer and Kershenbaum, 1994), where
the above conditions were formulated.

However, the use of decoders for continuous domains has not been investigated. Only recently
(Kozie l and Michalewicz, 1998; Kozie l and Michalewicz, 1999) a new approach for solving con-
strained numerical optimization problems was proposed. This approach incorporates a homomor-
phous mapping between n-dimensional cube and a feasible search space. The mapping transforms
the constrained problem at hand into unconstrained one. The method has several advantages over
methods proposed earlier (no additional parameters, no need to evaluate|or penalize|infeasible
solutions, easiness of approaching a solution located on the edge of the feasible region, no need for
special operators, etc).

3.5 Hybrid methods

It is relatively easy to develop hybrid methods which combine evolutionary computation techniques
with deterministic procedures for numerical optimization problems. In (Waagen et al. 1992) a
combined an evolutionary algorithm with the direction set method of Hooke-Jeeves is described;
this hybrid method was tested on three (unconstrained) test functions. In (Myung et al., 1995) the
authors considered a similar approach, but they experimented with constrained problems. Again,

9However, as observed by Davis (1997), the requirement that all solutions in F should be represented by the
same number of decodings seems overly strong: there are cases in which this requirement might be suboptimal. For
example, suppose we have a decoding and encoding procedure which makes it impossible to represent suboptimal
solutions, and which encodes the optimal one: this might be a good thing. (An example would be a graph coloring
order-based chromosome, with a decoding procedure that gives each node its �rst legal color. This representation
could not encode solutions where some nodes that could be colored were not colored, but this is a good thing!)

20

they combined evolutionary algorithm with some other method|developed in (Maa and Shanblatt,
1992). However, while the method of (Waagen et al. 1992) incorporated the direction set algorithm
as a problem-speci�c operator of his evolutionary technique, in (Myung et al., 1995) the whole
optimization process was divided into two separate phases.

Several other constraint handling methods deserve also some attention. For example, some
methods use the values of objective function f and penalties fj (j = 1; : : : ;m) as elements of a
vector and apply multi-objective techniques to minimize all components of the vector. For example,
in (Scha�er, 1985), Vector Evaluated Genetic Algorithm (VEGA) selects 1=(m+1) of the population
based on each of the objectives. Such an approach was incorporated by Parmee and Purchase
(1994) in the development of techniques for constrained design spaces. On the other hand, in
the approach by (Surry et al., 1995), all members of the population are ranked on the basis of
constraint violation. Such rank r, together with the value of the objective function f , leads to the
two-objective optimization problem. This approach gave a good performance on optimization of
gas supply networks.

Also, an interesting approach was reported in (Paredis, 1994). The method (described in the
context of constraint satisfaction problems) is based on a co-evolutionary model, where a popula-
tion of potential solutions co-evolves with a population of constraints: �tter solutions satisfy more
constraints, whereas �tter constraints are violated by fewer solutions. There is some development
connected with generalizing the concept of \ant colonies" (Colorni et al., 1991) (which were origi-
nally proposed for order-based problems) to numerical domains (Bilchev and Parmee, 1995); �rst
experiments on some test problems gave very good results (Wodrich and Bilchev, 1997). It is also
possible to incorporate the knowledge of the constraints of the problem into the belief space of cul-
tural algorithms (Reynolds, 1994); such algorithms provide a possibility of conducting an e�cient
search of the feasible search space (Reynolds et al., 1995).

4 Experimental results

One of the simplest and the most popular constraint-handling method is based on static penalties.
In the following we de�ne a simple static penalty method and investigate its properties using the
T CG.

The investigated static penalty method is de�ned as follows. For a maximization problem with
the objective function f and m constraints,

eval(~x) = f(~x)�W � v(~x),

where W � 0 is a constant (penalty coe�cient) and function v measures the constraint violation.
(Note that only one double constraint is taken into account as the T CG de�nes the feasible part of
the search space as a union of all m double constraints.)

