
Evolutionary Algorithms, Homomorphous Mappings, and

Constrained Parameter Optimization

S lawomir Kozie l� and Zbigniew Michalewiczy

Abstract

During the last �ve years, several methods have been proposed for handling nonlinear constraints by
evolutionary algorithms (EAs) for numerical optimization problems. Recent survey papers classify
them into four categories (preservation of feasibility, penalty functions, searching for feasibility, and
other hybrids).

In this paper we investigate a new approach for solving constrained numerical optimization prob-
lems which incorporates a homomorphous mapping between n-dimensional cube and a feasible search
space. This approach constitutes an example of the �fth, decoder-based category of constraint han-
dling techniques. We demonstrate the power of this new approach on several test cases and discuss
its further potential.

Keywords: evolutionary computation, optimization technique, nonlinear programming, constrained
optimization, decoder, homomorphous mapping.

1 Introduction

The general nonlinear programming (NLP) problem is to �nd ~x so as to

optimize f(~x), ~x = (x1; : : : ; xn) 2 IRn,

where ~x 2 F � S. The objective function f is de�ned on the search space S � IRn and the set
F � S de�nes the feasible region. Usually, the search space S is de�ned as a n-dimensional rectangle
in IRn (domains of variables de�ned by their lower and upper bounds):

l(i) � xi � u(i); 1 � i � n,

whereas the feasible region F � S is de�ned by a set of m additional constraints (m � 0):

gj(~x) � 0, for j = 1; : : : ; q, and hj(~x) = 0, for j = q + 1; : : : ; m.

�Department of Electronics, Telecommunication and Informatics, Technical University of Gda�nsk, ul. Narutowicza
11/12, 80-952 Gda�nsk, Poland; e-mail: koziel@ue.eti.pg.gda.pl

yDepartment of Computer Science, University of North Carolina, Charlotte, NC 28223, USA and at the Institute
of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland, e-mail: zbyszek@uncc.edu

It is a common practice to replace the equations hj(~x) = 0 by a set of inequalities hj(~x) � Æ and
hj(~x) � �Æ for some small Æ > 0. In the rest of this paper we assume this is the case; consequently,
the set of constraints consists of m inequalities gj(~x) � 0, for j = 1; : : : ; m.1 At any point ~x 2 F ,
the constraints gj that satisfy gj(~x) = 0 are called the active constraints at ~x.

The NLP problem, in general, is intractable: it is impossible to develop a deterministic method
for the NLP in the global optimization category, which would be better than the exhaustive search
(Gregory, 1995). This makes a room for evolutionary algorithms, which aim at complex objective
functions (e.g., non di�erentiable or discontinuous) extended by some constraint-handling methods.
Indeed, during the last few years, several evolutionary algorithms have been proposed for the NLP;
a recent survey paper (Michalewicz and Schoenauer 1996) provides an overview of these algorithms.

In this paper we propose an alternative approach to the NLP: the evolutionary algorithm uses a
decoder, which is based on the transformation of constrained problem at hand to the unconstrained
one via a homomorphous mapping. The method, based on earlier work of the �rst author (Kozie l,
1997), has several advantages over methods proposed earlier (no additional parameters, no need to
evaluate|or penalize|infeasible solutions, easiness of approaching a solution located on the edge
of the feasible region, no need for special operators, etc). We demonstrate the power of this new
approach on a few test cases and discuss its further potential.

The paper is organized as follows. The following section surveys briey several constraint-
handling techniques for numerical optimization problems which have emerged in evolutionary com-
putation techniques over the last years. Sections 3 and 4 discuss the new method (for convex and
non-convex feasible regions F , respectively), whereas section 5 presents some experimental results.
Section 6 concludes the paper and indicates some directions for future research.

2 Constraint-handling methods

During the last few years several methods were proposed for handling constraints by genetic al-
gorithms for parameter optimization problems. These methods were grouped (Michalewicz and
Schoenauer 1996) into four categories: (1) methods based on preserving feasibility of solutions, (2)
methods based on penalty functions, (3) methods which make a clear distinction between feasible
and infeasible solutions, and (4) other hybrid methods. We discuss them briey in turn.

2.1 Methods based on preserving feasibility of solutions

The best example of this approach is Genocop (for GEnetic algorithm for Numerical Optimization
of COnstrained Problems) system (Michalewicz and Janikow, 1991; Michalewicz et al., 1994). The
idea behind the system is based on specialized operators which transform feasible individuals into
feasible individuals, i.e., operators, which are closed on the feasible part F of the search space. The
method assumes linear constraints only and a feasible starting point (or feasible initial population).
Linear equations are used to eliminate some variables; they are replaced as a linear combination
of remaining variables. Linear inequalities are updated accordingly. A closed set of operators
maintains feasibility of solutions. For example, when a particular component xi of a solution vector
~x is mutated, the system determines its current domain dom(xi) (which is a function of linear
constraints and remaining values of the solution vector ~x) and the new value of xi is taken from

1After replacement of equations hj(~x) = 0 (j = q+1; : : : ;m) by pairs of inequalities, the total number of inequality
constraints is q+2�(m�q) = 2m�q. However, to simplify the notation, we assume there arem inequality constraints.

2

this domain (either with at probability distribution for uniform mutation, or other probability
distributions for non-uniform and boundary mutations). In any case the o�spring solution vector
is always feasible. Similarly, arithmetic crossover, a~x + (1� a)~y, of two feasible solution vectors ~x
and ~y yields always a feasible solution (for 0 � a � 1) in convex search spaces (the system assumes
linear constraints only which imply convexity of the feasible search space F).

Recent work (Michalewicz et al., 1996; Schoenauer and Michalewicz, 1996; Schoenauer and
Michalewicz, 1997) on systems which search only the boundary area between feasible and infeasi-
ble regions of the search space, constitutes another example of the approach based on preserving
feasibility of solutions. These systems are based on specialized boundary operators (e.g., sphere
crossover, geometrical crossover, etc.): it is a common situation for many constrained optimization
problems that some constraints are active at the target global optimum, thus the optimum lies on
the boundary of the feasible space.

2.2 Methods based on penalty functions

Many evolutionary algorithms incorporate a constraint-handling method based on the concept of
(exterior) penalty functions, which penalize infeasible solutions. Usually, the penalty function is
based on the distance of a solution from the feasible region F , or on the e�ort to \repair" the
solution, i.e., to force it into F . The former case is the most popular one; in many methods a set
of functions fj (1 � j � m) is used to construct the penalty, where the function fj measures the
violation of the j-th constraint in the following way:

fj(~x) =

(
maxf0; gj(~x)g; if 1 � j � q
jhj(~x)j; if q + 1 � j � m:

However, these methods di�er in many important details, how the penalty function is designed and
applied to infeasible solutions. For example, a method of static penalties was proposed (Homaifar
et al., 1994); it assumes that for every constraint we establish a family of intervals which determine
appropriate penalty coeÆcient. The method of dynamic penalties was examined (Joines and Houck,
1994), where individuals are evaluated (at the iteration t) by the following formula:

eval(~x) = f(~x) + (C � t)�
Pm

j=1 f
�
j (~x),

where C, � and � are constants. Another approach (Genocop II), also based on dynamic penalties,
was described (Michalewicz and Attia, 1994). In that algorithm, at every iteration active constraints
only are considered, and the pressure on infeasible solutions is increased due to the decreasing values
of temperature � . In (?) a method for solving constraint satisfaction problems that changes the
evaluation function based on the performance of a EA run was described: the penalties (weights) of
those constraints which are violated by the best individual after termination are raised, and the new
weights are used in the next run. A method based on adaptive penalty functions was was developed
in (Bean and Hadj-Alouane, 1992; Hadj-Alouane and Bean, 1992): one component of the penalty
function takes a feedback from the search process. Each individual is evaluated by the formula:

eval(~x) = f(~x) + �(t)
Pm

j=1 f
2
j (~x),

where �(t) is updated every generation t with respect to the current state of the search (based on
last k generations). The adaptive penalty function was also used in (Smith and Tate, 1993), where
both the search length and constraint severity feedback was incorporated. It involves the estimation

3

of a near-feasible threshold qj for each constraint 1 � j � m); such thresholds indicate distances
from the feasible region F which are \reasonable" (or, in other words, which determine \interesting"
infeasible solutions, i.e., solutions relatively close to the feasible region). Additional method (so-
called segregated genetic algorithm) was proposed in (Leriche et al., 1995) as yet another way to
handle the problem of the robustness of the penalty level: two di�erent penalized �tness functions
with static penalty terms p1 and p2 were designed (smaller and larger, respectively). The main idea
is that such an approach will result roughly in maintaining two subpopulations: the individuals
selected on the basis of f1 will more likely lie in the infeasible region while the ones selected on the
basis of f2 will probably stay in the feasible region; the overall process is thus allowed to reach the
feasible optimum from both sides of the boundary of the feasible region.

