
Regular Paper

A hybrid particle swarm with a time-adaptive topology
for constrained optimization

Mohammad Reza Bonyadi n, Xiang Li, Zbigniew Michalewicz
School of Computer Science, The University of Adelaide, Australia

a r t i c l e i n f o

Article history:
Received 25 January 2014
Received in revised form
3 May 2014
Accepted 7 June 2014
Available online 16 June 2014

Keywords:
Particle swarm optimization
Continuous space optimization
Constrained optimization problems
Disjoint feasible regions

a b s t r a c t

For constrained optimization problems set in a continuous space, feasible regions might be disjointed
and the optimal solution might be in any of these regions. Thus, locating these feasible regions (ideally
all of them) as well as identifying the most promising region (in terms of objective value) at the end of
the optimization process would be of a great significance. In this paper a time-adaptive topology is
proposed that enables a variant of the particle swarm optimization (PSO) to locate many feasible regions
at the early stages of the optimization process and to identify the most promising one at the latter stages
of the optimization process. This PSO variant is combined with two local searches which improve the
ability of the algorithm in both finding feasible regions and higher quality solutions. This method is
further hybridized with covariance matrix adaptation evolutionary strategy (CMA-ES) to enhance its
ability to improve the solutions at the latter stages of the optimization process. Results generated by this
hybrid method are compared with the results of several other state-of-the-art methods in dealing with
standard benchmark constraint optimization problems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A constrained optimization problem (COP) in a continuous
space is formulated as follows:

Find xASDRD such that

8yAℱ f ðxÞr f ðyÞ ðaÞ
giðxÞr0; for i¼ 1 to q ðbÞ
hiðxÞ ¼ 0; for i¼ 1 to p ðcÞ

8><
>: ð1Þ

In this formulation, f, gi, and hi are real-valued functions defined
on the search space S, q is the number of inequalities, and p is the
number of equalities. The search space S is defined as a D
dimensional rectangle in RD such that lðjÞrxðjÞruðjÞ, j¼1,…, D
(lðjÞ and uðjÞ are the lower and upper bounds of the jth variable).
The set of all feasible points which satisfy constraints (b) and
(c) are denoted by ℱ [1]. Usually in COPs, equalities are replaced
by inequalities [2] as follows:

jhiðxÞjrξ; for i¼ 1 to p ð2Þ

where ξ is a small positive value. In all experiments reported in
this paper, the value of ξ is equal to 1E�4, the same as it was
adopted in [2,3]. Accordingly, by considering giþqðxÞ ¼ jhiðxÞj�ξ for

all 1r irp, the COP defined in Eq. 1 can be written as

Find xASDRD such that
8yAℱ f ðxÞr f ðyÞ ðaÞ
giðxÞr0; for i¼ 1 to qþp ðbÞ

(
ð3Þ

From now on, the term COP refers to this formulation.
Any method that deals with a COP consists of two parts: an

optimization algorithm and a constraint handling technique (CHT).
The optimization algorithm can be particle swarm optimiza-
tion (PSO) [4], genetic algorithm (GA) [5], differential evolution
(DE) [6], covariance matrix adaptation evolutionary strategy
(CMA-ES) [7], conjugate gradient [8], linear programming [9],
etc. However, whatever the optimization algorithm is, evaluation
of individuals is one of the challenges in solving COPs [10]. Indeed,
unlike unconstrained optimization problems in where evaluation
is simply done based on the value of the objective function for
each individual, evaluation procedure for COPs includes some
complexities because it is necessary to consider both constraints
and objective value (see [11] for detailed discussion on this
complexity). There are several categories of techniques in handling
constraints that can be incorporated into optimization algo-
rithms [12]; these categories include: penalty functions, special
operators, repairs, decoders, and hybrid techniques (see also [1]
and [10] for details).

Particle Swarm Optimization (PSO) [13] is a population based
optimization algorithm of n41 particles (referred to as swarm);
each particle is defined by three D-dimensional vectors

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2014.06.001
2210-6502/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: mbonyadi@cs.adelaide.edu.au,

vardiar@gmail.com (M. Reza Bonyadi), xiang.li01@cs.adelaide.edu.au (X. Li),
zbyszek@cs.adelaide.edu.au (Z. Michalewicz).

Swarm and Evolutionary Computation 18 (2014) 22–37

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2014.06.001
http://dx.doi.org/10.1016/j.swevo.2014.06.001
http://dx.doi.org/10.1016/j.swevo.2014.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.001&domain=pdf
mailto:mrbonyadi@cs.adelaide.edu.au
mailto:mrbonyadi@cs.adelaide.edu.au
mailto:xiang.li01@cs.adelaide.edu.au
mailto:zbyszek@cs.adelaide.edu.au
http://dx.doi.org/10.1016/j.swevo.2014.06.001

� Position (x!i
t) – is the position of the ith particle in the tth

iteration. This is used to evaluate the particle's quality.
� Velocity (v!i

t) – is the direction and length of movement of the
ith particle in the tth iteration.

� Personal best (p!i
t) – is the best position1 that the ith particle

has visited in its lifetime (up to the tth iteration). This
vector serves as a memory for keeping knowledge of quality
solutions [4].

All of these vectors are updated at every iteration t for each
particle (i)

v!i
tþ1 ¼ μð x!i

t ; v
!ti; Ni

tÞ for all i ð4Þ

x!i
tþ1 ¼ ξð x!i

t ; v
!i

tþ1Þ for all i ð5Þ
In Eq. 4, Ni

t (known as neighbor set of the particle i at iteration t) is
a subset of personal best positions of some particles which
contribute to the velocity updating rule of that particle at iteration

t, i.e. Ni
t ¼ f p!k

t jkAfTi
tDf1;2;…;nggg where Tt

i is a set of indices of
particles which contribute to the velocity updating for particle i at
iteration t. Clearly, the strategy of determining Tt

i might be
different for various types of PSO algorithms and it is usually
referred to as the topology of the swarm. Many different topologies
have been defined so far [14], e.g., global best topology (gbest),
ring topology, non-overlapping, pyramid, and adaptive topology,
that are discussed later in this paper. The function μð:Þ calculates
the new velocity vector for particle i according to its current

position, current velocity v!i
t , and neighborhood set Ni

t . In Eq. 5,
ξð:Þ is a function which calculates the new position of the particle i
according to its previous position and its new velocity. Usually

ξð x!i
t ; v
! i

tþ1Þ ¼ x!i
tþ v!i

tþ1 is accepted for updating the position of
particle i. After updating velocity and positions, the personal best
vector (p- i

t) of the particles is also updated.

p!i
tþ1 ¼

p!i
t f ð p!i

tÞr f ð x!i
tþ1Þ

x!i
tþ1 otherwise

8><
>: ð6Þ

In Eq. (6), the new personal best position for the ith particle is
updated according to the objective values of its previous personal
best and the current position. In the rest of this paper, these usual
forms for the position updating rule (Eq. (5)) and for updating
the personal best (Eq. (6)) are assumed. In PSO, updating rules
(Eqs. (4) and (5)) are applied to all particles and the personal best
for all particles are updated in each iteration until a predefined
termination criterion, e.g., maximum number of iterations or
deviation from global optimum (if known), is met.

In the original version of PSO [13], the function μð�Þ in Eq. (4)
was defined as

v!i
tþ1 ¼ v!i

tþφ1R
i
1tð p

!i
t� x!i

tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Personal
Inf luence ðPIÞ

þφ2R
i
2tð g

!
t� x!i

tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Social

Inf luence ðSIÞ

ð7Þ

where φ1 and φ2 are two real numbers known as acceleration
coefficients2 and p- i

t and g-t are the personal best (of particle i)
and the global best vectors, respectively, at iteration t. Also,
the role of vectors PI¼ p- i

t�x- i
t (Personal Influence) and

SI ¼ g-t�x- i
t (Social Influence) is to attract the particles to move

toward known quality solutions, i.e. personal and global best.
Moreover, R1t and R2t are two d� d diagonal matrices3 [15,16],
where their elements are random numbers distributed uniformly
(� Uð0; 1Þ) in [0, 1]. Note that matrices R1t and R2t are generated at
each iteration for each particle separately.

In 1998, Shi and Eberhart [17] introduced a new coefficient ω
(known as inertia weight) to control the influence of the previous
velocity value on the updated velocity. Indeed, Eq. 7 was written as

v!i
tþ1 ¼ ω v!i

tþφ1R
i
1tð p

!i
t� x!i

tÞþφ2R
i
2tð g

!
t� x!i

tÞ ð8Þ

The coefficient ω controls the influence of the previous velocity
(v- i

t) on the movement of the particle (this variant is called
Standard PSO, SPSO, throughout this paper). One of the issues in
SPSO was that, for some values of the coefficients, velocity may
grow to infinity. Some studies analyzed the dynamic of the
particles to understand why velocity might grow to infinity. It
was proven that by setting the coefficients in specific boundaries,
velocity shrinks during the time and hence, it does not grow to
infinity [18–20]. In SPSO, if the random matrices are replaced by
random values then the new variant is known as linear PSO
(LPSO).

There are several well-studied issues in the standard PSO such
as stagnation [21–24], line search [25,26], and swarm size [21,22].
Apart from these issues in PSO, there have been some attempts to
extend the algorithm to work with COPs [3,27–38] and to support
niching4 [39–42]. See Section 2 for a brief review on the issues and
extensions of SPSO.

In this paper, different topologies for a PSO variant proposed in
our earlier paper [11] are analyzed and their abilities in locating
disjoint feasible regions of a COP are tested. Consequently, this
variant is extended by a new time-adaptive topology which
enables the algorithm to locate feasible regions at the early stages
of iterations and to find the region with the highest quality (in
terms of the objective function) at the latter stages of the
optimization process. Also, this extended method is combined
further with two local searches and a covariance matrix adapta-
tion evolutionary strategy (CMA-ES) [43] to improve the quality of
the found solutions. The hybrid approach is applied to standard
benchmark COPs (usually known as CEC2010 [44]) and its results
are compared with three other recently proposed approaches
[2,45,46].

The rest of this paper is organized as follows. Section 2 provides
an overview of PSO including discussion on some identified issues
of this technique, its topology, niching capabilities, and its applic-
ability for COPs. Section 3 discusses two constraint handling
methods as well as some relevant optimization methods to deal
with COPs. In Section 4 a PSO variant is extended by a new time
adaptive topology and the extended method is combined with
local searches. Experimental results are reported and analyzed in
Section 5 and Section 6 concludes the paper.

2. Particle swarm optimization

In this section we provide an overview of PSO, including issues
in the algorithm, topology, niching abilities, and its ability to deal
with COPs.

1 In general, personal best can be a set of best positions, but all PSO types listed
in this paper use single personal best.

2 These two coefficients control the effect of personal and global best vectors
on the movement of particles and they play an important role in the convergence of
the algorithm. They are usually determined by a practitioner or by the dynamic of
particles' movement.

3 Alternatively, these two random matrices are often considered as two
random vectors. In this case, the multiplication of these random vectors by PI
and SI is element-wise.