The objective function f is de�ned by the test-case generator (see de�nition of function G;
Equation (14)). The constraint violation value of v for any ~x is de�ned by the following procedure:

�nd k such that ~x 2 Sk
set C = (2w)=

p
n

if the whole Sk is infeasible then v(~x) = 1
else begin

calculate distance Dist between ~x and the center of the subspace Sk
if Dist < r1 then v(~x) = C � (r1 �Dist)

21

else if Dist > r2 then v(~x) = C � (Dist� r2)
else v(~x) = 0

end

The radii r1 and r2 are de�ned by Equations (8). Thus the constraint violation measure v returns

� 1, if the evaluated point is in infeasible subspace (i.e., subspace without a ring);
� 0, if the evaluated point is feasible;
� q, if the evaluated point is infeasible, but the corresponding subspace is partially
feasible. It means that the point ~x is either inside the smaller ring or outside the larger
one. In both cases q is a scaled distance of this point to the boundary of a closer ring.
Note that the scaling factor C guarantees that 0 < q � 1.

Note, that the values of the objective function for feasible points of the search space stay in the
range [0; 1]; the value at the global optimum is always 1. Thus, both the function and con-
straint violation values are normalized in [0,1]. Figure 9 displays the �nal landscape for test case
T CG(2; 4; 1; 1p

2
; 0:8; 0) (Figure 8 displays the landscape before penalties are applied).

-0.125
0.125

0.375
0.625

0.875 -0.125

0.125

0.375

0.625

0.875
-2

-1.5

-1

-0.5

0

0.5

1

x_1

x_2

Eval(x_1, x_2)

Figure 9: Final landscape for the test case T CG(2; 4; 1; 1p
2
; 0:8; 0). The penalty coe�cient W is set

to 1. Contours with function values ranging from �0:2 to 1:0 at a step of 0.2 are drawn at the base

To test the usefulness of the T CG, a simple steady-state evolutionary algorithm was developed.
We have used a constant population size of 100 and each individual is a vector ~x of n
oating-point
components. Parent selection was performed by a standard binary tournament selection. An o�-
spring replaces the worst individual determined by a binary tournament. One of three operators was
used in every generation (the selection of an operator was done accordingly to constant probabilities
0.5, 0.15, and 0.35, respectively):

� Gaussian mutation: ~x ~x + N(0; ~�), where N(0; ~�) is a vector of independent random
Gaussian numbers with a mean of zero and standard deviations ~� (in all experiments reported

22

in this section, we have used a value of 1=(2
p
n), which depends only on the dimensionality

of the problem).

� uniform crossover: ~z (z1; : : : ; zn), where each zi is either xi or yi (with equal probabilities),
where ~x and ~y are two selected parents.

� heuristic crossover: ~z = r � (~x� ~y) + ~x, where r is a uniform random number between 0 and
0.25, and the parent ~x is not worse than ~y.

The termination condition was to quit the evolutionary loop if an improvement in the last N =
10; 000 generations was smaller than a prede�ned � = 0:001.

As the test case generator has 6 parameters, it is di�cult to fully discuss their interactions.
Thus we have selected a single point from the T CG(n;w; �; �; �; �) parameter search space:

n = 2; w = 10; � = 1:0; � = 0:9=
p
n; � = 0:1; � = 0:1,

and varied one parameter at a time. In each case two �gures summarize the results (which display
averages of 100 runs):10

1. all left �gures display the �tness value of the best feasible individual at the end of the run
(continuous line), the average and the lowest heights among all feasible optima (broken lines).

2. all right �gures rescale (linear scaling) the �gure from the left: the �tness value of the best
feasible individual at the end of the run (continuous line) and the average height among feasible
peaks in the landscape (broken line) are displayed as fractions between 0 (which corresponds
to the height of the lowest peak) and 1 (which corresponds to the height of the highest peak).
Since the di�erences in peak heights among best few peaks are not large, the scaled peak
values give a better insight into the e�ect of each control parameter.

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Figure 10: A run of the system for the T CG(n; 10; 1:0; 0:9=
p
n; 0:1; 0:1)

Figure 10 displays the results of a static penalty method on the T CG while n is varied between
1 and 6. It is clear that an increase of n (dimensionality) reduces the e�ciency of the algorithm:
the value of returned solution approaches the value of the average peak height in the landscape.

Figure 11 displays the results of a static penalty method on the T CG while w is varied between
1 and 30 (for w = 30 the objective function has wn = 900 peaks). An increase of w (multimodality)

10In all cases the values of standard deviations were similar and quite low.