2.3 Methods based on a search for feasible solutions

There are a few methods which emphasize the distinction between feasible and infeasible solutions
in the search space S. One method, proposed in (Schoenauer and Xanthakis, 1993) (called a
\behavioral memory" approach) considers the problem constraints in a sequence; a switch from
one constraint to another is made upon arrival of a suÆcient number of feasible individuals in the
population.

The second method, developed in (Powell and Skolnick, 1993) is based on a classical penalty
approach with one notable exception. Each individual is evaluated by the formula:

eval(~x) = f(~x) + r
Pm

j=1 fj(~x) + �(t; ~x),

where r is a constant; however, the original component �(t; ~x) is an additional iteration dependent
function which inuences the evaluations of infeasible solutions. The point is that the method
distinguishes between feasible and infeasible individuals by adopting an additional heuristic rule
(suggested earlier in (Richardson et al., 1989)): for any feasible individual ~x and any infeasible
individual ~y: eval(~x) < eval(~y), i.e., any feasible solution is better than any infeasible one.2

The third method (Genocop III), proposed in (Michalewicz and Nazhiyath, 1995) is based on the
idea of repairing infeasible individuals. Genocop III incorporates the original Genocop system, but
also extends it by maintaining two separate populations, where a development in one population
inuences evaluations of individuals in the other population. The �rst population Ps consists of
so-called search points from Fl which satisfy linear constraints of the problem. The feasibility (in
the sense of linear constraints) of these points is maintained by specialized operators. The second
population Pr consists of so-called reference points from F ; these points are fully feasible, i.e., they
satisfy all constraints. Reference points ~r from Pr, being feasible, are evaluated directly by the
objective function (i.e., eval(~r) = f(~r)). On the other hand, search points from Ps are \repaired"
for evaluation.

2.4 Hybrid methods

It is relatively easy to develop hybrid methods which combine evolutionary computation techniques
with deterministic procedures for numerical optimization problems. In (Waagen et al. 1992) a
combined evolutionary algorithm with the direction set method of Hooke-Jeeves is described; this
hybrid method was tested on three (unconstrained) test functions. In (Myung et al., 1995) the

2For minimization problems.

4

authors considered a similar approach, but they experimented with constrained problems. Again,
they combined evolutionary algorithm with some other method|developed in (Maa and Shanblatt,
1992). However, while the method of (Waagen et al. 1992) incorporated the direction set algorithm
as a problem-speci�c operator of his evolutionary technique, in (Myung et al., 1995) the whole
optimization process was divided into two separate phases.

Several other constraint handling methods deserve also some attention. For example, some
methods use of the values of objective function f and penalties fj (j = 1; : : : ; m) as elements
of a vector and apply multi-objective techniques to minimize all components of the vector. For
example, in (Scha�er, 1985), Vector Evaluated Genetic Algorithm (VEGA) selects 1=(m + 1) of
the population based on each of the objectives. Such an approach was incorporated by Parmee
and Purchase (Parmee and Purchase, 1994) in the development of techniques for constrained design
spaces. On the other hand, in the approach by (Surry et al., 1995), all members of the population
are ranked on the basis of constraint violation. Such rank r, together with the value of the objective
function f , leads to the two-objective optimization problem. This approach gave a good performance
on optimization of gas supply networks.

Also, an interesting approach was reported in (Paredis, 1994). The method (described in the
context of constraint satisfaction problems) is based on a co-evolutionary model, where a popula-
tion of potential solutions co-evolves with a population of constraints: �tter solutions satisfy more
constraints, whereas �tter constraints are violated by more solutions. There is some development
connected with generalizing the concept of \ant colonies" (Colorni et al., 1996) (which were origi-
nally proposed for order-based problems) to numerical domains (Bilchev and Parmee, 1995); �rst
experiments on some test problems gave very good results (Wodrich and Bilchev, 1997). It is also
possible to incorporate the knowledge of the constraints of the problem into the belief space of cul-
tural algorithms (Reynolds, 1994); such algorithms provide a possibility of conducting an eÆcient
search of the feasible search space (Reynolds et al., 1995).

3 The homomorphous mapping: convex search spaces

Decoders o�er an interesting option for all practitioners of evolutionary techniques. In these tech-
niques a chromosome \gives instructions" on how to build a feasible solution. For example, a
sequence of items for the knapsack problem can be interpreted as: \take an item if possible"|such
interpretation would lead always to a feasible solution.

However, it is important to point out that several factors should be taken into account while using
decoders. Each decoder imposes a mapping T between a feasible solution and decoded solution. It
is important that several conditions are satis�ed: (1) for each solution s 2 F there is an encoded
solution d, (2) each encoded solution d corresponds to a feasible solution s, and (3) all solutions
in F should be represented by the same number of encodings d.3 Additionally, it is reasonable to
request that (4) the transformation T is computationally fast and (5) it has locality feature in the
sense that small changes in the coded solution result in small changes in the solution itself. An

3However, as observed by Davis (1997), the requirement that all solutions in F should be represented by the
same number of decodings seems overly strong: there are cases in which this requirement might be suboptimal. For
example, suppose we have a decoding and encoding procedure which makes it impossible to represent suboptimal
solutions, and which encodes the optimal one: this might be a good thing. (An example would be a graph coloring
order-based chromosome, with a decoding procedure that gives each node its �rst legal color. This representation
could not encode solutions where some nodes that could be colored were not colored, but this is a good thing!)

5

interesting study on coding trees in genetic algorithm was reported in (Palmer and Kershenbaum,
1994), where the above conditions were formulated.

However, the use of decoders for continuous domains has not been investigated. Actually,
this might be a quite promising direction for approaching nonlinear programming problems by
evolutionary methods. For example, it is relatively easy to establish a one-to-one mapping between
arbitrary convex feasible search space F and the n-dimensional cube [�1; 1]n (see �gure 1).

.
0

. 0

0

.x
0 T

F

. ..

r

y

Figure 1: A mapping T from a space F into a cube [�1; 1]n (two-dimensional case)

Note that an arbitrary (di�erent than ~0) point ~y0 = (y0;1; : : : ; y0;n) 2 [�1; 1]n de�nes a line
segment from the ~0 to the boundary of the cube; this segment is described by:

yi = y0;i � t, for i = 1; : : : ; n, where

t varies from 0 to tmax = 1=maxfjy0;1j; : : : ; jy0;njg. Clearly, for t = 0, ~y = ~0, and for t = tmax,
~y = (y0;1tmax; : : : ; y0;ntmax)|a boundary point of the [�1; 1]n cube.

Consequently, the corresponding (to ~y0 2 [�1; 1]n) feasible point ~x0 2 F (with respect to some
reference point4 ~r0) is de�ned as

~x0 = ~r0 + ~y0 � � ,

where � = �max=tmax, and �max is determined (with arbitrary precision) by a binary search procedure
such that

~r0 + ~y0 � �max

is a boundary point of the feasible search space F .
The above homomorphous mapping satis�es all requirements of a \good" decoder: apart from

being one-to-one, the transformation is fast and has locality feature.
Additionally, there are a few other features which makes the proposed method very interesting;

these include:

� as opposed to most of other constraint-handling methods, there is no need for any additional
parameters (e.g., frequency of seven operators in Genocop (Michalewicz, 1996), penalty co-
eÆcients, etc): only basic parameters of an evolutionary algorithm (e.g., population size,
probability of crossover, etc.) are required.