4 Niching is the ability of the algorithm to locate different optima rather than
only one of them. The niching concept is used usually in the multi-modal
optimization.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 23

2.1. Some issues in PSO

In SPSO, for some values of acceleration coefficients and inertia
weight, the velocity vector might grow to infinity (the issue is
called swarm explosion). Swarm explosion results in moving
particles to infinity which is not desirable [19]. One of the early
solutions for this issue was to restrict the value of each dimension
of the velocity in a particular interval [�Vmax, Vmax] where Vmax

can be considered as the maximum value of the lower bound and
upper bound of the search space [47] (this is known as nearest
strategy). Also, there are some other strategies to restrict the
velocity in a way that the swarm explosion is prevented (e.g.,
nearest with turbulence, random). However, none of these strate-
gies is comprehensive enough to prevent the swarm explosion
effectively in general (see [48] for details). In fact, these strategies
limit the step sizes for updating the particles positions, while
particles still may move to infinity. Thus, many researchers
analyzed the behavior of the particles to find the reasons behind
swarm explosion from different point of views [19,20,49]. The aim
of these analyses was to define criteria for the acceleration
coefficients and inertia weight such that particles converge to a
point, which actually prevent the velocity from growing to infinity.
One of the earliest attempts in this sort was made in [19] where a
constriction coefficient PSO (CCPSO) was proposed. The authors
revised the velocity updating rule to

v!i
tþ1 ¼ χð v!i

tþc1r1tð p!
i
t� x!i

tÞþc2r2tð g!t� x!i
tÞÞ ð9Þ

In this equation, χ is called the constriction factor and it is proposed
to set its value by

χ ¼ 2k=j2�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�4c

p
j ð10Þ

where c¼ c1þc244. The authors proved that if these conditions
hold for the constriction factor, particles converge to a stable point
and the velocity vector does not grow to infinity. The values of c1
and c2 are often set to 2.05 and the value of k is set to 1. In [50], it
was proven that for any c1 and c2 which satisfy converging
conditions, all particles collapse on the global best vector of the

swarm (g!t), i.e. limt-1 x!i
t ¼ p!i

t ¼ g!t for all particles, with prob-
ability 1. Also, for all particles, the velocity vector shrinks to zero.

Thus, in this situation (g!t ¼ p!i
t ¼ x!i

t for all particles and at the
same time v- i

t ¼ 0), all particles stop moving and no improvement
can take place as all components for moving the particles are zero.
This analysis was also done from other perspectives by [20,49,51].

Although constriction coefficient guarantees converging parti-
cles to a point (a convergent sequence), there is no guarantee that
this final point is a quality point in the search space [49]. In fact,
the point g

-

t might not be a local optimum of the search space,
which means that there is no guarantee that the algorithm can
locate a local optimum. This issue is called stagnation in this paper
(converging to a point that is not a local optimum) that was first
identified as a defect in SPSO [21] and further investigated by
[22,52,53]. This issue exists in both LPSO and SPSO.

Another issue that is exclusive to LPSO is called line search

[25,45]: if g!t , p!i
t , and x!i

t are on the same line and v-i
t is in

parallel with ð p!i
t� x!i

tÞ or ð g!t� x!i
tÞ (i.e. (ð p!i

t� x!i
tÞjj ð g

!
t� x!i

tÞ
and v!i

t jjð p
!i

t� x!i
tÞ)), the particle i starts oscillating on the line

segment connecting its personal best and the global best (line
search). In this case, only the points that are on this line are
sampled by the particle i and other locations in the search space
are not examined anymore. It was shown [25] that this is not the
case in SPSO, however, there are some situations that the particles
in standard PSO start oscillating along one of the dimensions while
there is no chance for them to get out of this situation [22,26].

Stagnation happens with higher probability when swarm size
is small [21] (this is called swarm size issue throughout the paper).
In [21], it was argued that SPSO is not effective when its swarm
size is small (2 for example) and particles stop moving in the
earlier stage of the optimization process. To address this issue, a
new velocity updating rule was proposed that was only applied to
the global best particle to prevent it from becoming zero (this
variant was called Guaranteed Convergence PSO, GCPSO). Conse-
quently, the global best particle never stops moving which solves
the stagnation issue and, as a result, swarm size issue is addressed
as well. Experiments confirmed that, especially in the single modal
optimization problems, the new algorithm is significantly better
than the standard version when the swarm size is small (with
2 particles). Note that, in LPSO, apart from stagnation issue, the
line search issue can be another reason that the algorithm
becomes ineffective when swam size is small.

2.2. Topology in PSO

Many different topologies have been introduced so far for
PSO [54]. One of the well-known topologies is called gbest
topology. In this topology, the set Tt

i contains all particles in the
swarm, i.e. Tti¼{1, 2, …, n}. As an example, SPSO uses this topology

as in each iteration, g!t is used for the velocity updating rule and

g!t ¼ p!τt

t where τt ¼ argmin
lATi

t

fFð p!l
tÞg. Fig. 1 shows this topology.

It was shown that when this topology is used, the algorithm
converges rapidly to a point [54]. The reason is that all particles are
connected5 to each other, hence, they all tend to converge to the
best ever found solution.

Another well-known topology is called ring topology, where the
set Tti contains fi; i�1; iþ1g (it is assumed that the particles are in a
fixed order during the run). In fact, each particle is connected to two
other particles that are the previous and the next particles. Also, if
iþ1 was bigger than n (swarm size), it is replaced by 1, and if
i�1o1, it is replaced by n. Fig. 2 shows this topology.

The velocity updating rule for this topology is written as

v!i
tþ1 ¼ v!i

tþφ1R
i
1tð p

!i
t� x!i

tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Personal
Inf luence ðPIÞ

þφ2R
i
1tðlb

-i

t� x
-i

tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Social

Inf luence ðSIÞ

ð11Þ

Fig. 1. A swarm with the gbest topology. Each circle represents one particle.

5 A particle i is connected to particle j if it is aware of the personal best location
of the particle j.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3724

where lb
-i

t is the best ever found solution by the particles i, i�1,

and iþ1, i.e. lb
-i

t ¼ p-τit
t where τit ¼ argmin

lATi
t

fFð p!l
tÞg. It was shown

that this topology causes the algorithm to spend more iterations
for exploration (compared to gbest topology), which results in
better explorative behavior [55].

Another topology that is used in this paper is called non-
overlapping topology [56]. In this topology, all particles in the
swarm are divided into several sets (called sub-swarms) that are
independent from each other. In fact, we define the set

Ti
t ¼ ffig[fsDf1; 2; …; nggg , which refers to all connected parti-

cles to particle i. In any non-overlapping topology at every
iteration, there exist at least one particle i that for all j as a

member of ff1;2;…;ng�Ti
tg, the intersection of Tti and Tt

j is empty,

i.e. 8 t (iAf1;2;…ng 8 jAff1;2;…;ng�Ti
tg fTi

t\Tj
tg ¼∅. To update

velocity for a particle i which uses this topology, Eq. 11 is used

where lb
-i

t is the best personal best among all particles in the set Tti,

i.e. lb
-i

t ¼ p-τit
t where τit ¼ argmin

lATi
t

ðFð p!l
tÞÞ. Fig. 3 shows an example of

this topology.
Note that, in this case, gbest topology is a special case of non-

overlapping topology because for all i, the set ff1;2;…;ng�Ti
tg is

empty and, consequently, Tj
t is also empty. This means that

fTi
t\Tj

tg ¼∅ for any jAff1;2;…;ng�Ti
tg. If the size of Ti

t is similar
for all i, we represent the topology by the notation n�vl where l is
the size of each sub-swarm. Thus, the gbest topology can be
indicated by n�vn. The best particle in each sub-swarm is defined

as the particle that its personal best has the highest quality in that
sub-swarm. This particle is called the lead particle in a sub-swarm
while the rest of the particles in that sub-swarm are called
followers. Note that the lead particle plays the rule of global best
particle in gbest topology, i.e. the lead particle in each sub-swarm
attracts followers in that sub-swarm.

There have been some adaptive topology approaches reported
in literature. For example, in [57], the authors proposed a method
called Club-based PSO (C-PSO) where the particles were members
of clubs (each particle can be a member of one or more clubs) and
each particle i communicated only with the particles in the club
that it was in. A particle can be a member of several clubs, so that
it communicates with all particles in all of those clubs. Note that
the clubs can have overlap with each other. The membership
degree of particle i is shown by mðiÞ that represents the number of
clubs that particle i is a member of. The value of mðiÞ for all i was
updated in each iteration according to the number of clubs the
particle is a member of. The main idea of updating the member-
ship degree was to reduce the number of clubs that high quality
particles are in to prevent fast convergence. Also, the membership
degree for the low quality particles is increased to give them a
chance to learn from other particles in the swarm.

In [58], the authors experimented with two PSO variants with
different topologies in two independent populations. One of these
populations used global best topology (see Fig. 2) and the other
used a new topology called random tournament. The velocity
updating rule for the random tournament topology was the same
as Eq. 11 where the vector lb

-i

t was determined by using a
tournament selection operator over β randomly selected particles.
These two populations worked in parallel and at each iteration, the
performance of these two populations were measured. According
to this performance measure, particles are taken from one popula-
tion and added to the other. The aim of this process was to make
more use of the population that shows better performance.
See [58] for further details.

The idea of “six degrees of separation” [59] (two arbitrary
person are connected with their friends of the friends with
maximum level of 6) was used to structure the connection
between the particles in the swarm [60]. Every certain number
of generations, k other particles are selected randomly for each
dimension j of a particle i in the swarm. Then, the best particle
among these k particles is chosen (particle h) and the value of the
jth dimension for the particle i is updated by

v!ij
tþ1 ¼ v!ij

t þφ1r
ij
t ð p
!hj

t � x!ij
t Þ ð12Þ

where rijt is a random number uniformly distributed in the interval
[0, 1], and p-kj

t is the personal best of the hth particle. The number
of generation to update the network of k particles was determined
by an adaptive role which was based on the number of successive
iterations that the particle has not been updated.

There are some other topologies (e.g., pyramid, wheel) and it is
beyond the scope of this paper to review all of them. Our review
has been limited to the topologies that we will use in the rest of
the paper. Interested readers are referred to [14,54,55,61] for
further information on various topologies.

2.3. Niching in PSO

Niching is a concept that has been introduced in multi-modal
optimization. In multi-modal optimization, locating several (ide-
ally all) optima (including local and global optima) by the algo-
rithm is required. An optimization algorithm is said to support
niching if it is able to locate different optima (also known as
niches) in the search space rather than finding only one of
them [62].

Fig. 2. A swarm with the ring topology.

Fig. 3. A swarm with the non-overlapping topology with three particles in each
sub-swarm.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 25

There have been many attempts to adopt PSO to support
niching [40–42]. As an example, in [40], the authors analyzed
the performance of PSO when gbest or ring topology is taken into
account. In the gbest topology, results showed that only one
optimum is located at each run of the algorithm. This was actually
expected as all particles converge to g!t that does not support the
niching aims. Also, the abilities of ring topology were investigated
experimentally to understand whether ring topology can support
niching aims. After applying PSO with the ring topology to some
benchmark problems (5 test cases), the authors concluded [40]
that the ring topology is not an appropriate candidate for niching.

A multi-swarm approach called NichePSO [41] was proposed in
which multiple sub-swarms were run to locate different optimum
solutions. Sub-swarms could merge together or exchange particles
with one another. Also, in NichePSO, whenever the improvement
in a particle's objective value over some number of iterations
(a parameter) was small, a sub-swarm was created within that
particle's neighbor to assist that particle in improving the solution.

As results reported in [40] for testing the ring topology were
very limited, the ability of the ring topology for niching was
reinvestigated in [42]. The author found that a PSO algorithm
which uses the ring topology can operate as a niching algorithm
because the personal best of each particle forms a stable network
retaining the best positions found so far, while these particles
explore the search space more broadly. Also, it was concluded that
by using a reasonably large population, PSO algorithms which use
the ring topology are able to locate dominant niches (optima)
across the search space. This means that particles locate niches
that are fairly similar in terms of their objective value. However, if
the aim of the algorithm is to locate other local optima that are
less dominant as well, a non-overlapping topology can be a good
candidate. Results showed that a non-overlapping topology with
2 or 3 particles (i.e. n�v2 or n�v3) in each sub-swarm is
significantly better than other topologies when the number of
dimensions is small (up to 8 dimensions in the experiments
conducted in [42]). However, their performance impaired much
faster than other PSOs in locating optima as the number of
dimensions grow. In fact, n�v2 and n�v3 were the worst methods
among other tested methods when the number of dimensions was
larger than 8, based on experiments.