23

0.975

0.98

0.985

0.99

0.995

1

1 6 11 16 21 26 31

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31

Figure 11: A run of the system for the T CG(2; w; 1:0; 0:9=
p

2; 0:1; 0:1)

decreases the performance of the algorithm, but not to extent we have seen in the previous case
(increase of n). The reason is that while w = 10 (Figure 10), the number of peaks grows as 10n (for
n = 3 there are 1000 peaks), whereas for n = 2 (Figure 11), the number of peaks grows as w2 (for
w = 30 there are 900 peaks only).

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12: A run of the system for the T CG(2; 10; �; 0:9=
p

2; 0:1; 0:1)

Figure 12 displays the results of a static penalty method on the T CG while � is varied between
0 and 1. It seems that the number of constraints of the test case generator does not in
uence the
performance of the system. However, it is important to underline again that the interpretation of
constraints in the T CG is di�erent than usual; see a discussion in section 2.1.

Figure 13 displays the results of a static penalty method on the T CG while � is varied between
0 and 1=

p
2. Clearly, larger values of � (better connectedness) improve the results of the algorithm,

as it is easier to locate a feasible solution. Note an anomaly in the graph for � = 0; this is due to
the Equation (28), which provides for a di�erent formula for ak's when �� = 0.

Figure 14 displays the results of a static penalty method on the T CG while � is varied between 0
and 1. Larger values of � (smaller feasibility) decrease the size of rings; however, this feature seems
not to in
uence the performance of the algorithm signi�cantly.

Figure 15 displays the results of a static penalty method on the T CG while � is varied between
0 and 1. Higher values of � (higher ruggedness) usually make the test case slightly harder as the
heights of the peaks are changed: local maxima are of almost the same height as the global one.

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.071 0.141 0.212 0.283 0.354 0.424 0.495 0.566 0.636 0.707

0

0.2

0.4

0.6

0.8

1

0.0 0.071 0.141 0.212 0.283 0.354 0.424 0.495 0.566 0.636 0.707

Figure 13: A run of the system for the T CG(2; 10; 1:0; �; 0:1; 0:1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 14: A run of the system for the T CG(2; 10; 1:0; 0:9=
p

2; �; 0:1)

We expected to see a larger in
uence of the parameter � on the results, however, as the subclass of
functions under investigation is relatively easy, it was not the case.

We therefore conclude, that the results obtained by an evolutionary algorithm using a static
penalty approach depend mainly on the dimensionality n, the multimodality w, and the connect-
edness �. On the other hand, they do not signi�cantly seem to depend on the parameters �, �, and

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 15: A run of the system for the T CG(2; 10; 1:0; 0:9=
p

2; 0:1; �)

25

�.

Another series of experiments aimed at exploring relationship between the value of penalty
coe�cient W and the results of the runs. Again, we have selected a single point from the parameter
search space of T CG(n;w; �; �; �; �):

n = 5; w = 10; � = 0:2; � = 0:9=
p

5; � = 0:5; � = 0:1,

and varied penalty coe�cient W from 0 to 104. In the �rst experiment we measured the ratio of
feasible solutions returned by the system for di�erent values of W ; Figure 16 displays the results
for 0 < W � 6 (averages of 250 runs).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Figure 16: The success rate of the system for di�erent values of penalty coe�cient W . The success
rate gives the fraction of the �nal solutions (out of 250 runs) which were feasible

It is interesting to note that the experiment con�rmed a simple intuition: the higher penalty
coe�cient is, the better chance that the algorithm returns a feasible solution. For larger values
of W (from 20 up to 104) the success rate was equal to 1 (which is the reason we did not show
it in Figure 16). As infeasible solutions usually are of no interest, we conclude that high penalty
coe�cients guarantee that the �nal solution returned by the system is feasible.

However, a separate issue (apart from feasibility) is the quality of the returned solution. The
next two graphs (Figure 17) clearly make the point. The left graph displays the average �tness value
of the best feasible individual at the end of the run (continuous line), together with the average
height and the lowest height among all feasible optima (broken lines). The right graph, on the other
hand, rescales the one from the left: the �tness value of the best feasible individual at the end of
the run (continuous line) and the average height among feasible peaks in the landscape (broken
line) are displayed as fractions between 0 (which corresponds to the height of the lowest peak) and
1 (which corresponds to the height of the highest peak).