4A reference point ~r0 is an arbitrary internal point of the convex set F . Note, that the convexity of the feasible
search space F is not necessary; it is suÆcient if we assume the existence of the reference point ~r0, such that every
line segment originating in ~r0 intersects the boundary of F in precisely one point. This requirement is satis�ed, of
course, for any convex set F .

6

� as opposed to some other constraint-handling methods, there is no need for any specialized
operators to maintain the feasibility of solutions (e.g., operators of Genocop (Michalewicz,
1996) to maintain linear constraints, specialized boundary operators to search the boundary
between feasible and infeasible parts of the search space, etc.); any evolutionary algorithm
can be used together with the proposed mapping.

� as opposed to most of other constraint-handling methods (i.e., all methods which do not reject
infeasible solutions), there is no need to evaluate infeasible solutions (in particular, no need
to penalize them, tuning penalty coeÆcients, no need to repair it, etc).

� as opposed to some other constraint-handling methods (e.g., methods based on penalty func-
tions, hybrid methods), the proposed method always returns a feasible solution.

The proposed approach can also be extended by an additional method of iterative solution
improvement, which is based on the relationship between the location of the reference point and
the eÆciency of the proposed approach. It is clear, that location of the reference point ~r0 has an
inuence on \deformation" of the domain of optimized function: evolutionary algorithm does not
optimize the objective function, but rather some other function which is topologically equivalent to
the original one. For example, consider the case, when the reference point is located near by the
edge of the feasible region F|it is easy to notice a strong irregularity of transformation T : the part
of the cube [�1; 1]2, which is on the left side of the vertical line, is transformed into much smaller
part of the set F than the part on the right side of this line (see �gure 2).

.
T

F

.r0
. 0

Figure 2: The inuence of location of the reference point on the transformation T

According to these considerations, it seems intuitively pro�table to localize the reference point
in the neighborhood of expected optimum, if this optimum is close to the edge of the set F : in such
case the area between the edge of F and the reference point ~r0 is explored more precisely.

In the case of lack of information about approximate localization of solution, the reference point
should be placed close to the geometrical center of the set F . This can be done easily by sampling
set F and setting

~r0 = 1=k
Pk

i=1 ~xi,

where ~xi are samples from F . It is also possible to take advantage of the mentioned e�ect for the
purpose of iterative improvement of the best found solution. To obtain this e�ect it is necessary
to repeat optimization process with a new reference point ~r00, which is located on a line segment
between the current reference point ~r0 and the best solution ~b found so far:

7

~r00 = t � ~r0 + (1� t) �~b,
where t 2 (0; 1] should be close to zero. This change of the location of the reference point causes
that in the next iteration the neighborhood of the found optimum is explored more precisely in
comparison with the remaining part of the feasible region. Our experiments show (see section 5)
that such a method usually gives good results for problems with optimal solutions localized on the
edge of the feasible region.

The proposed approach can be also extended to handle non-convex search spaces; we discuss
this generalization in the next section.

4 The homomorphous mapping: non-convex search spaces

In this section we present a generalization of the method described in the previous section to handle
arbitrary constraints for numerical optimization problems. The task is to develop a homomorphous
mapping ', which transforms the n-dimensional cube [�1; 1]n into the feasible region F of the
problem. Note, that F need not be convex; it might be concave or even can consist of disjoint
(non-convex) regions.

This homomorphous mapping ', clearly, would be more complex than T of the previous section.
Note that any line segment L which originates at a reference point ~r0 2 F may intersect a boundary
of the feasible search space F in more than just one point (see �gure 3).

0
.

s

F

r

L

S

Figure 3: A line segment in a non-convex space F (two-dimensional case)

Because of that, it is necessary to take into account the domains of the variables and to re-design
the original mapping T .

First, let us de�ne an additional one-to-one mapping g between the cube [�1; 1]n and the search
space S (note, that the search space S is de�ned as a Cartesian product of domains of all problem
variables; see Introduction). Then the mapping g : [�1; 1]n ! S can be de�ned as

g(~y) = ~x,

where

xi = yi
u(i)�l(i)

2
+ u(i)+l(i)

2
, for i = 1; : : : ; n.

Indeed, for yi = �1 the corresponding xi = l(i), and for yi = 1, xi = u(i).
A line segment L between any reference point ~r0 2 F and a point ~s at the boundary of the

search space S, is de�ned as

8

L(~r0; ~s) = ~r0 + t � (~s� ~r0), for 0 � t � 1.

Clearly, if the feasible search space F is convex, then the above line segment intersects the boundary
of F in precisely one point, for some t0 2 [0; 1]. Consequently, for convex feasible search spaces F ,
it is possible to establish a one-to-one mapping ' : [�1; 1]n ! F as follows:

'(~y) =

(
~r0 + ymax � t0 � (g(~y=ymax)� ~r0) if ~y 6= ~0

~r0 if ~y = ~0

where r0 2 F is a reference point, and ymax = maxni=1 jyij. Figure 4 illustrates the transformation
'.

0
0

F

.
y

y/ymax
.

y

y2

1
−1 1

−1

1

S

.
.ϕ(y)

ϕ

s= g(y/ymax)

x

x

2

1

.s−r0

r

. ymax t0 (s−r0)
..

Figure 4: A mapping ' from the cube [�1; 1]n into the convex space F (two-dimensional case), with
particular steps of the transformation

Now we are ready to return to the general case of arbitrary constraints (i.e., non-convex feasible
search spaces F). Let us consider an arbitrary point ~y 2 [�1; 1]n and a reference point ~r0 2 F . A
line segment L between the reference point ~r0 and the point ~s = g(~y=ymax) at the boundary of the
search space S, is de�ned as before:

L(~r0; ~s) = ~r0 + t � (~s� ~r0), for 0 � t � 1,

however, it may intersect the boundary of F in many points (see �gure 3). In other words, instead
of a single interval of feasibility [0; t0] for convex search spaces, we may have several intervals of
feasibility:

[t1; t2]; : : : ; [t2k�1; t2k].

Assume there are altogether k sub-intervals of feasibility for a such line segment and ti's mark their
limits. Clearly, t1 = 0, ti < ti+1 for i = 1; : : : ; 2k � 1, and t2k � 1 (see �gure 5).

Thus, it is necessary to introduce an additional mapping , which transforms interval [0; 1] into
sum of intervals [t2i�1; t2i]. However, we de�ne such a mapping rather between (0; 1] and the sum
of intervals (t2i�1; t2i]:

 : (0; 1] ! Sk
i=1(t2i�1; t2i].

9

0
.

s

F

t

0 1

r

1 2 3 4 5 6tttttt

Figure 5: A line segment in a non-convex space F and corresponding sub-intervals (two-dimensional
case)

Note, that due to this change, left boundary point (from each interval 1 � i � k) is lost. This is
not a serious problem, since we can approach the lost points with arbitrary precision. On the other
hand, the bene�ts are clear: it is possible to \glue together" intervals which are open at one end
and closed at another; additionally, such a mapping is one-to-one. There are many possibilities for
de�ning such a mapping; we have used the following. First, let us de�ne a reverse mapping Æ:

Æ :
Sk
i=1(t2i�1; t2i] ! (0; 1]

as follows:

Æ(t) = (t� t2i�1 +
Pi�1

j=1 dj)=d,

where dj = t2j � t2j�1, d =
Pk

j=1 dj, and t2i�1 < t � t2i. Clearly, the mapping is reverse of Æ:

(a) = t2j�1 + dj
a�Æ(t2j�1)

Æ(t2j)�Æ(t2j�1)
,

where j is the smallest index such that a � Æ(t2j).
Now we are ready to de�ne the general mapping ', which is the essence of our method of

transformation of constrained optimization problem to the unconstrained one for every feasible set
F . The mapping ' is given by the following formula:

'(~y) =

(
~r0 + t0 � (g(~y=ymax)� ~r0) if ~y 6= ~0;

~r0 if ~y = ~0;

where r0 2 F is a reference point, ymax = maxni=1 jyij, and t0 = (jymaxj).
It is interesting to note, that the de�nition of the mapping ' is almost identical to the previous

one (for convex feasible search spaces); the only di�erence is in the use of additional mapping (due
to the fact that there may be several intersection points between a line segment and the boundary
of F).