2.4. PSO for COPs

There have been few attempts for enhancing PSO to handle
COPs. The methods were based on penalty function [28,33],
feasibility preservation [29], co-evolution [3], etc. In this sub-
section, some of the most recent approaches are reviewed.

In 2007, LPSO was applied [38] for solving COPs with linear
equality constraints. In this approach, the random matrices in PSO
(R1t and R2t) were replaced by random values (r1t and r2t). This
modification enabled the algorithm to perform better search along
the feasible space, in this case linear equalities. However, LPSO
suffered from line search and stagnation issues [38]. To overcome
the line search and stagnation in LPSO, the velocity updating rule
for the global best vector was modified and another type of LPSO
called converging LPSO (CLPSO) was proposed [38]. The global best
particle in CLPSO was updated according to the equality con-
straints in the global best position. Experiments showed that the
results of LPSO and CLPSO on some benchmark problems were
comparable with that of Genocop II [63] (a GA-based optimization
approach). Also, experiments indicated that for convex search
spaces or the search space without many local optima, CLPSO
worked considerably better than LPSO.

Cooperation comprehensive learning PSO (Co-CLPSO) was also
implemented and applied to COPs [3]. In this method two sub-
swarms cooperated with each other to solve the problem. Particles

in each swarm were adaptively assigned to explore different
constraints. Also, two swarms exchanged their information by
regrouping the particles into different swarm. This enabled the
particles to use the experiences of other particles in both swarms.
Also, a local search based on SQP was proposed to improve the
solutions during the run. This approach received the fourth place
in the competition of CEC2010 in solving COPs [44].

In our earlier work, we investigated [45] the line search and
stagnation issues for LPSO. It was shown that by applying a
mutation operator to the velocity updating rule, both of these
issues (line search and stagnation) are addressed (this variant is
called Mutation Linear PSO, MLPSO). The velocity updating rule
was revised to

v!i
tþ1 ¼mðω v!i

tþφ1r1tð p!
i
t� x!i

tÞþφ2r2tð g!t� x!i
tÞ; c; γÞ ð13Þ

where m is the mutation operator and c and γ are two constants.

The operator m was defined as mð d!; c; γÞ ¼ d
!þNð0; σ!Þ

(d
!¼ v!i

tþφ1r1tð p!
i
t� x!i

tÞþφ2r2tð g!t� x!i
tÞ) and σj (the value of

the jth dimension of σ
-
) was formulated as follows:

for all jAf1;…;Dg σj ¼ cnjj d!jj if jj d!jj4γ

cnjjNð0; γ!Þjj otherwise

8<
: ð14Þ

Indeed, the mutation operator used a multi-variant normal dis-
tribution with the mean equal to d- and variance cnjjd-jj, where c
is a constant. Also, in order to prevent the velocity from becoming

zero, d
!

was regenerate randomly when jj d!jjrγ, where γ was a
constant (set to 1E�10). γ is actually a threshold which ensures
velocity is non-zero. One important difference between MLPSO
and GCPSO is that in GCPSO stagnation has been prevented only
for the global best particle while stagnation in MLPSO has been
prevented for all particles. MLPSO was extended by a constraint
handling method called ε-level constraint handling (see Section 3
for details) to deal with COPs (this variant was called Epsilon-level
Mutation Linear PSO, EMLPSO). The method was further extended
by combining with CMA-ES (this variant was called EPSO-CMA).
In fact, the best solution found by EMLPSO was used to initialize
CMA-ES for further improvement. Results showed that the hybrid
method is effective in dealing with COPs.

3. Some constraint handling techniques

In this section two constraint handling techniques that are used
in our proposed method are reviewed and some background
information about existing methods which deal with COPs are
provided.

ε-Level constraint handling (ELCH) was first proposed in [2].
In ε-level constraint handling (ELCH), the constraint violation value
for the solution x is defined as follows:

GðxÞ ¼ ∑
q

i ¼ 1
maxf0; giðxÞgkþ ∑

p

i ¼ 1
j hiðxÞjk ð15Þ

where k is a constant (normally set to 2). In this paper, the space of
G(x) vs. x is called the constraint violation space. Each solution x is
represented by the pair (f, G) where f is the objective value at the
point x and G is its constraint violation value. If f1 and f2 are the
objective values and G1 and G2 are constraint violation values of
the solution points x1 and x2, respectively, then the ε level
comparison operator r ε is defined as

x!1r ε x
!

2 �
f 1r f 2 if G1; G2 rε or G1 ¼ G2

G1r G2 otherwise

(
ð16Þ

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3726

In other words, the ε-level comparison first compares two
solutions by constraint violation value first. If the constraint
violation value of both solutions is less than a small threshold ε,
two solutions are then ranked by the objective function values
only. Although there are many adaptive mechanisms to control the
value of ε [33], in our paper, the value of ε is set to 0 in all
experiments. Note that with this setting (ε¼0) ELCH becomes
similar to the proposed comparisons rules [64].

Gradient mutation [2,36] is a variation operator which uses
gradient of the constraint functions at the solution points to guide
the mutation of the candidate solutions to achieve a better
constraint value. In gradient mutation, constraints array C(x) and
ΔC(x) are defined as

CðxÞ ¼ ðg1ðxÞ; g2ðxÞ;…; gmðxÞÞT ð17Þ

ΔCðxÞ ¼ ðΔg1ðxÞ; Δg2ðxÞ;…;ΔgmðxÞÞT ð18Þ
where ΔgiðxÞ ¼maxf0; giðxÞg. The value of ΔgiðxÞ has been set to
maxf0; giðxÞg because the aim of this operator is to assist the
algorithm to satisfy the constraints (i.e. gi xð Þr0). The gradient
matrix of CðxÞ is calculated [2] by the following equation:

∇CðxÞ ¼ 1
η
ðCðxþηe1Þ�CðxÞ;…;CðxþηeDÞ�CðxÞÞ ð19Þ

where ei's are the standard basis of the D-dimensional space. It has
been shown [2] that

Δx
-

¼ �∇CðxÞ�1ΔCðxÞ ð20Þ
where Δx

-
is an increment for x to satisfy constraints. Note that, in

the cases where ∇CðxÞ is not invertible, numerical approaches [65]
for approximating the inverse matrix can be used.

The new value for x is calculated as

xnew ¼ xoldþ Δx
-

ð21Þ
A modified version of the gradient mutation was proposed in [45]
in which Δx

-
was mutated before it is added to xold. In fact, Eq. 21

was written as

xnew ¼ xoldþ m Δx
-� �

ð22Þ

The operator m is a mutation operator. It was shown [45] that this
modified gradient (called MG) is more effective than the original
one in finding quality solutions.

Many evolutionary-based methods have been proposed so far
to deal with COPs. Many of these methods have been reviewed in
[66] and [67]. In the following we concentrate just on a few
methods which are relevant to our proposed method discussed
further in the paper. Takahama and Sakai proposed a DE-based
method which used ELCH and gradient mutation to handle the
constraints (called εDE) [36]. By applying ELCH mechanism, εDE
can handle COPs. Also, by adding gradient mutation, the method is
able to solve the cases with equality constraints faster. In the
newer version of εDE (called εDEag) [2], Takahama and Sakai
extended εDE by using an archive that controlled the diversity of
individuals which caused higher stability. εDEag also included a
new scheme to control the ε level parameter. Benchmark results
showed that εDEag could find quality solutions. This method
received the first rank in the competition of CEC2010 in solving
COPs [44].

It was also proposed [46] to use a few sub-populations of
individuals and apply different mutation and crossover operators
to the solutions in each sub-population. Then, the best individuals
of the sub-populations are exchanged and the operators are
applied again. Also, during the run, the size of each of these sub-
populations (four sub-populations were used in reported experi-
ments) is changed according to effectiveness of the operators, i.e.

how good the sub-population is improving. Results indicated that
this method can solve benchmark COPs effectively.

Covariance matrix adaptation evolution strategy (CMA-ES) was
extended to deal with COPs [45,68]. A simple method proposed in
[45] that incorporated the ELCH approach into CMA-ES to enable
the algorithm to deal with constraints. In fact, ELCH was used to
compare and sort the individuals in CMA-ES and allowed the
algorithm to handle constraints (this variant is called ECMA-ES).

4. The proposed method, its analysis and extensions

In this section some aspects of locating disjoint feasible regions
of a COP are described. Then, a PSO variant (called Epsilon
Adaptive mutation linear PSO, EAPSO) [11] proposed by the
authors of this paper is extended by a time-adaptive topology.
By using the proposed time adaptive topology, EAPSO is not only
able to locate disjoint feasible regions, but it is also able to identify
the best region amongst the found regions in terms of objective
value. Two local search methods, the modified gradient mutation
technique (MG) and the sequential quadratic programming (SQP)
(see Section 3), are also added to the proposed method to enhance
its ability in finding better solutions (the new method is called
EAPSO-MG). A hybrid method is proposed in which the extended
EAPSO-MG is combined with ECMA-ES to find better solutions.

4.1. Locating feasible regions

According to the definition of COPs (Eq. 3) and the constraint
violation function (Eq. 15), one can define a COP as follows:

Find xASDRD such that
8yAℱ f ðxÞr f ðyÞ ðaÞ
GðxÞ ¼ 0 ðbÞ

(
ð23Þ

where GðxÞ ¼∑qþp
i ¼ 1 max f0; giðxÞgk (see also [69] for alternative

definitions). To visualize the function GðxÞ, consider an example
COP as follows:

f ðxÞ ¼ 2nx2�1; g1ðxÞ ¼ sin x=1:3
� �� :1r0; g2ðxÞ ¼ 0:02x� :1r0

Fig. 4 shows constraint violation function (GðxÞ) for this COP
together with g1ðxÞ and g2ðxÞ.

Clearly a solution x is feasible if and only if it is in the intervals
(regions) where GðxÞ ¼ 0 (see Fig. 4). The aim of solving a COP is to
find feasible x's (GðxÞ ¼ 0) such that the objective value is mini-
mized. However, there might be many feasible regions and the
qualities of solutions in terms of the objective value in these
regions are unknown. Thus, it is valuable to locate as many feasible
regions as possible and then investigate which of the found
regions contains higher quality solutions. By locating a region we

-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

x

G
(x
)

g (x)

g (x)

G(x)

Feasible
regions

Fig. 4. A sample COP including constraints and constraint violation curves.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 27

refer to finding at least one point in that region. Note that, locating
all disjoint feasible regions in a COP corresponds with locating all
niches of the function GðxÞ (see Fig. 4). Thus, in order to locate
disjoint feasible regions it is sufficient to locate niches of GðxÞ.
However, because niches of GðxÞ are flat regions with unknown
sizes, it is hard to determine if two solutions are located in the
same niche. Hence, if a niching method is used to locate these
regions, we can only claim that the found niches are potentially
disjoint. Throughout the paper, a feasible region which contains
the optimal solution is called optimal region.