The (similar) graphs of Figure 17 con�rm another intuition connected with static penalties: it is
di�cult to guess the \right" value of the penalty coe�cient as di�erent landscapes require di�erent
values of W ! Note that low values of W (i.e., values below 0.4) produce poor quality results; on the
other hand, for larger values of W (i.e., values larger than 1.5), the quality of solutions drops slowly
(it stabilizes later | for large W | at the level of 0.95). Thus the best values of penalty coe�cient
W for the particular landscape of the T CG(5; 10; 0:2; 0:9=

p
5; 0:5; 0:1) (which has nw = 105 local

optima) are in the range [0:6; 0:75].

26

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Figure 17: The quality of solution found for di�erent values of penalty coe�cient W

The results of experiments reported in Figures 16 and 17 may trigger many additional questions.
For example, (1) what is the role of the selection method in these experiments? or (2) what are the
merits of a dynamic penalty method as opposed to static approach? In the following, we address
these two issues in turn.

In evaluating various constraint-handling techniques it is important to take into account other
components of evolutionary algorithm. It is di�cult to compare two constraint-handling techniques
if they are incorporated in two algorithms with di�erent selection methods, operators, parameters,
etc. To illustrate the point, we have replaced the tournament selection by a proportional selection,
leaving everything else in the algorithm without any change. Graphs of Figure 18 display the results:
the success rate (in terms of �nding a feasible solution) and the quality of solution found.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 18: The success rate (left graph) and the quality of solution found (right graph) for di�erent
values of W , where a proportional selection replaced the tournament selection. Averages over 250
runs

As expected (Figure 18, left), the performance of the algorithm drops in a signi�cant way.
Proportional selection is much more sensitive to the actual values of the objective function.

We have experimented also with two dynamic penalty approaches. In both cases the maximum
number of generations was set to T = 20; 000 and

W1(t) = 10 � 2t
T

, and W2(t) = 10 �
�
2t
T

�2
,

27

where t is the current generation number. Thus, W1 varies between 0 and 20 (linearly), whereas
W2 varies between 0 and 40 following a quadratic curve.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Figure 19: The quality of solution found for two dynamic penalty methods versus previously dis-
cussed static penalty approach

The results of these experiments are displayed in Figure 19. As before, the right graph rescales
the left (as the value of 0 corresponds to the value of the lowest peak in the landscape). The
continuous line (on both graphs) indicates the quality of a feasible solution found (average of 250
runs) for static values of W (repetition of graphs of Figure 17). The success rate for �nding a feasible
solution was 1 for both schemes. Two horizontal broken lines indicate the performance of the system
for the two dynamic penalty approaches (W2 being slightly better than W1). The conclusions are
clear: for most values of W (for all W > 3) both dynamic penalty schemes perform better than a
static approach. However, it is possible to �nd a static value (in our case, say, 0:6 � W � 1:5),
where the static approach outperforms both dynamic schemes.

5 Summary

We have discussed brie
y how the proposed test case generator T CG(n;w; �; �; �; �) can be used for
evaluation of a constraint-handling technique. As explained in section 2.5, the parameter n controls
the dimensionality of the test function, the parameter w controls the modality of the function, the
parameter � controls the number of constraints in the search space, the parameter � controls the
connectedness of the feasible search space, the parameter � controls the ratio of the feasible to total
search space, and the parameter � controls the ruggedness of the test function.

We believe that such a constrained test problem generator should serve the purpose of testing
any method for constrained parameter optimization. Moreover, one can also use the T CG for
testing any method for unconstrained optimization (e.g., operators, selection methods, etc). In the
previous section we have indicated how it can be used to evaluate merits and drawbacks of one
particular constraint handling method (static penalties). Note that it is possible to analyse further
the performance of a method by varying two or more parameters of the T CG.

The proposed test case generator is far from perfect. It de�nes a landscape which is a collection
of site-wise optimizable functions, each de�ned on di�erent subspaces of equal sizes. Because of that
all basins of attractions have the same size, moreover, all points at the boundary between two basins
of attraction are equi�tted. The local optima are located in centers of the hypercubes; all feasible

28

regions are centered around the local optima. Note also, that while we can change the number of
constraints, there is precisely one (for �beta > 0) active constraint at the global optimum.