Finally, it is necessary to consider a method of �nding such points of intersections ti (see �gure
5). This was relatively easy for convex sets, since there was only one point of intersection. Now
the problem is more complex. In our implementation we have used the following approach. Let us

10

consider any boundary point ~s of S and the line segment L determined by this point and a reference
point ~r0 2 F . There are m constraints gi(~x) � 0 and each of them can be represented as a function
�i of one independent variable t (for �xed reference point ~r0 2 F and the boundary point ~s of S):

�i(t) = gi(L(~r0; ~s)) = gi(~r0 + t � (~s� ~r0)), for 0 � t � 1 and i = 1; : : : ; m.

As stated earlier, the feasible region need not be convex, so it may have more than one point
of intersection of the segment L with the boundaries of the set F . Therefore, let us partition the
interval [0; 1] into v subintervals [vj�1; vj], where vj � vj�1 = 1=v (1 � j � v), so that equations
�i(t) = 0 have at most one solution in every subinterval.5 In that case the points of intersection
can be determined by a binary search. Once the intersection points between a line segment L and
all constraints gi(~x) � 0 are known, it is quite easy to determine intersection points between this
line segment L and the boundary of the feasible set F .

5 Experimental study

In (Michalewicz and Schoenauer 1996) eleven test cases for constrained numerical optimization
problems were proposed (they are listed in the Appendix in this paper). These test cases include
objective functions of various types (linear, quadratic, cubic, polynomial, nonlinear) with various
number of variables and di�erent types (linear inequalities, nonlinear equations and inequalities)
and numbers of constraints. The ratio between the size of the feasible search space F and the size
of the whole search space S for these test cases vary from 0% to almost 100%; the topologies of
feasible search spaces are also quite di�erent. These test cases are summarized in table 1. For
each test case we list number n of variables, type of the function f , the relative size of the feasible
region in the search space given by the ratio �, the number of constraints of each category (linear
inequalities LI, nonlinear equations NE and inequalities NI), and the number a of active constraints
at the optimum (including equality constraints).

To test the proposed method an evolutionary algorithm based on Gray coding was implemented
(25 bits represented every variable). The algorithm (ALGg) incorporated proportional selection
(no elitism), function scaling, and standard operators (ip mutation and 1-point crossover). All
parameters were �xed:

pop size = 70, generation gap = 100%, and pc = 0:9.

The only non-standard feature incorporated into the system was a variable probability of mutation:

pm(t) = pm(0)� (pm(0)� pm(T)) � (t=T)r,

where t and T are the current and maximum generation numbers, respectively. In all experiments,
pm(0) = 0:005, r = 4, and pm(T) = 0:00005 (B�ack and Sch�utz, 1996).

Three types of experiments were performed for each test case:

Experiment #1: 20 runs were executed. For each run the maximum number of generations was
set to T = 5000, and for each run a random reference point ~r0 was selected (i.e., the �rst
randomly generated feasible point was accepted as a reference point).

5Density v of the partition is adjusted experimentally. In all experiments reported in section 5, v = 20.

11

Function n Type of f � LI NE NI a
G1 13 quadratic 0.0111% 9 0 0 6
G2 k nonlinear 99.8474% 0 0 2 1
G3 k polynomial 0.0000% 0 1 0 1
G4 5 quadratic 52.1230% 0 0 6 2
G5 4 cubic 0.0000% 2 3 0 3
G6 2 cubic 0.0066% 0 0 2 2
G7 10 quadratic 0.0003% 3 0 5 6
G8 2 nonlinear 0.8560% 0 0 2 0
G9 7 polynomial 0.5121% 0 0 4 2
G10 8 linear 0.0010% 3 0 3 6
G11 2 quadratic 0.0000% 0 1 0 1

Table 1: Summary of eleven test cases. The ratio � = jFj=jSj was determined experimentally by
generating 1,000,000 random points from S and checking whether they belong to F (for G2 and
G3 we assumed k = 50). LI, NE, and NI represent the number of linear inequalities, and nonlinear
equations and inequalities, respectively

Experiment #2: everything was the same as in experiment #1 except that the maximum number
of generations was increased to T = 20000.

Experiment #3: everything was the same as in experiment #1 except that the selected reference
point ~r0 was the best solution obtained from experiment #1. Also, only 10 runs were executed.

The �rst experiment is a standard one (as a standard Gray-coded GA is used). The motivation
for making extended runs (experiment #2) was to examine the speed of convergence of the algo-
rithm towards the global optimum. On the other hand, the results of experiment #3 indicate the
importance of the selection process of the reference point.

5.1 Results

In the following subsection we report on the results of all experiments; these results are summarized
in tables 2 and 3.

The experimental results provided interesting data. First of all, it is important to note that the
proposed approach gave satisfactory results for all test cases, except for the test case G5, which
involves (apart from two inequalities) three equations:

h1(~x) = 1000 sin(�x3 � 0:25) + 1000 sin(�x4 � 0:25) + 894:8� x1 = 0,
h2(~x) = 1000 sin(x3 � 0:25) + 1000 sin(x3 � x4 � 0:25) + 894:8� x2 = 0,
h3(~x) = 1000 sin(x4 � 0:25) + 1000 sin(x4 � x3 � 0:25) + 1294:8 = 0.

In this test case, the replacement of equations by inequalities hj(~x) � Æ and hj(~x) � �Æ (j = 1; 2; 3)
did not provide quality results. Note, however, that the test cases G3 and G11 have one equality
constraint each, and the replacement of these equations by a pair of inequalities was successful

12

Function Optimum Experiment #1 Experiment #2
value worst best avg. worst best avg.

G1 �15 �14:0566 �14:7207 �14:4609 �14:6154 �14:7864 �14:7082
G2 0.803553 0.78427 0.79506 0.79176 0.79119 0.79953 0.79671
G3 1.0 0.9917 0.9983 0.9965 0.9978 0.9997 0.9989
G4 �30665:5 �30617:0 �30662:5:3 �30643:8 �30645:9 �30664:5 �30655:3
G5 5126.4981 | | | | | |
G6 �6961:8 �4236:7 �6901:5 �6191:2 �5473:9 �6952:1 �6342:6
G7 24.306 38.682 25.132 26.619 25.069 24.620 24.826
G8 0.095825 0.0291434 0.0958250 0.0871551 0.0291438 0.0958250 0.0891568
G9 680.63 682.88 681.43 682.18 683.18 680.91 681.16
G10 7049.33 11894.5 7215.8 9141.7 9659.3 7147.9 8163.6
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Table 2: Summary of results of the homomorphous mapping method on eleven test cases; exper-
iments #1 and #2. The test case G2 was run with k = 20 variables, whereas G3|with k = 10
variables

Function Optimum Experiment #3
value worst best avg.

G1 �15 �14:5732 �14:7184 �14:6478
G2 0.803553 0.78279 0.79486 0.78722
G3 1.0 0.9960 0.9978 0.9970
G4 �30665:5 �30645:6 �30661:5 �30653:1
G5 5126.4981 | | |
G6 �6961:8 �6390:6 �6944:4 �6720:4
G7 24.306 26.182 25.090 25.545
G8 0.095825 0.0958246 0.0958250 0.0958248
G9 680.63 683.58 681.72 682.56
G10 7049.33 7685.8 7321.2 7498.6
G11 0.75 0.75 0.75 0.75

Table 3: Summary of results of the homomorphous mapping method on eleven test cases; experi-
ment#3. The test case G2 was run with k = 20 variables, whereas G3|with k = 10 variables

despite the fact that the proposed method of homomorphous mapping was proposed primarily for
inequality constraints only.