In our earlier work [11] we investigated locating potentially
disjoint feasible regions using an evolutionary algorithm. In that
paper the importance of locating potentially disjoint feasible
regions and its relations with niching was discussed. Also, an
extension of MLPSO with an adaptive mutation operator (called
Adaptive Mutation PSO, AMPSO) was proposed that was able to
locate niches very well. The velocity rule for AMPSO was written
as follows:

v!i
tþ1 ¼mðω v!i

tþφ1r1tð p!
i
t� x!i

tÞþφ2r2tð g!t� x!i
tÞ; c; γitÞ ð24Þ

The parameters ω, φ1, and φ2 are exactly the same as the ones in
MLPSO. Note that the mutation operator m addresses both line
search and stagnation issues if c and γit are guaranteed to be non-

zero [45] (see also Section 2.4). Also, note that the vector g
-

t is

changed to lb
-i

t if a topology like ring or non-overlapping was used.
The value of γit for a particle i at the time t is calculated by

γitþ1 ¼

2nγit if sit4s and γitoγmax

0:5nγit if f mino f ito f max and jj v!i
t jjoγit

2nγit
γit

if f it4 f max and γitoγmax and modðt; qÞ ¼ 0
otherwise

8>>>>><
>>>>>:

ð25Þ

where st
i (fti) is the number of successive iterations that the

personal best of the particle i has been (has not been) improved
by at least impmin percent. The value of impmin was set to 1E�5 in
all experiments. At each iteration, if the personal best of the
particle i was improved, sti was increased by one and ft

i was set to
0 and if it was not improved, fti was increased by one and st

i was set
to 0. If st

i was larger than the threshold s (equal to 10 in all
experiments), the value of γit was multiplied by 2. The reason
behind this multiplication was to give the algorithm the opportu-
nity to sample further locations to improve faster. Also, if fti was
larger than fmin and smaller than fmax, the value of γit was reduced
to enable the algorithm to conduct local search around current
solutions and improve them. However, the strategy of controlling
γit was reversed when the value of f ti was even larger than fmax and,
consequently, γit starts to grow. The idea behind reversing the
strategy was that if the current solution is not improved for a large
number of successive iterations, most likely there is no better
solution in the current region. Thus, it is better to jump out from
the current local optima and explore the search space for other
basins of attractions. According to Eq. 25, the value of γit is
increased in a low rate (it is grown every q iterations) in this
situation (when f t

i is very large) to prevent the algorithm to start
jumping with big steps. The values of γmax, γmin, fmin, s, fmax, q, c, and
γi0 were set to 1, 1E�10, 10, 10, 200, 50, 1

D1:5, and 1, respectively, for

all particles (these parameters were set by trial and error for two
standard optimization functions, Sphere as a unimodal and Grie-
wank as a multimodal function). It was shown that AMPSO is
effective in niching when it uses n�v2 topology. AMPSO was used
to locate niches of the constraint violation function (GðxÞ) in COPs.
In fact, AMPSO was combined with ELCH so that it could be

applied to COPs and locate disjoint feasible regions (this method
was called EAPSO in [45]). EAPSO is investigated in more details in
this paper from the topology point of view. Also, it is extended by a
time-adaptive topology as well as local search methods.

In this paper, for the sake of simplicity, we only consider
locating potentially disjoint regions, i.e. we discuss a method that
locates potentially disjoint feasible regions. The ability of the
method in finding potentially disjoint feasible regions is examined
through experiments. However, one can design a method (such as
function stretching [70]) to increase the probability of convergence
to disjoint feasible regions.

4.2. Analysis and extension of EAPSO

In this sub-section, different topologies for EAPSO are analyzed.
Then, EAPSO is extended with a new time-adaptive topology
which enables the algorithm to perform well in locating feasible
regions as well as identifying feasible region which potentially
contain high quality solutions in terms of objective value.

4.2.1. Topology of EAPSO
In order to test the ability of EAPSO with different topologies, i.

e. gbest (n�vn), ring, and non-overlapping topologies, in locating
potentially disjoint feasible regions as well as minimizing the
objective function, we used a test function, introduced in [11],
called six circles which has one constraint (see Eq. (25)).

f ðxÞ ¼ ∑
D

i ¼ 1
ðxi�1:5Þ2

subject to gðxÞ ¼ minðC1–C6Þr0 ð26Þ

where C1 ¼∑D
i ¼ 1ðxi�1:5Þ2�1, C2 ¼∑D

i ¼ 1ðxiþ1Þ2�0:25, C3 ¼
∑D

i ¼ 1ðxiþ3Þ2�0:0625, C4 ¼∑D
i ¼ 1ðxiþ2Þ2þ10�5, and C5 ¼

∑D
i ¼ 1ðxi�3:5Þ2þ10�5, C6 ¼∑D

i ¼ 1ð2xiÞ2þ10�5. The graph g(x) vs.
x has been shown in Fig. 5 for a one dimensional x.

Clearly, the function gðxÞ has three disjoint feasible regions
(centered at x¼ 1:5, x¼ �1, and x¼ �3), respectively, in which
GðxÞ ¼ 0 (constraint violation function). However, there are three
trap regions (centered at x¼ �2, x¼ 0, and x¼ 3:5) where GðxÞ
reduces rapidly, but only down to 10�5 (note that if GðxÞ ¼ 10�5

then x is not feasible). We apply the proposed EAPSO with
different topologies: gbest (n�vn), ring, and non-overlapping to
the six circles function. For the non-overlapping topology, we test
the algorithm with n�v6, n�v4, n�v3, and n�v2 (i.e. 6, 4, 3, and
2 particles in each sub-swarm). In these tests we set the maximum
number of iterations (tmax) to 3000D/n and D¼10. Also, we set

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

g(
x)

Fig. 5. One dimensional constraint space for the six circles function.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3728

n¼12 when D¼10 to ensure that the swarm size is divisible by 2,
3, 4, and 6. Table 1 shows the average of the results over 100 runs.

The row “Satisfaction” shows the percentage of the runs that a
feasible solution was found (e.g., PSO with ring topology has found
a feasible solution in 76% of all runs). The row “Average number of
feasible regions” is the number of disjoint feasible regions that was
located by the particles (the number of disjoint feasible regions
where the personal best of at least one of the particles is inside
them at the end of the run) in the swarm in average over all runs
(e.g., EAPSO with ring topology found 1.17 feasible regions in
average). The row “Percentage of locating optimal region” indi-
cates the percentage of the runs that the algorithm has found
optimal region. This row contains two parts, precision 1E�5 and
1E�27. These two parts refer to the percentage that the algorithm
has found the optimal region and its distance from the optimal
solution is smaller than 1E�5 or 1E�27 at the end of the run.
Note that the solutions that have the precision 1E�27 also appear
in the row corresponding to the “Precision 1E�5”. Comparing the
results, it is clear that EAPSO with non-overlapping topology with
2 particles in each sub-swarm (n�v2) has the best performance in
satisfying constraints (100%), locating different feasible regions
(2.06 feasible regions in average over all 3 existing regions), and
finding the optimal region (58% of runs). Note that the last two
measures (average of feasible solutions and percentage of locating
optimal region) are interrelated as being able to find different
disconnected feasible regions improves the probability of finding
the one that contains optimal solution.

Let's analyze the ability of the algorithm for improving the final
feasible solution (percentage of pushing the solution to optimal-
ity). Obviously, when EAPSO with the gbest (n�vn) topology finds
the region that contains optimal solution, in 65% ð100n15=23%Þ of
the cases it could improve the solution to become closer to the
optimal solution (closer than 1E�27). The performance of differ-
ent topologies in improving the final solution becomes poorer as
the size of the sub-swarms becomes smaller. This is actually
expected as the topologies with more particles in each sub-
swarm have more resources (in this case particles) to assign to
exploit better solutions around the quality existing ones. Hence, as

it was expected, the gbest (n�vn) topology is better than the other
topologies to improve the final solution. Table 2 shows the same
results when D¼30 and n¼12.

Also, the results in 30 dimensional space confirm the results of
10 dimensional space. In fact, a better performance in locating
feasible regions appears when the size of the sub-swarms is small
while better performance in improving the final solutions appears
when the size of the sub-swarms is large.

4.2.2. A time-adaptive topology for EAPSO
As it was discussed in Section 4.2.1, EAPSO is able to locate

potentially disjoint feasible regions with n�vl where l is small.
However, it is important to find which of the located regions
contain higher quality solutions (in terms of objective function).
Also, according to the results in Section 4.2.1 and based on this fact
that the algorithm should exploit better solutions at the latter
stages of the optimization process, it is proposed to change the
topology over time from several small sub-swarms (n�vl with
small l) to the n�vn topology. Topology based on several small
sub-swarms (n�v2 for example) explores the search space very
well, while n�vn is more effective to exploit better solutions close
to the existing quality ones. We propose to start the optimization
process with n�vl topology with a small l¼ lt¼ lmin and then the
value of lt is increased to lmax during the run. This increment is
done linearly (according to t) until a proportion of the maximum
allowed iterations (tmax) is reached, i.e. t ¼ kntmax. In fact the value
of l (n�vl) is updated by the iteration number (t) as follows:

lt ¼
lmax � lmin
tmax �1

� �
ðt�1Þþ lmin

j k
if tokntmax

n otherwise

(
ð27Þ

where t is the iteration number, n is the swarm size, and k is a real
number in the interval [0, 1]. By using this formulation, the value
of lt (the number of particles in each sub-swarm at each iteration)
is lmin at the beginning of the optimization process and it grows to
lmax at the iteration t ¼ kntmax. As n might not be divisible by lt, we
consider the size of the first sub-swarm at iteration t equal to
ltþðnmod ltÞ where mod is the modulo operator. By using this

Table 1
Comparison of different topologies in EAPSO and ECMA-ES for solving the six circle function D¼10. Note that the topology n�vn corresponds with gbest topology.

Algorithm
D¼10

Topology Ring
Non-overlapping

ECMA-ES
n�vn n�v6 n�v4 n�v3 n�v2

Satisfaction (%) 76 58 78 95 96 100 64
Average number of feasible regions 1.17 1 1.27 1.4 1.65 2.06 1

Percentage of locating optimal region
Precision 1E�5 26 23 28 41 53 58 37
Precision 1E�27 11 15 9 12 15 16 34

Percentage of pushing the solution to optimality 42 65 32 29 28 27 91

Table 2
Comparison of different topologies in EAPSO and ECMA-ES for solving the six circle function D¼30.

Algorithm D¼30

Topology Ring Non-overlapping ECMA-ES

n�vn n�v6 n�v4 n�v3 n�v2

Satisfaction (%) 77 61 77 88 98 100 82
Average number of feasible regions 1.18 1 1.26 1.48 1.6 2.14 1
Percentage of locating optimal solution Precision 1E�5 27 24 31 42 50 73 39

Precision 1E�27 21 20 30 28 32 47 37
Percentage of pushing the solution to optimality 78 83 77 66 64 64 94

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 29

value for the size of the first sub-swarm, the remaining number of
particles (i.e. n�ðltþðnmod ltÞÞ) is always divisible by lt. Note that,
in this case, lt is always larger than 1, which is desirable. Note also
that if lt 4 n=2 then the size for the first sub-swarm becomes
equal to n (because nmod lt for lt4n=2 is equal to n� lt) which
results in the n�vn topology. If n is divisible by lt, n mod lt
becomes zero and the size of the first sub-swarm becomes lt.
According to the results reported in the Section 4.2.1, the value
lmin¼2 is considered. Also, lmax is set to n/2 because any value
greater than n/2 results in lt¼n.

To set the value of the parameter k, we applied the PSO with
the proposed time adaptive topology to the six circle function with
different number of dimensions and different values for k. We
applied the algorithm 50 times to the test function. The number of

FE was set to 500D in all tests. Also, in all tests, the values of lmin

and lmax were set to 2 and n/2 respectively. Fig. 6 shows the results.
Fig. 6 shows the average of results together with the standard

deviation for different number of dimensions. From Fig. 6, the
value k¼0.75 seems have good performance in terms of the
average of the quality found solutions. Thus, we propose to set
k¼0.75, lmin¼2, and lmax¼n/2, according to the above parameter
setting. In this case, the algorithm uses non-overlapping topology
at the first 75% of iterations and the gbest topology at the
remaining 25% of all allowed iterations.