Some of these weaknesses can be corrected easily. For example, in order to avoid the the
symmetry and equal-sized basin of attraction of all subspaces, we may modify the T CG in the
following two ways. First, the parameter vector ~x may be transformed into another parameter
vector ~y using a non-linear mapping ~y = g(~x). The mapping function may be chosen in a way so
as to have the lower and upper bounds of each parameter yi equal to zero and one, respectively.
Such a non-linear mapping will make all subspaces of di�erent size. Second, in order to make the
feasible search space asymmetric, the center of each subspace for the outer hyper-sphere can be
made di�erent from that of the inner hyper-sphere. The following update of the center for the outer
hyper-sphere can be used:

pki =
�
lki + uki

�
=2 +
ki �

k
i ,

where �ki is a small number denoting the maximum di�erence allowed between centers of inner and
outer hyper-spheres, and
ki is a random number between zero and one. To avoid using another
control parameter, �ki can be assumed to be the same for all subspaces. This modi�cation makes
the feasible search space asymmetric, although the maximum at each subspace remains the same
as in the original function.

It might be worthwhile to modify further the T CG to parametrize the number of active con-
straints at the optima. It seems necessary to introduce a possibility of a more gradual increment
of the number of peaks. In the current version of the test case generator, w = 1 implies one peak,
and w = 2 implies 2n peaks (this was the reason for using low values for parameter n). Also, the
di�erence between the lowest and the highest values of the peaks in the search space are, in the
present model, too small.

All these limitations of the T CG diminish its signi�cance for being a useful tool for modeling
real-world problems, which may have quite di�erent characteristics. Note also, that it is necessary
to develop an additional tool, which would map a real-world problem into a particular con�guration
of the test case generator. In such a case, the test case generator should be able to \recommend"
the most suitable constraint-handling method.

However, the proposed T CG is even in its current form an important tool for analysing any
constraint-handling method in nonlinear programming (for any algorithm: not necessarily evolu-
tionary algorithm), and it represents an important step in the \right" direction. The web page
http://www.daimi.au.dk/ marsch/TCG.html contains two �les: the T CG �le TCG.c (standard C),
and TestTCG.c: an example �le that shows how to use the T CG.

Acknowledgments

The second author acknowledges the support provided by the Alexander von Humboldt Foundation,
Germany. The research reported in this paper was partially supported by the ESPRIT Project 20288
Cooperation Research in Information Technology (CRIT-2): \Evolutionary Real-time Optimization
System for Ecological Power Control".

References

B�ack, T., F. Ho�meister, and H.-P. Schwefel (1991). A survey of evolution strategies. In R. K. Belew
and L. B. Booker (Eds.), Proceedings of the 4th International Conference on Genetic Algorithms,

29

pp. 2{9. Morgan Kaufmann.

B�ack, T. and M. Sch�utz, (1996). Intelligent Mutation Rate Control in Canonical Genetic Algorithms.
In Z.W. Ras and M. Michalewicz (Eds.), Proceedings of the 9th International Symposium on
Methodologies of Intelligent Systems, Springer-Verlag.

Bean, J. C. and A. B. Hadj-Alouane (1992). A dual genetic algorithm for bounded integer pro-
grams. Technical Report TR 92-53, Department of Industrial and Operations Engineering, The
University of Michigan.

Bilchev, G. and I. Parmee (1995). Ant colony search vs. genetic algorithms. Technical report, Ply-
mouth Engineering Design Centre, University of Plymouth.

Colorni, A., M. Dorigo, and V. Maniezzo (1991). Distributed optimization by ant colonies. In
Proceedings of the First European Conference on Arti�cial Life, Paris. MIT Press/Bradford
Book.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In J. D. Scha�er (Ed.), Pro-
ceedings of the 3rd International Conference on Genetic Algorithms, pp. 61{69. Morgan Kauf-
mann.

Davis, L. (1997). Private communication.

Deb, K. (1995). Optimization for engineering design: Algorithms and examples. New Delhi:
Prentice-Hall.

Deb, K. (in press). An e�cient constraint handling method for genetic algorithms. Computer Meth-
ods in Applied Mechanics and Engineering.