It is a well-known fact that di�erent constraint-handling techniques provide results of di�erent
quality on di�erent test cases (see, for example, (Michalewicz, 1995)). However, the proposed
technique was very consistent in locating the area of global optimum; in many cases the di�erence
between the values of the objective function G at the global solution and at the best solution found
was due to the shape of the landscape: mimimal changes in ~x result in large changes of evaluation
function G(~x). For example, one solution found for G1 (experiment #1) was:

13

~x =(0.999, 0.999, 0.993, 0.997, 0.978, 0.987, 0.996, 0.999, 0.992, 2.971, 2.920, 2.951, 0.977),

and the Euclidean distance between ~x and the global optimum ~x� was 0.1 (and G1(~x) = �14:72).
Experiment #2 con�rmed further this observation as larger number of generations moved the best
individual closer to the global solution (for all considered test cases|see table 2).

Moreover, due to the new approach, we were able to correct an error published in (Homaifar et al.,
1994) and repeated in (Michalewicz and Schoenauer 1996). The test problem G4 was formulated
as follows:

minimize G4(~x) = 5:3578547x23 + 0:8356891x1x5 + 37:293239x1 � 40792:141,

subject to three double inequalities:

0 � 85:334407 + 0:0056858x2x5 + 0:00026x1x4 � 0:0022053x3x5 � 92,
90 � 80:51249 + 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 110,
20 � 9:300961 + 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 25,

and bounds:

78 � x1 � 102, 33 � x2 � 45, 27 � xi � 45 for i = 3; 4; 5.

The best solution obtained in 10 runs reported in (Homaifar et al., 1994) was

~x = (80:49; 35:07; 32:05; 40:33; 33:34)

with G4(~x) = �30005:7, whereas the optimum solution (Himmelblau, 1992) is

~x� = (78:0; 33:0; 29:995; 45:0; 36:776),

with G4(~x�) = �30665:5. Running experiments with ALGg we have noticed that the results are
better than the global optimum, e.g.,

~x = (78:0270; 33:0119; 27:0821; 44:9645; 44:9533),

where G4(~x) = �31021:3. By comparing the de�nition of the problem with the original source
(Himmelblau, 1992) we discovered the error; the �rst double inequality should be

0 � 85:334407 + 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 92,

(note a small di�erence in the coeÆcient of x1x4 component).6 Note also that the algorithm ALGg,
after the problem was corrected, provided with an excellent value of �30664:5|by far the best
value reported by any evolutionary system for this test case!

By comparing the results of experiments #1 and #3, it is quite obvious that quality of selected
reference point is of importance; values obtained in experiment #3 for some test cases were better
(average scores) than these of experiment #1 (note the same number of generations for experiments
#1 and #3). There were exceptions to this rule, however, e.g., test cases G2 and G9, where the
selection of the best reference point did not help.7 Besides, the reference point for experiment #3

6The reader is encouraged to make appropriate correction in (Michalewicz and Schoenauer 1996).
7G2 was also the only test case for which the number of generations was enlarged: from 5,000 to 10,000 for

experiments #1 and #3, and from 20,000 to 30,000 for experiment #2.

14

was always selected as the best solution from the experiment #1; clearly, this criterion of selection
need not be optimal.

We have experimented also with another algorithm, ALGb, based on binary coding. All other
components of the �rst algorithm were left unchanged (i.e., proportional selection, no elitism, stan-
dard operators: ip mutation and 1-point crossover, values of all parameters); the only di�erence
between these two algorithms (apart from representation) was that a variable mutation probability
pm was replaced by a variable distribution of mutation probability for bits: while the probability
of bit mutation remains constant (and equal to 0.005), the probability of mutating more signi�cant
bits decreases with generation number (hence the probability of mutating less signi�cant bits grows
with generation number). This feature is responsible for �ne-tuning capabilities of the system.

For some test problems, ALGb provided with yet better results. This was the case of problem
G2 and G6. For example, for the latter case, the comparison between ALGg and ALGb is illustrated
in table 4.

Experiment ALGg ALGb

worst best avg. worst best avg.
#1 �4236:7 �6901:5 �6191:2 �5476:3 �6955:8 �6600:4
#2 �5473:9 �6952:1 �6342:6 �5975:8 �6949:3 �6641:6
#3 �6390:6 �6944:4 �6720:4 -6909.1 �6961:1 �6948:1

Table 4: Comparison of results of ALGg and ALGb on test case G6; experiments #1, #2, and #3.
Optimum value equals to �6961:8

It seems that ALGg is better in locating the area of global optima, but slower in converging to the
global solution. On the other hand, ALGb was often trapped in a local optimum (for most test cases
the results were inferior to those reported in tables 2 and 3), but the convergence was much quicker.
This suggests another possibility of designing an algorithm which changes the representation from
Gray into binary at some stage of the run (e.g., when some `population diversity coeÆcient' reaches
some threshold). Some other possibilities are discussed in the next section.

5.2 Disjoint components

Note, that all test cases discussed earlier in section 5.1 had a small number (usually one) of disjoined
components of feasible part of the search space. It is interesting to investigate the behavior of the
algorithm in cases where such a number is much larger.

Let us consider the following problem. Maximize

G12(~x) = (100� (x1 � 5)2 � (x2 � 5)2 � (x3 � 5)2)=100,

subject to the constraints8:

(x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:25,

8Note that in this test problem, as opposed to all other test problems G1 { G11, the feasible search space F is
de�ned as a union of all constraints (spheres), i.e., a point (x1; x2; x3) is feasible if and only if there exist p; q; r such
that (x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:25.

15

for p; q; r = 1; 3; 5; 7; 9 and bounds:

0 � xi � 10 (1 � i � 3).

Note that the feasible region of the search space consists of 53 = 125 disjoint spheres (all of them
have a radius of 0.5). The function G12 has a global maximum at ~x� = (5; 5; 5), where G12(~x�) = 1.

10 runs of the algorithm ALGg were executed (with the same parameters as given earlier in this
section). For each run the maximum number of generations was set to T = 500, and, as before,
for each run a random reference point ~r0 was selected (i.e., the �rst randomly generated feasible
point was accepted as a reference point). The algorithm did not have any diÆculties in locating the
global optimum. The best, average, and worst values of G12 (out of 10 runs) were:

best = 1:000000000,
average = 0:999934768,
worst = 0:999694591.

It is possible to modify the above test case to increase the number of disjoint components (by
increasing the number of spheres{constraints and decreasing their radius). For example, if we
change the constraints of the above problem:

(x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:0625,

for p; q; r = 1; : : : ; 9, the feasible region of the search space would consist of 93 = 729 disjoint spheres
(all of them with a radius of 0.25). The function G12 still has a global maximum at ~x� = (5; 5; 5),
and G12(~x�) = 1. Again, the algorithm performed very well; the best, average, and worst values of
G12 (out of 10 runs) were:

best = 0:999999857,
average = 0:999134613,
worst = 0:991950498.

These limited experiments demonstrate the ability of the method to deal with multiple disjoint
regions of the feasible search space. However, further analysis and experiments are necessary for
the full evaluation of this constraint-handling method.

6 Conclusions

The paper presents a new approach for constrained numerical optimization, based on homomorphous
mapping between the cube [�1; 1]n and the feasible part of the search space. This is the �rst
approach of this type; until now, mappings (or decoders) were applied only to discrete optimization
problems. As indicated in the Introduction, two main constraint-handling methods were based on
penalty functions and preservation of feasible solutions by specialized operators or repair algorithms.
Thus the proposed method is the �rst one in a new category of methods based on decoders (for
parameter optimization problems).