Fig. 7 shows how the value of l is changed during the run when
n¼20 and tmax¼100.

This time-adaptive topology is used in all further tests for
EAPSO. The time adaptive approach enables several small sub-
swarms searching for local optima at the beginning of the
optimization process. During the run, some particles in some
sub-swarms might join other sub-swarms as soon as the value of
lt is changed. A newly joined particle to a sub-swarm might be the
new lead or might be a new follower. Either way, the resources
allocated to each region is increased during the time and, at the
same time, better particles (particles which their personal best has
higher quality) will have more followers. Thus, more particles are
assigned to the regions where a higher quality solution has been
located in.

To clarify how topology is changed during the optimization
process, consider a swarm with six particles in a search space.

In Fig. 8 the lead particles have been shown by white dotes and
follower particles have been shown by black dots. Consider that
the topology is n�v2 (Fig. 8(a)) at iteration t, i.e. there are three
sub-swarms: S1t ¼ f1; 2g, S2t ¼ f3; 4g, and S3t ¼ f5; 6g. Now, assume
that the topology is going to change to n�v3 (Fig. 8(b)) at iteration
tþ1. In this case, there are two sub-swarms: S1tþ1 ¼ f1; 2; 3g, and
S2tþ1 ¼ f4; 5 ;6g. As the particle 3 is better than particles 1 and 2 (it
is feasible and the value of f for the particle 3 is lower than both
particles 1 and 2), particle 3 will be the leader of the sub-swarm
Stþ1
1 . This actually results in attracting particles 1 and 2 towards
the region A in next iterations. Also, particle 5 will be the leader for
the sub-swarm 2, which results in attracting particle 4 towards
region C.

The proposed time-adaptive topology is used in EAPSO (and all
of its derivatives) in all further tests and comparisons.

4.2.3. Gradient mutation and local search
The gradient mutation is used to direct the candidate solution x

towards feasible area ℱ. It is proposed to use modified gradient
mutation, MG, in combination with EAPSO (this is called EAPSO-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

The value of k

Q
ua

lit
y

of
 s

ol
ut

io
ns

d=10
d=15
d=20
d=25
d=30

Fig. 6. Setting the parameter k.

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

22

Iteration number

N
um

be
r

of
 p

ar
tic

le
s i

n
ea

ch
 su

b-
sw

ar
m

 (l
)

Fig. 7. Changes of the number of particles in each sub-swarm in each iteration.

AB

C

D

(#4, f=-3, G=3)

(#3, f=1, G=0)

(#5, f=-1, G=0)

(#6, f=1, G=0)
(#1, f=5, G=3)

(#2, f=4, G=0)
AB

C

D

(#4, f=-3, G=3)

(#3, f=1, G=0)

(#5, f=-1, G=0)

(#6, f=1, G=0)
(#1, f=5, G=3)

(#2, f=4, G=0)

Fig. 8. Both figures show six particles in a search space with some feasible regions (gray areas). Particles have been shown by dots in the search space; black dots are
followers and white dots are the leaders. Particles have been connected through (a) n�v2 topology (iteration t), and (b) n�v3 topology (iteration tþ1). The triples close to
each particle shows (particle number, objective value, and constraint violation value).

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3730

MG) to improve its ability for satisfying constraints. Indeed, Eq. 24
is re-written for EAPSO-MG as follows:

v!i
tþ1 ¼

mðΔx
-

t ; c; γitÞ randoPG

Eq: 24 otherwise

8<
: ð28Þ

where r and is a uniform random number generated from the
interval [0, 1], PG is the probability that the velocity vector follows
the gradient direction and 1�PG is the probability that it follow
the standard formulation (Eq. (24)).

To set the parameter PG, EAPSO-MG was applied to 5 randomly
selected functions from the CEC2010 [44] benchmark when PG was
changed from 0 to 1. The algorithm was terminated once it could
locate the first feasible solution. Also, in this test, D was set to 10
and n was set to 20. Fig. 9 shows the results (average percentage of
satisfying constraints and average of constraint violation value).

Note that, because the performance of the algorithm for
PG40.1 impaired dramatically, these values for PG have not been
excluded from the figure. The reason for this impairment is that
large values for the gradient search causes particles to move to
local optima at the early stage of the optimization process. From
the figure, it seems that PG¼0.01 has the best performance both in
terms of constraint satisfaction and constraint violation. Hence,
this value is used hereafter for PG throughout the paper.

In order to improve the quality of solutions (in terms of
objective value) found by EAPSO-MG, the local search (SQP) that
was introduced in [3] is also used in our approach. SQP is applied
to the personal best of a randomly selected particle within the
swarm with the probability PL and for maximum number of
iterations equal to tL (set to 100D in all experiments, where D is
the number of dimensions). Because the local search mostly
concentrates on minimizing the objective value, we propose to
do not apply the SQP local search on infeasible solutions. We also
set the value of PL to 0.01 in all experiments. This value was set
experimentally the same as setting procedure for PG. Any method
which uses this local search in this paper is postfixed by L (e.g.,
EAPSO-MG which uses this local search is called EAPSO-MGL).

The following algorithm shows the procedure for EAPSO-MGL.

Algorithm EAPSO-MGL
Inputs: n, D, TC (termination condition)
Outputs: global best particle
Set γmax, γmin, fmin, s, fmax, q, c, PL, PG, and γi0 to 1, 1E�10, 10, 10,
200, 50, 1

D1:5, 0, 0.01, and 1

t¼0, TC¼false

Initialize x- i
t , v-

i
t , lb

-i

t , and p- i
t for all particles

Initialize topology for all particles to n�v2
While TC is false
For i¼1:n

Calculate v-i
tþ1 by Eq. 28

Use standard position update rule
End for
Update topology of the swarm according to Eq. 27 (k¼0.75,
lmin¼2, and lmax¼n/2)

Update p- i
t , lb

-i

t according to the quality of particles (Eq. 16)
Update γitþ1 according to Eq. 25
If at least one feasible solution was found

Update PL¼0.01
End if
If randoPL

Randomly select one of the particles and apply local search
(SQP) on its personal best
End if
t¼tþ1
Update TC
End while
Return the particle which has the best personal best among
the swarm
End of the algorithm

4.3. Termination conditions

Four termination conditions (TC) are considered in this paper in
different experiments for different algorithms. In each experiment
in the next sections, a logical disjunction of some of these
conditions is used for terminating the algorithm.

TC1(inp): this is true when the number of iterations is equal to
inp.
TC2: this is true when the first feasible location is met.
TC3(inp): this is true when the global best vector was not
improved for the last inp successive iterations.
TC4(inp): this is true when the method is run for inp number of
iteration after finding the first feasible solution.

TC1 terminates the algorithm when a predefined number of
iterations (max_itr) is achieved. By using TC2, the algorithm is

0 0.02 0.04 0.06 0.08 0.1
93

94

95

96

97

98

99

PGS

Sa
tis

fa
ct

io
n

(%
)

0 0.02 0.04 0.06 0.08 0.1
10-1

100

101

102

103

PGS

C
on

st
ra

in
t v

io
la

tio
n

Fig. 9. Performance of EAPSO-MG with different values for PG (a) the average percentage of constraint satisfaction, and (b) the average of constraint violation. The averages
are over all 18 functions with 25 runs each.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 31

terminated when the first feasible solution is found. By using TC3,
the algorithm is stopped when it could not find any better solution
in a predefined number of evaluations (tf). This condition is
beneficial to recognize if the particles have got stuck in local
optima. TC4 is useful for testing the ability of the methods in
improving objective values after finding the first feasible solutions.

4.4. Comparisons of EAPSO, EAPSO-MG, and ECMA-ES

In this sub-section, two main comparisons are conducted
which test the ability of the proposed methods (EAPSO and
EAPSO-MG) in satisfying constraints and optimizing objective
value.

4.4.1. Satisfying constraints
Proposed methods (EAPSO, EAPSO-MG) are compared with

ECMA-ES in terms of their abilities in satisfying constraints through
two tests:

1) EAPSO, EAPSO-MG, and ECMA-ES are compared in terms of
percentage of satisfying constraints.

2) EAPSO, EAPSO-MG, and ECMA-ES are compared in terms of the
number of needed function evaluations (FEs) for satisfying
constraints.

In all tests, we use 10 dimensional standard test functions in
CEC2010 [44]. In this test, max_itr was set to 20,000D/n, termina-
tion condition was set to TC2 or TC1(max_itr) (either of them was
satisfied, the method is terminated), and the population size for
PSO-based methods was set to 2D and for ECMA-ES method was
set to the default value proposed in [7]. All reported results are the
averages over 25 runs of each method for each function.

Table 3 shows the results of applying different methods to all
(18) COPs in a standard benchmark problem set in CEC2010 [44].

EAPSO-MG (recall that PG¼0.01) has better performance in
comparison to ECMA-ES in satisfying the constraints in average as
it has satisfied constraints in larger percentage of runs (98.6
comparing to 97.9) and has smaller value for the constraint
violation (0.48 comparing to 0.66). However, based on Wilcoxon
test with po0:05, these results were not statistically significant
(the p value for the test for comparing ECMA-ES and EAPSO was
0.29, for comparing ECMA-ES and EAPSO-MG was 0.37, and for
comparing EAPSO-MG and EAPSO was 0.22).

Because the percentages of satisfactions are very close to each
other and the differences are not statistically significant, we also
compare the number of iterations needed to find the first feasible
solution (Fig. 10). The number of FEs has been normalized to
maximum among the methods in each case. Also, the Wilcoxon
test (with po0:05) was used to test if the differences between the
results are significant. Each method that has significantly better
performance (in terms of the number of FE) than other methods
has been marked by one the three letters E (significantly
better performance than ECMA-ES), P (significantly better perfor-
mance than EAPSO), or M (significantly better performance than
EAPSO-MG).

The results reported in Fig. 10 indicate that

� ECMA-ES is significantly faster than EAPSO in f3, f4, f11, and f12
(4 cases) and significantly faster than EAPSO-MG in f3 and f11
(2 cases);

� EAPSO is significantly faster than ECMA-ES in f2, f5, f6, f7, f8, f9,
f10, f17, and f18 (9 cases) and significantly faster than EAPSO-
MG in f2 (1 case);

� EAPSO-MG is significantly faster than EAPSO in f4, f6, f9, f12,
f14, and f16 (6 cases) and significantly faster than ECMA-ES in
f2, f5, f6, f7, f8, f9, f14, f15, f16, f17, and f18 (11 case).

Thus, it is obvious that EAPSO-MG performs better than ECMA-
ES and EAPSO in terms of percentage of satisfying constraints
(Table 3, not statistically significant though) and the number of FEs
needed to find the first feasible solution (Fig. 10, statistically
significant in most cases).

4.4.2. Optimizing objective function
In this sub-section EAPSO-MG and ECMA-ES are compared in

terms of their ability in optimizing objective function. Each
method is applied to all COPs (18 functions) from CEC2010
benchmark 25 times. The value of max_itr was set to 20,000D/n,
number of dimensions was set to 10 (D¼10), population size (n)
for EAPSO-MG was set to 2D, and population size for ECMA-ES was
set to 4þ3n lnðDÞ (the same as [7]). The termination condition was

Table 3
Comparisons of ECMA-ES, EAPSO, and EAPSO-MG (PG¼0.01).