DeJong, K. (1975). The Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph. D.
thesis, University of Michigan, Ann Harbor. Dissertation Abstract International, 36(10), 5140B.
(University Micro�lms No 76-9381).

Eiben, A., P.-E. Raue, and Z. Ruttkay (1994). Genetic algorithms with multi-parent recombination.
In Y. Davidor, H.-P. Schwefel, and R. Manner (Eds.), Proceedings of the 3rd Conference on
Parallel Problems Solving from Nature, Number 866 in LNCS, pp. 78{87. Springer Verlag.

Eiben, A. and Z. Ruttkay (1996). Self-adaptivity for Constraint Satisfaction: Learning Penalty
Functions. In Proceedings of the 3rd IEEE Conference on Evolutionary Computation, IEEE
Press, 1996, pp. 258{261.

Eshelman, L. and J. D. Scha�er (1993). Real-coded genetic algorithms and interval-schemata. In
L. D. Whitley (Ed.), Foundations of Genetic Algorithms 2, Los Altos, CA, pp. 187{202. Morgan
Kaufmann.

Floudas, C. and P. Pardalos (1987). A Collection of Test Problems for Constrained Global Opti-
mization Algorithms, Volume 455 of LNCS. Berlin: Springer Verlag.

Gregory, J. (1995). Nonlinear Programming FAQ, Usenet sci.answers. Available at
ftp://rtfm.mit.edu/pub/usenet/sci.answers/nonlinear-programming-faq.

Hadj-Alouane, A. B. and J. C. Bean (1992). A genetic algorithm for the multiple-choice integer
program. Technical Report TR 92-50, Department of Industrial and Operations Engineering,
The University of Michigan.

Himmelblau, D. (1992). Applied Nonlinear Programming. McGraw-Hill.

30

Hock, W. and K. Schittkowski (1981). Test Examples for Nonlinear Programming Codes, Volume
187 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Homaifar, A., S. H.-Y. Lai, and X. Qi (1994). Constrained optimization via genetic algorithms.
Simulation 62 (4), 242{254.

Joines, J. and C. Houck (1994). On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with gas. In Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel,
D. B. Fogel, and H. Kitano (Eds.), Proceedings of the First IEEE International Conference on
Evolutionary Computation, pp. 579{584. IEEE Press.

Keane, A.J. (1996). A Brief Comparison of Some Evolutionary Optimization Methods. In V.
Rayward-Smith, I. Osman, C. Reeves and G. D. Smith (Eds.), Modern Heuristic Search Methods,
J. Wiley, pp. 255{272.

Kelly, J. and M. Laguna (1996, April 8). Genetic Algorithms Digest. V10n16.

Kozie l, S. (1997). Evolutionary algorithms in constrained numerical optimization problems on con-
vex spaces. Electronics and Telecommunications Quarterly, 43 (1), pp. 5{18.

Kozie l, S. and Z. Michalewicz, (1998). A decoder-based evolutionary algorithm for constrained
parameter optimization problems. In Proceedings of the 5th Conference on Parallel Problems
Solving from Nature. Springer Verlag.

Kozie l, S. and Z. Michalewicz, (1999). Evolutionary Algorithms, Homomorphous Mappings, and
Constrained Parameter Optimization. to appear in Evolutionary Computation.

Leriche, R. G., C. Knopf-Lenoir, and R. T. Haftka (1995). A segragated genetic algorithm for
constrained structural optimization. In L. J. Eshelman (Ed.), Proceedings of the 6th International
Conference on Genetic Algorithms, pp. 558{565.

Maa, C. and M. Shanblatt (1992). A two-phase optimization neural network. IEEE Transactions
on Neural Networks 3 (6), 1003{1009.

Michalewicz, Z. (1995a). Genetic algorithms, numerical optimization and constraints. In L. J. Eshel-
man (Ed.), Proceedings of the 6th International Conference on Genetic Algorithms, pp. 151{158.
Morgan Kaufmann.

Michalewicz, Z. (1995b). Heuristic methods for evolutionary computation techniques. Journal of
Heuristics 1 (2), 177{206.

Michalewicz, Z. (1995c). A Survey of Constraint Handling Techniques in Evolutionary Computation
Methods. Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press,
Cambridge, MA.

Michalewicz, Z. (1996). Genetic Algorithms+Data Structures=Evolution Programs. New-York:
Springer Verlag. 3rd edition.