The reported results indicate its huge potential; the proposed method does not require additional
parameters, does not require evaluation of infeasible solutions, does not require any specialized
operators to maintain feasibility|or to search the boundary of the feasible region (Schoenauer and
Michalewicz, 1997), (Schoenauer and Michalewicz, 1996). Moreover, any standard evolutionary

16

algorithm (e.g., binary-coded genetic algorithm or evolution strategy) can be used in connection
with the mapping. On the top of that, the method guarantees a feasible solution, which is not
always the case for other methods. However, it should be also pointed out that this method

� introduces an additional, problem-dependent parameter, v (usually determined experimentally
before the run of the algorithm) to partition the interval [0; 1] into v subintervals of equal length
such that equations �i(t) = 0 (see section 4) have at most one solution in every subinterval.

� loses the locality feature of the mapping for non-convex feasible search spaces: a small changes
in the coded solution may result in huge changes in the solution itself (e.g., when solution
\moves" from one disjoint region to the other);

� requires additional computational e�ort (binary search) for �nding all intersection points ti
for a line segment with the boundaries of the feasible region.

As described in the previous section, the proposed method of homomorphous mapping provided
with quality results for all test cases which involved inequalities only (and on two additional test
cases which involved single equations). The results were much better than for any earlier reported
method. We have already discussed (previous section) the case of G4, where the performance of the
system allowed a discovery of error in the problem formulation. Additionally, (Michalewicz, 1995)
reports experimental results of several constraint handling techniques (static and dynamic penalties,
behavioural memory, death penalty, promoting feasible solutions, etc.) on �ve test cases (four of
which are included in the test suite G1{G11). By comparing the results of the other constraints
handling techniques with the results reported in the previous section (on common test cases: G1,
G7, G9, and G10), the superiority of the proposed method is quite clear.

Moreover, it should be relatively easy to enhance further the performance of the algorithm. If
proportional selection is replaced by a tournament selection with elitism, the algorithm provides
with much better results. For example, for the test case G2, the results of all runs were around
0.8035 for 5,000 generations (experiment #1), whereas the best result was 0.8036. For G3 the
value of 0.99999 was reached in as little as 1,000 generations, whereas for G9 the best result was
680.634. (Compare these values with those reported in Table 2). Also, for the test case of G6,
the global optimum was found in almost all runs (value �6961:8), and for G4, the results stayed
within a range from �30665:5 to �30664, with the best solution of �30665:5 within less than
5,000 generations (again, refer to the Table 2, experiment #1, for comparisons). Similar (or better)
results are also expected for a oating-point representation of solutions. Note that none of the other
constraint-handling method, reported results of such quality for the test cases G1{G11.

Let us also point out, however, that it is quite diÆcult to compare di�erent constraint-handling
algorithms due to di�erent computational e�ort they require. Note, that the concept of \evaluating
a solution" is not de�ned clearly. For example, assume we are solving a parameter optimization
problem de�ned by the objective function f and m constraints. Then a single evaluation of indi-
vidual requires:

� for a penalty method: m + 1 function calculations (one for the objective function and m for
constraints),

� for a repair algorithm: 1 + � �m, where � represents an average number of iterations required
to `repair' an individual.

17

In the proposed method of homomorphous mapping (due to a binary search involved to establish
intersection points of a line segment and the boundaries of the feasible part of the search space F),
the number of function calculations per single evaluation is even higher than in a simple `repair'
approach.

To evaluate computational overhead introduced by the proposed method, an additional set of
experiments was performed. The execution times of the algorithm ALGg were recorded for all test
problems G1{G12 in two scenarios: (1) all constraints were considered and (2) all constraints (apart
from the bounds of the variables) were ignored. Table 5 reports the increase of the CPU time of the
algorithm after inclusion of constraints (i.e., it provides, for each of the test cases, the ratio t2=t1,
where t2 and t1 denote CPU time of the algorithm for a test case with and without constraints,
respectively).

Function G1 G2 G3 G4 G6 G7 G8 G9 G10 G11
t2=t1 2.53 1.61 1.59 2.33 2.43 2.77 1.63 2.10 2.36 1.73

Table 5: The ratio between computational times t2=t1 of the algorithm ALGg for all test problems
with (t2) and without constraints (t1)

The inclusion of constraints in test cases G1{G11 resulted in an average two-fold increase of
computational time of the algorithm. Note, however, that all the test cases G1{G11 have a small
number of disjoint components of the feasible part of the search space (usually one). Thus the
experiment with two versions of G12 (with 125 and 729 disjoint components) was more meaningful,
resulting in ratios of 21.5 and 103, respectively. Clearly, larger number of disjoint components
implies larger number of intersections of a line segment with the boundaries of the feasible region,
hence a signi�cant increase in computation time.

There are some additional issues which might be investigated in connection with this type of
mapping. For example, by setting � = �max, only part of the boundary of the feasible region F will
be explored9 (thus, it is possible to use this approach to search the boundary of the feasible search
space). Moreover, it is interesting to investigate non-uniform distributions of values of t (between
0 and tmax): by increasing the probability of selecting t close to tmax, the system explores points
closer to the boundary of F . On the other hand, by increasing the probability of selecting t close
to zero, the system explores points closer to the reference point. Thus exploration of non-uniform
distribution of t provides with additional possibilities for tuning the search.

It would be also important to investigate the role of the reference point ~r0, which can \follow"
the best solution found so far (the method of iterative solution improvement). In that way, the
reference point can adapt itself to the current state of the search. This research direction seems
very promising (as are the results of preliminary runs, see see (Kozie l and Michalewicz, 1998)),
especially in connection with some ideas presented earlier (e.g., a non-uniform distribution of values
of t can concentrate the search around the reference point which follows the best solution).

Acknowledgments:

This material is based upon work supported by the the grant 8 T11B 049 10 from the Polish State
Committee for Scienti�c Research (KBN); the grants IRI-9322400, IRI-9725424 from the National

9If F is convex, the whole boundary of F is explored.

18

Science Foundation, and the ESPRIT Project 20288 Cooperation Research in Information Technol-
ogy (CRIT-2): \Evolutionary Real-time Optimisation System for Ecological Power Control". The
authors wish to thank anonymous reviewers for their useful comments.

References

B�ack, T. and M. Sch�utz, (1996). Intelligent Mutation Rate Control in Canonical Genetic Algorithms.
In Z.W. Ras and M. Michalewicz (Eds), Proceedings of the 9th International Symposium on
Methodologies of Intelligent Systems, pp.158{167, Springer-Verlag, New York, NY.

Bean, J. C. and A. B. Hadj-Alouane (1992). A dual genetic algorithm for bounded integer pro-
grams. Technical Report TR 92-53, Department of Industrial and Operations Engineering, The
University of Michigan.

Bilchev, G. and I. Parmee (1995). Ant colony search vs. genetic algorithms. Technical report, Ply-
mouth Engineering Design Centre, University of Plymouth.

Davis, L. (1997). Private communication.

Dorigo M., V. Maniezzo, and A. Colorni (1996). The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26 (1),
pp.29{41.

Eiben, A., P.-E. Raue, and Z. Ruttkay (1994). Genetic algorithms with multi-parent recombination.
In Y. Davidor, H.-P. Schwefel, and R. Manner (Eds), Proceedings of the 3rd Conference on
Parallel Problems Solving from Nature, Number 866 in LNCS, pp. 78{87. Springer-Verlag, New
York, NY.

Gregory, J. (1995). Nonlinear Programming FAQ, Usenet sci.answers. Available at
ftp://rtfm.mit.edu/pub/usenet/sci.answers/nonlinear-programming-faq.

Hadj-Alouane, A. B. and J. C. Bean (1992). A genetic algorithm for the multiple-choice integer
program. Technical Report TR 92-50, Department of Industrial and Operations Engineering,
The University of Michigan.

Himmelblau, D. (1992). Applied Nonlinear Programming. McGraw-Hill, New York, NY.

Homaifar, A., S. H.-Y. Lai, and X. Qi (1994). Constrained optimization via genetic algorithms.
Simulation 62 (4), 242{254.

Joines, J. and C. Houck (1994). On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with gas. In Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel,
D. B. Fogel, and H. Kitano (Eds), Proceedings of the First IEEE International Conference on
Evolutionary Computation, pp. 579{584. IEEE Press, Piscataway, NJ.