Row Method Satisfaction (%) Constraint violation

f1–f10, f13–f18 f11 f12 Average

1 ECMA-ES 100 76 88 98 0.667269
2 EAPSO 100 80 88 98.222 53.29491
3 EAPSO-MG 100 88 88 98.6666 0.483218

0

0.2

0.4

0.6

0.8

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 Avr

Functions names

N
or

m
al

iz
ed

 n
um

be
r o

f F
E

s

P
M P

P
M

PE
M

E

E
E

E E

E E
E

P E

P
E

E
E

P
E

E

P

P
E

E

P
E E

E

ECMA-ES (E) EAPSO (P) EAPSO-MG (M)

Fig. 10. The average normalized number of function evaluations to find first
feasible solution.

-1

-0.5

0

0.5

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18

Functions names

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

*
*

*

* *

*

*

* *

*
*

*

*

ECMA-ES
EAPSO-MG

Fig. 11. The average normalized objective value in 500D/n iterations found by
ECMA-ES and EAPSO-MG, the smaller the better.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3732

TC4(500D/n) or TC1(max_itr). In fact, the methods were run
500D/n iterations after the first feasible solution was found or
the maximum number of iterations is reached. Fig. 11 shows the
average of normalized objective value over 25 runs. As we
consider the minimization problems only, the lesser the value of
normalized objective function is, the better the method is.

From the figure, it is obvious that ECMA-ES performs signifi-
cantly better (based on the Wilcoxon test with po0.05, asterisked
in the figure) than EAPSO-MG in minimizing the objective value in
12 cases (f3, f4, f5, f7, f8, f11, f12, f14, f15, f17, and f18) over all
18 cases.

4.5. The hybrid method

It was shown (Section 4.4) that EAPSO-MG is more effective
than ECMA-ES for satisfying constraints while ECMA-ES is more
effective in optimizing objective function. Thus we propose a
hybrid method which contains two phases: starting with EAPSO-
MGL to satisfy constraints and then running ECMA-ES to improve
the final solutions (this hybrid method is called EAPSO-CMA). This
hybridization is also beneficial as EAPSO-MG has a better ability to
locate different feasible regions (comparing to ECMA-ES), which
improves the overall capability of the method to locate the optimal
solution. Termination condition for EAPSO-MGL is set to TC1(tP1) or
TC3(tf), i.e. tP1 iterations for the first phase and tf is the number of
successive iterations that the global best was not improved, and
then ECMA-ES is run with the termination condition TC1(tP2)
where tP2¼max_itr-tP1. Because ECMA-ES is used to improve the
final solutions found by EAPSO-MGL, the number of iterations
assigned to ECMA-ES (tp2) is set to a smaller value comparing to
that of EAPSO-MGL (tp1).

To set the value of tP1, we run some experiments on four
randomly selected benchmark functions from CEC2010 (f1, f5, f7,
and f16). EAPSO-CMA was applied to these functions for 20,000D/n
iterations with tP1 ¼ r �max_itr , where rA ½0; 1�. We changed the
value of r from 0 to 1, with the step size 0.05, and recorded the
average normalized objective value (normalized to [�1, 1]).

Fig. 12 Shows that for r values from the interval 0.4–1, the
performance of EAPSO-CMA is better than other values for r. Thus,
in our experiments, the value of r was set to 3/4.

Also, in our experiments, we noticed that if termination of
EAPSO-MGL was caused by TC3(tf), ECMA-ES also could not
improve the final solutions. The reason is that when EAPSO-MGL
could not find better solutions after long number of iterations, it
was highly probable that the best found solution was already at a
local optimum. Thus, it is not expected that ECMA-ES in the next
phase can find any better solutions around the current best found

solution. Hence, it is better to rerun the EAPSO-MGL to search for
other basins of attractions. Our experiments showed that tf¼1000
is a good choice for decision on rerunning EAPSO-MGL.

ECMA-ES is initialized by 4þ3n lnðDÞ points (the standard
formulation for the population size of CMA-ES presented in [43])
generated by a multi-variant normal distribution with the variance
ρ¼ 1E�3 and the mean equal to the best found solution by
EAPSO-MGL. Note also that the value of ρ was set to a small
number to ensure that ECMA-ES is concentrated on a small area
around the solution found in the previous phase. This hybrid
method is called EAPSO-CMA.

Algorithm EAPSO-CMA
Inputs: ρ, max_itr
Outputs: best solution

tp1¼3max_itr/4
Old_best_found¼run Algorithm EAPSO-MGL with D

(number of dimensions of the problem), n¼2D, and TC¼TC1
(tP1) or TC3(tf)
If Algorithm EAPSO-MGL was stopped because of TC3(tf)

New_best_found¼Algorithm EAPSO-MGL with D
(number of dimensions of the problem), n¼2D, and TC¼TC1
(3max_itr=4�tP1)

Best_found¼ best solution between Old_best_found and
New_best_found

Else
Best_found¼Old_best_found

End if
Generate 4þ3n lnðDÞ points by N(Best_found, ρ) and initialize
ECMA-ES with those points
Run ECMA-ES for tP2¼max_itr-tP1 iterations
Return the best found solution by ECMA-ES

End of the algorithm

Let us summarize the parameters for the proposed methods:

EAPSO-MGL: max_itr¼20,000D/n (set for all methods), n¼2D
(trials), γmax¼1 (trials and errors on two functions, see
Section 2.4), γmin¼1E-10 (trials and errors on two functions,
see Section 2.4), fmin¼10 (trials and errors on two functions, see
Section 2.4), s¼10 (trials and errors on two functions, see
Section 2.4), fmax¼200 (trials and errors on two functions, see
Section 2.4), q¼50 (trials and errors on two functions, see
Section 2.4), c¼1=D1:5 (trials and errors on two functions, see
Section 2.4), γi0¼1 (trials and errors on two functions, see
Section 2.4), PG¼0.01 (set experimentally, see Section 4.2.3),
PL¼0.01 (set experimentally, see Section 4.2.3), k¼0.75 (set
experimentally, see Section 4.2.2), lmin¼2 (minimum allowed
swarm size, see Section 4.2.2), lmax¼n/2 (set experimentally,
see Section 4.2.2).
EAPSO-CMA: the values of tP1¼3max_itr/4 (experimentally set,
see Fig. 12), tP2¼max_itr�tP1 (remaining number of iterations),
and ρ¼1E�3 (trial and errors).
ECMA-ES: ρ¼1 and number of initial points (initial population
size) ¼4þ3n lnðDÞ, taken from the standard CMA-ES.

Note that the number of parameters in other methods (such as
εDEag) is almost the same as for EAPSO-CMA. However, most of
the parameters in those methods were not discussed in their
original papers and they were given as constants in those papers.
As an example, in the algorithm εDEag [2] (see appendix 1 for the
steps of this algorithm), the crossover rate was set to 0.95, the
number of DE operations was set to 2, probability of scaling factor
was set to 0.05, probability of selection from archive was set to
0.05, etc. (see step 5 of the algorithm in appendix 1). However,
these constants are in fact parameters of the method that may

0.2 0.4 0.6 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

The value of r

A
ve

ra
ge

 o
f t

he
 n

or
m

al
iz

ed
 o

bj
ec

tiv
e

va
lu

e

Fig. 12. The result of setting the value of r (the smaller the better).

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 33

impact its performance. Thus, the main advantage of the proposed
method can be measured by the reported results.

5. Experiments and comparisons

In this section, the results of the proposed methods together
with some state-of-the-art methods for solving COPs are com-
pared. All methods were applied to standard benchmark COPs
(18 standard test functions) of CEC2010.

Two tests are conducted in this section:

Test 1: the results of EAPSO-CMA are compared with the one of
EAPSO-MGL and ECMA-ES. This comparison is done to show
whether the hybridization has improved the overall perfor-
mance of the method.
Test 2: results of the EAPSO-CMA are compared with EPSO-
CMA [45], εDEag [2], and SMAOGA [46]. The aim of this
comparison is to show that the results of the proposed method
are competitive with the ones from other state-of-the-art
methods.

The results for EPSO-CMA, εDEag, and SMAOGA were taken
directly from the source papers. Note that the maximum number
of FE was set to 20,000D for all experiments and all methods.

5.1. Test 1

In this test, the methods EAPSO-CMA, EAPSO-MGL, and ECMA-
ES are applied to all 18 COP benchmarks from CEC2010. The
number of dimensions was set to 10 in all tests. Table 4 shows
the results. Each method was applied to each instance 25 times
and the table only shows the average of the results. The Wilcoxon
test (with po0.05) was used to determine the significance of the
difference between the results of the algorithms. The results have
been superscripted by C, M, or E. The result of each method that is
significantly better than other methods has been superscripted by
C (significantly better than EAPSO-CMA), M (significantly better
than EAPSO-MGL), and E (significantly better than ECMA-ES).

It is clear in Table 4 that EAPSO-CMA has significantly better
performance in the tested benchmark set in 11 cases than the both
other methods. This means that the proposed hybridization was
successful and the new hybrid method performs better than the
both primary methods in solving the listed test cases.

5.2. Test 2

In this section, the results of comparison among EAPSO-CMA
with three other state-of-the-art methods (EPSO-CMA, εDEag,
and SMAOGA) are presented, where all methods are applied to
18 standard COPs from CEC2010 (see Table 5).

EAPSO-CMA, EPSO-CMA, and SMAOGA found feasible solutions
in all runs for all functions while this was not the case for εDEag
(the percentage of the number of runs which satisfied the
constraints was 12% for 30 dimensional f12).

Comparison between EPSO-CMA and EAPSO-CMA: for 10 dimen-
sional cases, EAPSO-CMA algorithm has the better average of
objective value comparing to EPSO-CMA on 8 cases (f1, f5, f6,
f10, f12, f13, f14, f15) and their results are the same for the
remaining cases. Also, for 30 dimensional cases, EAPSO-CMA
algorithm has the better average of objective value in compar-
ison to EPSO-CMA on 8 cases (f1, f3, f5, f6, f9, f10, f13, f15) and
their results are the same for the remaining cases. In terms of
the rank, EAPSO-CMA algorithm has a better rank comparing to
EPSO-CMA in both 10 and 30 dimensional test functions.
Comparison between εDEag and EAPSO-CMA: for the 10 dimen-
sional cases, EAPSO-CMA has the better average of objective
value comparing to εDEag in 6 cases (f2, f4, f8, f16, f17, f18)
while εDEag has a better performance in 8 cases (f1, f5, f6, f10,
f12, f13, f14, f15). However, in the 30 dimensional cases, EAPSO-
CMA has the better average of objective value in 13 cases (f2, f3,
f4, f7, f8, f9, f10, f11, f12, f14, f15, f17, f18) while εDEag has a
better performance in 4 cases (f1, f5, f6, f13). In terms of the
rank, EAPSO-CMA is better than εDEag in both 10 and 30
dimensional cases.
Comparison between SMAOGA and EAPSO-CMA: for the 10
dimensional cases, EAPSO-CMA has the better average of
objective value comparing to SMAOGA in 12 cases (f2, f3, f4,
f7, f8, f9, f10, f11, f12, f14, f15, f17, f18) while SMAOGA has a
better performance in 4 cases (f1, f6, f13, f16). However, in the
30 dimensional cases, EAPSO-CMA has the better average of
objective value in 10 cases (f2, f4, f9, f10, f11, f14, f15, f16, f17,
f18) while εDEag has a better performance in 6 cases (f1, f3, f5,
f6, f12, f13). In terms of the rank, EAPSO-CMA is better than
SMAOGA in both 10 and 30 dimensional cases.