Michalewicz, Z. and N. Attia (1994). Evolutionary optimization of constrained problems. In Proceed-
ings of the 3rd Annual Conference on Evolutionary Programming, pp. 98{108. World Scienti�c.

Michalewicz, Z., D. Dasgupta, R.G. Le Riche, and M. Schoenauer (1996). Test-case Generator for
Constrained Parameter Optimization Techniques. Proceedings of EUROGEN'99, May 30 { June
3, 1999, Jyv�askyl�a, Finland.

31

Michalewicz, Z., D. Dasgupta, R.G. Le Riche, and M. Schoenauer (1996). Evolutionary Algorithms
for Constrained Engineering Problems. Computers & Industrial Engineering Journal, Vol.30,
No.2.

Michalewicz, Z., Deb, K., Schmidt, M., and Stidsen, T. (1999a). Evolutionary Algorithms for En-
gineering Applications. Proceedings of the EUROGEN'99, May 30 { June 3, 1999, Jyv�askyl�a,
Finland.

Michalewicz, Z., Deb, K., Schmidt, M., and Stidsen, T. (1999b). Towards Understanding Constraint-
Handling Methods in Evolutionary Algorithms. Submitted for publication.

Michalewicz, Z. and C. Z. Janikow (1991). Handling constraints in genetic algorithms. In R. K.
Belew and L. B. Booker (Eds.), Proceedings of the 4th International Conference on Genetic
Algorithms, pp. 151{157. Morgan Kaufmann.

Michalewicz, Z., T. Logan, and S. Swaminathan (1994). Evolutionary operators for continuous
convex parameter spaces. In Proceedings of the 3rd Annual Conference on Evolutionary Pro-
gramming, pp. 84{97. World Scienti�c.

Michalewicz, Z. and M. Michalewicz (1995). Pro-Life versus Pro-Choice Strategies in Evolutionary
Computation Techniques. Chapter 10 in Evolutionary Computation, IEEE Press.

Michalewicz, Z. and G. Nazhiyath (1995). Genocop III: A co-evolutionary algorithm for numerical
optimization problems with nonlinear constraints. In D. B. Fogel (Ed.), Proceedings of the Second
IEEE International Conference on Evolutionary Computation, pp. 647{651. IEEE Press.

Michalewicz, Z., G. Nazhiyath, and M. Michalewicz (1996). A note on usefulness of geometrical
crossover for numerical optimization problems. In P. J. Angeline and T. B�ack (Eds.), Proceedings
of the 5th Annual Conference on Evolutionary Programming.

Michalewicz, Z. and M. Schoenauer (1996). Evolutionary computation for constrained Parameter
Optimization Problems. Evolutionary Computation, Vol.4, No.1, pp.1{32.

M�uhlenbein, H. and H.-M. Voigt (1995). Gene pool recombination for the breeder genetic algorithm.
In Proceedings of the Metaheuristics International Conference, pp. 19{25.

Myung, H., J.-H. Kim, and D. Fogel (1995). Preliminary investigation into a two-stage method of
evolutionary optimization on constrained problems. In J. R. McDonnell, R. G. Reynolds, and
D. B. Fogel (Eds.), Proceedings of the 4th Annual Conference on Evolutionary Programming, pp.
449{463. MIT Press.

Orvosh, D. and L. Davis (1993). Shall we repair? Genetic algorithms, combinatorial optimization,
and feasibility constraints. In S. Forrest (Ed.), Proceedings of the 5th International Conference
on Genetic Algorithms, pp. 650. Morgan Kaufmann.

Palmer, C.C. and A. Kershenbaum (1994). Representing Trees in Genetic Algorithms. In Proceedings
of the IEEE International Conference on Evolutionary Computation, 27{29 June 1994, 379{384.

Paredis, J. (1994). Coevolutionary constraint satisfaction. In Y. Davidor, H.-P. Schwefel, and
R. Manner (Eds.), Proceedings of the 3rd Conference on Parallel Problems Solving from Na-
ture, pp. 46{55. Springer Verlag.

Parmee, I. and G. Purchase (1994). The development of directed genetic search technique for heavily
constrained design spaces. In Proceedings of the Conference on Adaptive Computing in Engineer-
ing Design and Control, pp. 97{102. University of Plymouth.