Kozie l, S. (1997). Evolutionary algorithms in constrained numerical optimization problems on con-
vex spaces. Electronics and Telecommunications Quarterly, 43 (1), pp. 5{18.

Kozie l, S. and Z. Michalewicz, (1998). A decoder-based evolutionary algorithm for constrained
parameter optimization problems. In Proceedings of the 5th Conference on Parallel Problems
Solving from Nature, T. B�ack, A.E. Eiben, M. Schoenauer, and H.-P. Schwefel (Eds), Springer
Verlag, New York, NY.

19

Leriche, R. G., C. Knopf-Lenoir, and R. T. Haftka (1995). A segragated genetic algorithm for
constrained structural optimization. In L. J. Eshelman (Ed.), Proceedings of the 6th International
Conference on Genetic Algorithms, pp. 558{565, Morgan Kaufmann, San Mateo, CA.

Maa, C. and M. Shanblatt (1992). A two-phase optimization neural network. IEEE Transactions
on Neural Networks 3 (6), 1003{1009.

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization and constraints. In L. J. Eshel-
man (Ed.), Proceedings of the 6th International Conference on Genetic Algorithms, pp. 151{158.
Morgan Kaufmann, San Mateo, CA.

Michalewicz, Z. (1996). Genetic Algorithms+Data Structures=Evolution Programs. Springer Verlag,
New York, NY, 3rd edition.

Michalewicz, Z. and N. Attia (1994). Evolutionary optimization of constrained problems. In Pro-
ceedings of the 3rd Annual Conference on Evolutionary Programming, A.V. Sebald and L.J. Fogel
(Eds), pp. 98{108. World Scienti�c, River Edge, NJ.

Michalewicz, Z., D. Dasgupta, R.G. Le Riche, and M. Schoenauer (1996). Evolutionary algorithms
for constrained engineering problems. Computers & Industrial Engineering Journal, Vol.30, No.4,
September 1996, pp.851{870.

Michalewicz, Z. and C. Z. Janikow (1991). Handling constraints in genetic algorithms. In R. K. Belew
and L. B. Booker (Eds), Proceedings of the 4th International Conference on Genetic Algorithms,
pp. 151{157. Morgan Kaufmann, San Mateo, CA.

Michalewicz, Z., T. Logan, and S. Swaminathan (1994). Evolutionary operators for continuous
convex parameter spaces. In Proceedings of the 3rd Annual Conference on Evolutionary Pro-
gramming, A.V. Sebald and L.J. Fogel (Eds), pp. 84{97. World Scienti�c, River Edge, NJ.

Michalewicz, Z. and G. Nazhiyath (1995). Genocop III: A co-evolutionary algorithm for numerical
optimization problems with nonlinear constraints. In D. B. Fogel (Ed.), Proceedings of the Sec-
ond IEEE International Conference on Evolutionary Computation, pp. 647{651. IEEE Press,
Piscataway, NJ.

Michalewicz, Z., G. Nazhiyath, and M. Michalewicz (1996). A note on usefulness of geometrical
crossover for numerical optimization problems. In L. J. Fogel, P. J. Angeline and T. B�ack (Eds),
Proceedings of the 5th Annual Conference on Evolutionary Programming, MIT Press, Cambridge,
MA, 1996, pp.305{312.

Z. Michalewicz and M. Schoenauer (1996). Evolutionary computation for constrained parameter
optimization problems. Evolutionary Computation, Vol.4, No.1, pp.1{32.

Myung, H., J.-H. Kim, and D. Fogel (1995). Preliminary investigation into a two-stage method of
evolutionary optimization on constrained problems. In J. R. McDonnell, R. G. Reynolds, and
D. B. Fogel (Eds), Proceedings of the 4th Annual Conference on Evolutionary Programming, pp.
449{463. MIT Press, Cambridge, MA.

Palmer, C.C. and A. Kershenbaum (1994). Representing trees in genetic algorithms. In
Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Kitano (Eds), Proceedings
of the First IEEE International Conference on Evolutionary Computation, pp.379{384,. IEEE
Press, Piscataway, NJ.

20

Paredis, J. (1994). Coevolutionary constraint satisfaction. In Y. Davidor, H.-P. Schwefel, and
R. Manner (Eds), Proceedings of the 3rd Conference on Parallel Problems Solving from Nature,
pp. 46{55. Springer Verlag, New York, NY.

Parmee, I. and G. Purchase (1994). The development of directed genetic search technique for heavily
constrained design spaces. In Proceedings of the Conference on Adaptive Computing in Engineer-
ing Design and Control, I. Parmee (Ed.), pp. 97{102, University of Plymouth.

Powell, D. and M. M. Skolnick (1993). Using genetic algorithms in engineering design optimization
with non-linear constraints. In S. Forrest (Ed.), Proceedings of the 5th International Conference
on Genetic Algorithms, pp. 424{430. Morgan Kaufmann, San Mateo, CA.

Reynolds, R. (1994). An introduction to cultural algorithms. In Proceedings of the 3rd Annual
Conference on Evolutionary Programming, A.V. Sebald and L.J. Fogel (Eds), pp. 131{139. World
Scienti�c, River Edge, NJ.

Reynolds, R., Z. Michalewicz, and M. Cavaretta (1995). Using cultural algorithms for constraint
handling in Genocop. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel (Eds), Proceedings of
the 4th Annual Conference on Evolutionary Programming, pp. 298{305. MIT Press, Cambridge,
MA.

Richardson, J. T., M. R. Palmer, G. Liepins, and M. Hilliard (1989). Some guidelines for genetic
algorithms with penalty functions. In J. D. Scha�er (Ed.), Proceedings of the 3rd International
Conference on Genetic Algorithms, pp. 191{197. Morgan Kaufmann, San Mateo, CA.

Scha�er, D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In
J. J. Grefenstette (Ed.), Proceedings of the 1st International Conference on Genetic Algorithms.
Laurence Erlbaum Associates. Hillsdale, NJ, 1985.

Schoenauer, M. and Z. Michalewicz (1996). Evolutionary computation at the edge of feasibility. W.
Ebeling, and H.-M. Voigt (Eds), Proceedings of the 4th Conference on Parallel Problems Solving
from Nature, Springer Verlag, New York, NY, pp.245{254.

Schoenauer, M. and Z. Michalewicz (1997). Boundary operators for constrained parameter opti-
mization problems. In T. B�ack (Ed.), Proceedings of the 7th International Conference on Genetic
Algorithms, pp.320{329. Morgan Kaufmann, San Mateo, CA.

Schoenauer, M. and S. Xanthakis (1993). Constrained GA optimization. In S. Forrest (Ed.), Proceed-
ings of the 5th International Conference on Genetic Algorithms, pp. 573{580. Morgan Kaufmann,
San Mateo, CA.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley & Sons, New
York, NY, 1995 { 2nd edition.

Smith, A. and D. Tate (1993). Genetic optimization using a penalty function. In S. Forrest (Ed.),
Proceedings of the 5th International Conference on Genetic Algorithms, pp. 499{503. Morgan
Kaufmann, San Mateo, CA.

Surry, P., N. Radcli�e, and I. Boyd (1995). A multi-objective approach to constrained optimiza-
tion of gas supply networks. In T. Fogarty (Ed.), Proceedings of the AISB-95 Workshop on
Evolutionary Computing, Volume 993, pp. 166{180. Springer Verlag, New York, NY.

Waagen, D., P. Diercks, and J. McDonnell (1992). The stochastic direction set algorithm: A hybrid
technique for �nding function extrema. In D. B. Fogel and W. Atmar (Eds), Proceedings of the

21

1st Annual Conference on Evolutionary Programming, pp. 35{42. Evolutionary Programming
Society, San Diego, CA.

Wodrich, M. and G. Bilchev (1997). Cooperative distributed search: the ant's way. Control &
Cybernetics, 26 (3), pp.413{446.

22

Appendix

The appendix provides the description of 11 test cases, G1{G11 for constrained parameter opti-
mization problems.