Note that, the proposed method does not perform well in some
cases (e.g., f1) consistently. Analysis of this poor performance of
the method is left as a potential future study.

6. Conclusions and future works

In this paper a particle swarm optimization variant, called
Adaptive Mutation PSO (AMPSO), was investigated. This variant
was used to locate potentially disjoint feasible regions in COPs.
AMPSO was combined with a constraint handling method called
epsilon level constraint handling (ELCH) and the new method was
called EAPSO. Topology of EAPSO was studied in details and a time
adaptive topology was proposed. It was found that a non-
overlapping topology with small number of particles in each
sub-swarm is beneficial in locating disjoint feasible regions. Also,
topologies which contain more particles in each sub-swarm are
beneficial in improving solutions in terms of the objective func-
tion. The proposed time-adaptive topology enables EAPSO to
locate disjoint feasible regions at the beginning of the optimization
process while concentrate on the best region to improve the
solutions in terms of objective value at the latter stage of the
optimization process. EAPSO was also combined with local search
methods to improve its ability in locating feasible regions as well

Table 4
EAPSO-CMA, EAPSO-MGL, and ECMA-ES were applied to the COP instances from
CEC2010 benchmark set. The font for the best results in each case has been bolded.

Function no. EAPSO-CMA (C) EAPSO-MGL (M) ECMA-ES (E)

1 �6.365E�01ME �3.469E�01 �5.284E�01
2 �2.276Eþ00ME �2.218Eþ00 �2.182Eþ00
3 0ME 7.892E�12 2.133E�18M

4 �1.000E�05ME �0.818E�06 �0.929E�06M

5 �4.70Eþ02ME �2.557Eþ02 �3.39Eþ02M

6 �5.73Eþ02ME �4.221Eþ02 �4.34Eþ02
7 0ME 1.428E�09 4.29E�19M

8 0 0 0
9 0E 0E 3.99E�13
10 3.541Eþ01 4.782Eþ01 4.353E�01CM

11 �1.523E�03M �1.224E�04 �1.523E�03M

12 �1.251Eþ02ME �1.057Eþ02 �1.199Eþ02
13 �5.959Eþ01ME �5.384Eþ01 �5.722Eþ01
14 2.011Eþ01ME 3.563Eþ01 4.142Eþ01
15 1.490Eþ02ME 2.921Eþ03 1.771Eþ02M

16 2.541E�02 2.541E�03CE 3.177E�01
17 0M 1.745E�19 0M

18 0 0 0

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3734

as improving final solutions. Experiments showed that ECMA-ES (a
CMA-ES based method for COPs) performs better than EAPSO-MG
in minimizing the objective function (significantly better in
12 functions out of 18). However, EAPSO-MG was more effective
(significantly faster in terms of needed function evaluations) than
ECMA-ES in satisfying constraints. Thus, a hybrid method called
EAPSO-CMA was proposed which used EAPSO to locate feasible
regions, then concentrate on only one region, and at the end
ECMA-ES is used to find better solutions in that region. EAPSO-
CMA was compared with some other state-of-the-art methods in
dealing with COPs. All methods were applied to standard test
problems from CEC2010 benchmark. Results show that EAPSO-
CMA is effective in both satisfying constraints and minimizing the
objective function. As a future direction, it would be useful if the
topic of locating disjoint feasible regions in a COP is investigated in
more details. One example would be to design methods to
guarantee locating disjoint feasible areas in a COP. Also, in some
cases, the performance of the proposed method is poor. An in-
depth analysis of the performance of the proposed method on
these test cases can be also valuable and it is left as a future work.

Acknowledgments

This work was partially funded by the ARC Discovery Grant
DP130104395 and by grant N N519 5788038 from the Polish
Ministry of Science and Higher Education (MNiSW).

Appendix

The algorithm εDEag given in [2] (note that the algorithm has
been directly quoted from the original paper):

Step 1 Initialization of an archive. Initial M individuals A¼{xi,
i¼1, 2,…, M} are generated randomly in search space S and
form an archive.
Step 2 Initialization of the ε level. An initial ε level is given by
the ε level control function ε(0).
Step 3 Initialization of a population. Top N individuals are selected
from the archive A and form a population P¼{xi}. The ranks of
individuals are defined by the ε level comparison.
Step 4 Termination condition. If the number of function
evaluations exceeds the maximum number of evaluation
FEmax, the algorithm is terminated.
Step 5 DE operations (at most twice). Each individual xi is
selected as a parent. If all individuals are selected, go to Step 7.
DE/rand/1/exp operation is applied and a new child x child is
generated. A fixed scaling factor F0 and a fixed crossover rate CR0
are used with probability 0.95, and the randomly generated scaling
factor F and the crossover rate CR0 are used with the probability
0.05. The third vector xp3 is selected from the archive A with
probability 0.95 and selected from the population P with prob-
ability 0.05. If the new one is better than the parent based on the ε
level comparison, the parent xi is immediately replaced by the trial
vector xchild and go to Step 6. In the εDEag, not discrete generation

Table 5
Results of applying EAPSO-CMA, EPSO-CMA, εDEag, and SMAOGA on all problems from CEC2010. The rank of each algorithm in each row has been indicated in {.}.

D Function no. EAPSO-CMA EPSO-CMA εDEag SMAOGA

10 1 �6.365E�01 {3} �3.725E�01 {4} �7.470E�01 {1} �7.470E�01 {1}
2 �2.278Eþ00 {1} �2.278Eþ00 {1} �2.259Eþ00 {4} �2.272Eþ00 {2}
3 0 {1} 0 {1} 0 {1} 1.190E�10 {4}
4 �1.000E�05 {1} �1.000E�05 {1} �9.918E�06 {4} �9.930E�06 {3}
5 �4.70Eþ02 {2} �4.405Eþ02 {3} �4.836Eþ02 {1} �4.017Eþ02 {4}
6 �5.73Eþ02 {3} �5.199Eþ02 {4} �5.787Eþ02 {1} �5.777Eþ02 {2}
7 0 {1} 0 {1} 0 {1} 0 {1}
8 0 {1} 0 {1} 6.728Eþ00 {4} 0 {1}
9 0 {1} 0 {1} 0 {1} 2.731Eþ03 {4}
10 3.541Eþ01 {2} 3.743Eþ01 {3} 0 {1} 1.732Eþ02 {4}
11 �1.523E�03 {1} �1.523E�03 {1} �1.523E�03 {1} �5.260E�04 {4}
12 �1.251Eþ02 {2} �9.934Eþ01 {3} �3.367Eþ02 {1} �5.588Eþ01 {4}
13 �5.959Eþ01 {3} �5.369Eþ01 {4} �6.843Eþ01 {1} �6.838Eþ01 {2}
14 2.011Eþ01 {2} 1.239Eþ02 {3} 0 {1} 3.873Eþ02 {4}
15 1.490Eþ02 {2} 1.305Eþ03 {4} 1.799E�01 {1} 8.575Eþ02 {3}
16 2.541E�02 {2} 2.541E�02 {2} 3.702E�01 {4} 1.403E�03 {1}
17 0 {1} 0 {1} 1.250E�01 {4} 1.271E�02 {3}
18 0 {1} 0 {1} 9.679E�19 {3} 1.053E�02 {4}

Average of ranks 1.667 2.167 1.944 2.833

30 1 �5.159E�01 {3} �3.144E�01 {4} �8.209E�01 {1} �8.115E�01 {2}
2 �2.272Eþ00 {1} �2.272Eþ00 {1} �2.151Eþ00 {4} �2.252Eþ00 {2}
3 7.164Eþ00 {2} 1.434Eþ01 {3} 2.884Eþ01 {4} 2.255E�07 {1}
4 1.024E�06 {1} 1.024E�06 {1} 8.163E�03 {4} 1.471E�03 {3}
5 �9.843Eþ01 {3} �8.815Eþ01 {4} �4.495Eþ02 {2} �4.716Eþ02 {1}
6 6.511Eþ01 {3} 2.089Eþ02 {4} �5.279Eþ02 {1} �5.208Eþ02 {2}
7 0 {1} 0 {1} 2.604E�15 {4} 0 {1}
8 0 {1} 0 {1} 7.831E�14 {4} 0 {1}
9 2.198Eþ00 {1} 3.718Eþ00 {2} 1.072Eþ01 {3} 1.526Eþ04 {4}
10 2.672Eþ01 {1} 2.975Eþ01 {2} 3.326Eþ01 {3} 6.032Eþ03 {4}
11 �3.923E�04 {1} �3.923E�04 {1} �2.864E�04 {3} �1.260E�04 {4}
12 �3.461Eþ00 {2} �3.461Eþ00 {2} 3.562Eþ02 {4} �3.493Eþ00 {1}
13 �5.849Eþ01 {3} �5.473Eþ01 {4} �6.535Eþ01 {1} �6.310Eþ01 {2}
14 0 {1} 0 {1} 3.089E�13 {3} 1.763Eþ03 {4}
15 1.449Eþ01 {1} 1.947Eþ01 {2} 2.160Eþ01 {3} 1.750Eþ04 {4}
16 0 {1} 0 {1} 0 {1} 3.737E�03 {4}
17 0 {1} 0 {1} 6.326Eþ00 {3} 1.344E�02 {4}
18 0 {1} 0 {1} 8.755Eþ01 {4} 1.052Eþ01 {3}

Average of ranks 1.555 2 2.889 2.661

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 35

model but continuous generation model is adopted. Otherwise, the
same operation is applied to the parent only once again.
Step 6 Gradient-based mutation. If xchild is not feasible, or
φ(xchild)40, the child is changed by the gradient-based
mutation with probability Pg until the number of the changes
becomes Rg or xchild becomes feasible. Go back to Step5 and
the next individual is selected as a parent.
Step 7 Control of the ε level. The ε level is updated by the ε level
control function ε(t).
Step 8 Go back to Step4.

References

[1] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained
parameter optimization problems,, Evol. Comput. 4 (1996) 1–32.

[2] T. Takahama, S. Sakai, Constrained optimization by the ε constrained differ-
ential evolution with an archive and gradient-based mutation, in: Proceedings
of the Congress on Evolutionary Computation, 2010, pp. 1–9.

[3] J. Liang, S. Zhigang, L. Zhihui, Coevolutionary comprehensive learning particle
swarm optimizer, in: Proceedings of the Congress on Evolutionary Computa-
tion, 2010, pp. 1–8.

[4] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:
Proceedings of the International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

[5] D.E. Goldberg, Genetic ALgorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Pub. Co., the University of Michigan, 1989 (Reading,
Mass).

[6] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces,, J. Glob. Optim. 11 (1997)
341–359.

[7] N. Hansen, The CMA evolution strategy: a comparing review, Towards New
Evolut. Comput. (2006) 75–102.

[8] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient
methods for optimization,, SIAM J. Optim. 2 (1992) 21–42.

[9] G. Dantzig, Linear Programming and Extensions, Princeton University Press,
New Jersey, 1998.

[10] Z. Michalewicz, A survey of constraint handling techniques in evolutionary
computation methods, Evolut. Program. IV (1995) 135–155.

[11] M.R. Bonyadi, Z. Michalewicz, Locating potentially disjoint feasible regions of a
search space with a particle swarm optimizer, in: K. Deb (Ed.), Evolutionary
Constrained Optimization, Springer-Verlag, To appear, 2014.

[12] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag
Inc., New York, 2004.

[13] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the
International Conference on Neural Networks, 1995, pp. 1942–1948.

[14] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,
maybe better,, IEEE Trans. Evolut. Comput. 8 (2004) 204–210.

[15] M.A. Montes de Oca, T. Stützle, M. Birattari, M. Dorigo, Frankenstein's PSO: a
composite particle swarm optimization algorithm, IEEE Trans. Evolut. Comput.
13 (2009) 1120–1132.