32

Powell, D. and M. M. Skolnick (1993). Using genetic algorithms in engineering design optimization
with non-linear constraints. In S. Forrest (Ed.), Proceedings of the 5th International Conference
on Genetic Algorithms, pp. 424{430. Morgan Kaufmann.

Rechenberg, I. (1973). Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Stuttgart: Fromman-Holzboog Verlag.

Renders, J.-M. and H. Bersini (1994). Hybridizing genetic algorithms with hill-climbing methods
for global optimization: Two possible ways. In Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel,
D. B. Fogel, and H. Kitano (Eds.), Proceedings of the First IEEE International Conference on
Evolutionary Computation, pp. 312{317. IEEE Press.

Reynolds, R. (1994). An introduction to cultural algorithms. In Proceedings of the 3rd Annual
Conference on Evolutionary Programming, pp. 131{139. World Scienti�c.

Reynolds, R., Z. Michalewicz, and M. Cavaretta (1995). Using cultural algorithms for constraint
handling in Genocop. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel (Eds.), Proceedings
of the 4th Annual Conference on Evolutionary Programming, pp. 298{305. MIT Press.

Richardson, J. T., M. R. Palmer, G. Liepins, and M. Hilliard (1989). Some guidelines for genetic
algorithms with penalty functions. In J. D. Scha�er (Ed.), Proceedings of the 3rd International
Conference on Genetic Algorithms, pp. 191{197. Morgan Kaufmann.

Rudolph, G. (1996). Convergence properties of evolutionary algorithms. Hamburg: Verlag Dr. Ko-
vacheckc.

Scha�er, D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In
J. J. Grefenstette (Ed.), Proceedings of the 1st International Conference on Genetic Algorithms.
Laurence Erlbaum Associates.

Schoenauer, M. and Z. Michalewicz (1996). Evolutionary computation at the edge of feasibility. W.
Ebeling, and H.-M. Voigt (Eds.), Proceedings of the 4th Conference on Parallel Problems Solving
from Nature, Springer Verlag.

Schoenauer, M. and Z. Michalewicz (1997). Boundary Operators for Constrained Parameter Opti-
mization Problems. In T. B�ack (Ed.), Proceedings of the 7th International Conference on Genetic
Algorithms, pp.320{329. Morgan Kaufmann.

Schoenauer, M. and S. Xanthakis (1993). Constrained GA optimization. In S. Forrest (Ed.), Proceed-
ings of the 5th International Conference on Genetic Algorithms, pp. 573{580. Morgan Kaufmann.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. New-York: John Wiley &
Sons. 1995 { 2nd edition.

Smith, A. and D. Tate (1993). Genetic optimization using a penalty function. In S. Forrest (Ed.),
Proceedings of the 5th International Conference on Genetic Algorithms, pp. 499{503. Morgan
Kaufmann.

Surry, P., N. Radcli�e, and I. Boyd (1995). A multi-objective approach to constrained optimiza-
tion of gas supply networks. In T. Fogarty (Ed.), Proceedings of the AISB-95 Workshop on
Evolutionary Computing, Volume 993, pp. 166{180. Springer Verlag.

van Kemenade, C.H.M. (1998). Recombinative evolutionary search. PhD Thesis, Leiden University,
Netherlands, 1998.

33

Waagen, D., P. Diercks, and J. McDonnell (1992). The stochastic direction set algorithm: A hybrid
technique for �nding function extrema. In D. B. Fogel and W. Atmar (Eds.), Proceedings of the
1st Annual Conference on Evolutionary Programming, pp. 35{42. Evolutionary Programming
Society.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1995). Building better test functions. In L.
Eshelmen (Editor), Proceedings of the 6th International Conference on Genetic Alforithms,
Morgam Kaufmann, 1995.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1995). Evaluating evolutionary algorithms.
Arti�cial Intelligence Journal, Vol.85, August 1996, pp.245{276.

Wodrich, M. and G. Bilchev (1997). Cooperative distributed search: the ant's way. Control &
Cybernetics, 26 (3).

Wright, A. (1991). Genetic algorithms for real parameter optimization. In J. G. Rawlins (Ed.),
Foundations of Genetic Algorithms, pp. 205{218. Morgan Kaufmann.

34