� Minimize

G1(~x) = 5x1 + 5x2 + 5x3 + 5x4 � 5
P4

i=1 x
2
i �

P13
i=5 xi,

subject to the following constraints:
2x1 + 2x2 + x10 + x11 � 10, 2x1 + 2x3 + x10 + x12 � 10, 2x2 + 2x3 + x11 + x12 � 10,
�8x1 + x10 � 0, �8x2 + x11 � 0, �8x3 + x12 � 0,
�2x4 � x5 + x10 � 0, �2x6 � x7 + x11 � 0, �2x8 � x9 + x12 � 0,

and bounds 0 � xi � 1, i = 1; : : : ; 9, 0 � xi � 100, i = 10; 11; 12, 0 � x13 � 1.
The problem has 13 variables and 9 linear constraints; the function G1 is quadratic with its global
minimum at

~x� = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1),

where G1(~x�) = �15. Six (out of nine) constraints are active at the global optimum (all except the
following three: �8x1 + x10 � 0, �8x2 + x11 � 0, �8x3 + x12 � 0).

� Maximize

G2(~x) = j
Pn

i=1
cos4(xi)�2

Qn

i=1
cos2(xi)pPn

i=1
ix2

i

j;

subject to

Qn
i=1 xi � 0:75 ,

Pn
i=1 xi � 7:5n , and bounds 0 � xi � 10 for 1 � i � n.

Function G2 is nonlinear and its global maximum is unknown. For n = 20, solutions ~x for which
G2(~x) = 0:8036 were reported.

� Maximize

G3(~x) = (
p
n)n �Qn

i=1 xi,

where

Pn
i=1 x

2
i = 1 and 0 � xi � 1 for 1 � i � n.

The function G3 has a global solution at (x1; : : : ; xn) = (1p
n
; : : : ; 1p

n
) and the value of the function

in this point is 1.

� Minimize

G4(~x) = 5:3578547x23 + 0:8356891x1x5 + 37:293239x1 � 40792:141,

subject to three double inequalities:

0 � 85:334407 + 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 92
90 � 80:51249 + 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 110
20 � 9:300961 + 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 25,

23

and bounds:

78 � x1 � 102, 33 � x2 � 45, 27 � xi � 45 for i = 3; 4; 5.

The optimum solution is

~x� = (78:0; 33:0; 29:995; 45:0; 36:776),

with G4(~x�) = �30665:5. Two constraints (upper bound of the �rst inequality and the lower bound
of the third inequality) are active at the optimum.

� Minimize

G5(~x) = 3x1 + 0:000001x31 + 2x2 + 0:000002=3x32

subject to

x4 � x3 + 0:55 � 0, x3 � x4 + 0:55 � 0,
1000 sin(�x3 � 0:25) + 1000 sin(�x4 � 0:25) + 894:8� x1 = 0
1000 sin(x3 � 0:25) + 1000 sin(x3 � x4 � 0:25) + 894:8� x2 = 0
1000 sin(x4 � 0:25) + 1000 sin(x4 � x3 � 0:25) + 1294:8 = 0
0 � xi � 1200, i = 1; 2, and �0:55 � xi � 0:55, i = 3; 4.

The best known solution is

~x� = (679:9453; 1026:067; 0:1188764;�0:3962336),

and G5(~x�) = 5126:4981.

� Minimize

G6(~x) = (x1 � 10)3 + (x2 � 20)3,

subject to nonlinear constraints:

(x1 � 5)2 + (x2 � 5)2 � 100 � 0,
�(x1 � 6)2 � (x2 � 5)2 + 82:81 � 0,

and bounds:

13 � x1 � 100 and 0 � x2 � 100.

The known global solution is ~x� = (14:095; 0:84296), and G6(~x�) = �6961:81381. Clearly, both
constraints are active at the optimum.

� Minimize

G7(~x) = x21 + x22 + x1x2 � 14x1 � 16x2 + (x3 � 10)2 + 4(x4 � 5)2 + (x5 � 3)2 + 2(x6 � 1)2+
5x27 + 7(x8 � 11)2 + 2(x9 � 10)2 + (x10 � 7)2 + 45,

subject to the following constraints:
105� 4x1 � 5x2 + 3x7 � 9x8 � 0, �3(x1 � 2)2 � 4(x2 � 3)2 � 2x23 + 7x4 + 120 � 0,
�10x1 + 8x2 + 17x7 � 2x8 � 0, �x21 � 2(x2 � 2)2 + 2x1x2 � 14x5 + 6x6 � 0,
8x1 � 2x2 � 5x9 + 2x10 + 12 � 0, �5x21 � 8x2 � (x3 � 6)2 + 2x4 + 40 � 0,
3x1 � 6x2 � 12(x9 � 8)2 + 7x10 � 0, �0:5(x1 � 8)2 � 2(x2 � 4)2 � 3x25 + x6 + 30 � 0,

and bounds

24

�10:0 � xi � 10:0, i = 1; : : : ; 10.

The problem has 3 linear and 5 nonlinear constraints; the function G7 is quadratic and has its
global minimum at

~x� = (2:171996; 2:363683; 8:773926; 5:095984; 0:9906548;
1:430574; 1:321644; 9:828726; 8:280092; 8:375927),

where G7(~x�) = 24:3062091. Six (out of eight) constraints are active at the global optimum (all
except the last two).

� Maximize

G8(~x) = sin3(2�x1)�sin(2�x2)
x3
1
�(x1+x2)

,

subject to the following constraints:

x21 � x2 + 1 � 0,
1� x1 + (x2 � 4)2 � 0

and bounds:

0 � x1 � 10 and 0 � x2 � 10.

Function G8 has many local optima, the highest peaks are located along the x axis (e.g.,
G8(0:00015; 0:0225) > 1540). In the feasible region, however, G8 has two maxima of almost equal
�tness of value of 0.1.

� Minimize

G9(~x) = (x1 � 10)2 + 5(x2 � 12)2 + x43 + 3(x4 � 11)2 + 10x65 + 7x26 + x47 � 4x6x7 � 10x6 � 8x7,

subject to the following constraint:

127� 2x21 � 3x42 � x3 � 4x24 � 5x5 � 0, 282� 7x1 � 3x2 � 10x23 � x4 + x5 � 0,
196� 23x1 � x22 � 6x26 + 8x7 � 0, �4x21 � x22 + 3x1x2 � 2x23 � 5x6 + 11x7 � 0

and bounds:

�10:0 � xi � 10:0, i = 1; : : : ; 7.

The problem has 4 nonlinear constraints; the function G9 is nonlinear and has its global minimum
at

~x� = (2:330499; 1:951372;�0:4775414; 4:365726;�0:6244870; 1:038131; 1:594227),

where G9(~x�) = 680:6300573. Two (out of four) constraints are active at the global optimum (the
�rst and the last one).

� Minimize

G10(~x) = x1 + x2 + x3,

subject to the following constraints:

25

1� 0:0025(x4 + x6) � 0, 1� 0:0025(x5 + x7 � x4) � 0,
1� 0:01(x8 � x5) � 0, x1x6 � 833:33252x4 � 100x1 + 83333:333 � 0,
x2x7 � 1250x5 � x2x4 + 1250x4 � 0, x3x8 � 1250000� x3x5 + 2500x5 � 0,

and bounds

100 � x1 � 10000, 1000 � xi � 10000, i = 2; 3, 10 � xi � 1000, i = 4; : : : ; 8.

The problem has 3 linear and 3 nonlinear constraints; the function G10 is linear and has its global
minimum at

~x� = (579:3167; 1359:943; 5110:071; 182:0174; 295:5985; 217:9799; 286:4162; 395:5979),

where G10(~x�) = 7049:330923. All six constraints are active at the global optimum.

� Minimize

G11(~x) = x21 + (x2 � 1)2,

subject to a nonlinear constraint:

x2 � x21 = 0,

and bounds:

�1 � xi � 1, i = 1; 2.

The known global solutions are ~x� = (�0:70711; 0:5), and G11(~x�) = 0:75000455.

26