[16] M. Clerc, Particle Swarm Optimization, Wiley ISTE Ltd, UK, 2006.
[17] Y. Shi, R. Eberhart, A modified particle swarm optimizer, World Congr.

Comput. Intell. (1998) 69–73.
[18] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization an overview,,

Swarm Intell. 1 (2007) 33–57.
[19] M. Clerc, J. Kennedy, The particle swarm – explosion, stability, and conver-

gence in a multidimensional complex space, IEEE Trans. Evolut. Comput. 6
(2002) 58–73.

[20] I.C. Trelea, The particle swarm optimization algorithm: convergence analysis
and parameter selection,, Inf. Process. Lett. 85 (2003) 317–325.

[21] F. van den Bergh, A. Engelbrecht, A new locally convergent particle swarm
optimiser, Syst. Man Cybern. (2002) 96–101.

[22] F. Van den Bergh, A.P. Engelbrecht, A convergence proof for the particle swarm
optimiser, Fundam. Inf. 105 (2010) 341–374.

[23] H. Wang, H. Sun, C. Li, S. Rahnamayan, J.-s. Pan, Diversity enhanced particle
swarm optimization with neighborhood search,, Inf. Sci. 223 (2013) 119–135.

[24] M.M. Noel, A new gradient based particle swarm optimization algorithm for
accurate computation of global minimum,, Appl. Soft Comput. 12 (2012)
353–359.

[25] D.N. Wilke, S. Kok, A.A. Groenwold, Comparison of linear and classical velocity
update rules in particle swarm optimization: notes on diversity,, Int. J. Numer.
Methods Eng. 70 (2007) 962–984.

[26] W.M. Spears, D.T. Green, D.F. Spears, Biases in particle swarm optimization,,
Int. J. Swarm Intell. Res. 1 (2010) 34–57.

[27] X. Hu, R. Eberhart, Solving constrained nonlinear optimization problems with
particle swarm optimization, World Multiconf. Syst. Cybern. Inf. (2002)
203–206.

[28] K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method for
constrained optimization problems,, Intell. Technol. – Theory Appl.: New
Trends Intell. Technol. 76 (2002) 214–220.

[29] G. Coath, S.K. Halgamuge, A comparison of constraint-handling methods for
the application of particle swarm optimization to constrained nonlinear

optimization problems, in: Proceedings of the Congress on Evolutionary
Computation, vol. 4, 2003, pp. 2419–2425.

[30] X. Hu, R.C. Eberhart, Y. Shi, Engineering optimization with particle swarm,,
Swarm Intell. Symp. (2003) 53–57.

[31] U. Paquet, A.P. Engelbrecht, A new particle swarm optimiser for linearly
constrained optimisation, in: Proceedings of the Congress on Evolutionary
Computation, 2003, pp. 227–233.

[32] G.T. Pulido, C.A.C. Coello, A constraint-handling mechanism for particle swarm
optimization, in: Proceedings of the Congress on Evolutionary Computation,
2004, pp. 1396–1403.

[33] T. Takahama, S. Sakai, Constrained optimization by ε constrained particle
swarm optimizer with ε-level control, Soft Comput. Transdiscip. Sci. Technol.
(2005) 1019–1029.

[34] J. Liang, P. Suganthan, Dynamic multi-swarm particle swarm optimizer with a
novel constraint-handling mechanism, in: Proceedings of the Congress on
Evolutionary Computation, 2006, pp. 9–16.

[35] T. Takahama, S. Sakai, Solving constrained optimization problems by the ε
constrained particle swarm optimizer with adaptive velocity limit control,
IEEE Conf. Cybern. Intell. Syst. (2006) 1–7.

[36] T. Takahama, S. Sakai, Constrained optimization by the ε constrained differ-
ential evolution with gradient-based mutation and feasible elites, in: Proceed-
ings of the Congress on Evolutionary Computation, 2006, pp. 1–8.

[37] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for
constrained engineering design problems,, Eng. Appl. Artif. Intell. 20 (2007) 89–99.

[38] U. Paquet, A.P. Engelbrecht, Particle swarms for linearly constrained optimisa-
tion,, Fundam. Inf. 76 (2007) 147–170.

[39] R. Brits, A.P. Engelbrecht, F. Van den Bergh, A niching particle swarm
optimizer, in: Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution And Learning, 2002, pp. 692–696.

[40] A. Engelbrecht, B. Masiye, G. Pampard, Niching ability of basic particle swarm
optimization algorithms, Swarm Intell. Symp. (2005) 397–400.

[41] R. Brits, A. Engelbrecht, F. Van den Bergh, Locating multiple optima using
particle swarm optimization, Appl. Math. Comput. 189 (2007) 1859–1883.

[42] X.D. Li, Niching without niching parameters: particle swarm optimization
using a ring topology, IEEE Trans. Evolut. Comput. 14 (2010) 150–169 (Aug).

[43] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation, in: Proceedings of the
Congress on Evolutionary Computation, 1996, pp. 312–317.

[44] R. Mallipeddi, P. Suganthan, Problem definitions and evaluation criteria for the
CEC 2010 Competition on Constrained Real-Parameter Optimization, Nanyang
Technological University, Singapore, Technical Report, 2010.

[45] M.R. Bonyadi, X. Li, Z. Michalewicz, A hybrid particle swarm with velocity
mutation for constraint optimization problems, in: Genetic and Evolutionary
Computation Conference, Amsterdam, The Netherlands, 2013, pp. 1–8.

[46] S.M. Elsayed, R.A. Sarker, D.L. Essam, Multi-operator based evolutionary
algorithms for solving constrained optimization problems, Comput. Op. Res.
38 (2011) 1877–1896.

[47] Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization,
Evolutionary Programming VII (1998) 591–600.

[48] S. Helwig, R. Wanka, Particle swarm optimization in high-dimensional
bounded search spaces,, Swarm Intell. Symp. (2007) 198–205.

[49] F. Van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization
particle trajectories, Inf. Sci. 176 (2006) 937–971.

[50] R. Poli, Mean and variance of the sampling distribution of particle swarm
optimizers during stagnation, IEEE Trans. Evolut. Comput. 13 (2009) 712–721.

[51] M. Clerc, Stagnation Analysis in Particle Swarm Optimisation or What Happens
When Nothing Happens, 2006.

[52] M.-Y. Cheng, K.-Y. Huang, H.-M. Chen, Dynamic guiding particle swarm
optimization with embedded chaotic search for solving multidimensional
problems, Optim. Lett. 6 (2011) 719–729.

[53] Z. Xinchao, A perturbed particle swarm algorithm for numerical optimization,,
Appl. Soft Comput. 10 (2010) 119–124.

[54] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in:
Proceedings of the Congress on Evolutionary Computation, 2002, pp. 1671–1676.

[55] R. Mendes, Population topologies and their influence in particle swarm
performance, Universidade do Minho, 2004.

[56] J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in:
Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 124–129.

[57] H.M. Emara, Adaptive clubs-based particle swarm optimization, in: American
Control Conference 2009, ACC'09, 2009, pp. 5628–5634.

[58] S.M. Elsayed, R.A. Sarker, D.L. Essam, Memetic multi-topology particle swarm
optimizer for constrained optimization, in: Proceedings of the IEEE Congress
on Evolutionary Computation, 2012, pp. 1–8.

[59] M. Newman, A.-L. Barabasi, D.J. Watts, The Structure and Dynamics of
Networks, Princeton University Press, New Jersey, 2006.

[60] Y.-j. Gong and J. Zhang, Small-world particle swarm optimization with
topology adaptation, in: Proceeding of the Fifteenth Annual Conference on
Genetic and Evolutionary Computation Conference, 2013, pp. 25–32.

[61] Y. Cooren, M. Clerc, P. Siarry, Performance evaluation of TRIBES, an adaptive
particle swarm optimization algorithm, Swarm Intell. 3 (2009) 149–178.

[62] S.W. Mahfoud, Niching methods for genetic algorithms, Urbana 51 (1995) 61801.
[63] Z. Michalewicz, C.Z. Janikow, GENOCOP: a genetic algorithm for numerical

optimization problems with linear constraints,, Commun. ACM 39 (1996) 175.
[64] K. Deb, An efficient constraint handling method for genetic algorithms,

Comput. Methods Appl. Mech. Eng. 186 (2000) 311–338.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–3736

http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref1
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref1
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref2
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref2
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref2
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref3
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref3
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref3
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref4
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref4
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref5
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref5
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref6
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref6
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref7
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref7
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref8
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref8
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref8
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref9
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref9
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref10
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref10
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref11
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref11
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref11
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref12
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref13
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref13
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref14
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref14
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref15
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref15
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref15
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref16
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref16
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref17
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref17
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref18
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref18
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref19
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref19
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref20
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref20
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref20
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref21
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref21
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref21
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref22
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref22
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref23
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref23
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref23
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref24
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref24
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref24
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref25
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref25
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref26
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref26
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref26
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref27
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref27
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref27
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref28
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref28
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref29
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref29
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref30
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref30
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref31
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref31
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref32
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref32
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref33
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref33
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref33
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref34
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref34
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref35
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref35
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref36
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref36
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref37
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref37
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref38
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref38
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref38
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref39
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref39
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref40
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref40
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref41
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref41
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref42
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref43
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref43
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref44
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref44

[65] S.L. Campbell, C.D. Meyer, Generalized inverses of linear transformations, Soc.
Ind. Math. (2009).

[66] C.A. Coello Coello, Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art, Comput.
Methods Appl. Mech. Eng. 191 (2002) 1245–1287.

[67] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired
numerical optimization: past present and future, Swarm Evolut. Comput. 1
(2011) 173–194.

[68] D.V. Arnold, N. Hansen, A (1þ1)-CMA-ES for constrained optimisation, in:
Proceedings of the Fourteenth International Conference on Genetic and
Evolutionary Computation Conference, 2012, pp. 297–304.

[69] M.R. Bonyadi, Z. Michalewicz, On the edge of feasibility: a case study of the
particle swarm optimizer, in: Proceedings of the Congress on Evolutionary
Computation, Beijing, China, 2014.

[70] M. Vrahatis, G. Androulakis, G. Manoussakis, A new unconstrained optimiza-
tion method for imprecise function and gradient values,, J. Math. Anal. Appl.
197 (1996) 586–607.

M. Reza Bonyadi et al. / Swarm and Evolutionary Computation 18 (2014) 22–37 37

http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref45
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref45
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref46
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref46
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref46
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref47
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref47
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref47
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref48
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref48
http://refhub.elsevier.com/S2210-6502(14)00040-6/sbref48

	A hybrid particle swarm with a time-adaptive topology for constrained optimization
	Introduction
	Particle swarm optimization
	Some issues in PSO
	Topology in PSO
	Niching in PSO
	PSO for COPs

	Some constraint handling techniques
	The proposed method, its analysis and extensions
	Locating feasible regions
	Analysis and extension of EAPSO
	Topology of EAPSO
	A time-adaptive topology for EAPSO
	Gradient mutation and local search

	Termination conditions
	Comparisons of EAPSO, EAPSO-MG, and ECMA-ES
	Satisfying constraints
	Optimizing objective function

	The hybrid method

	Experiments and comparisons
	Test 1
	Test 2

	Conclusions and future works
	Acknowledgments
	Appendix
	References

