
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005 1

Coevolutionary Optimization of Fuzzy Logic
Intelligence for Strategic Decision Support

Rodney W. Johnson, Michael E. Melich, Zbigniew Michalewicz,

Martin Schmidt

Abstract— We present a description and initial results
of a computer code that coevolves fuzzy logic rules to
play a two-sided zero-sum competitive game. It is based
on the TEMPO Military Planning Game that has been
used to teach resource allocation to over 20,000 students
over the past 40 years. No feasible algorithm for opti-
mal play is known. The coevolved rules, when pitted
against human players, usually win the first few com-
petitions. For reasons not yet understood, the evolved
rules (found in a symmetrical competition) place little
value on information concerning the play of the oppo-
nent.

I. Introduction

The notion of big decisions, those that shape the fu-
ture evolution of a business or organization, frequently
attaches to the word strategic. For example, what a
company chooses to do or avoid doing is shaped by its
answer to the strategic question: Are we a consulting

company or a product company? Or in the case of the
US Navy the question has taken the form: Are we an

organization that provides prompt and sustained oper-

ations at sea, or are we operators of ocean-going naval

combatants?

The allocation of the people, capital, goodwill, and
other assets will be different depending upon which
choice is made. Product companies often expect to
derive revenue streams from a developed set of loyal
customers whose needs are understood through ongo-
ing contact that informs new development and leads to
sales of subsequent generations of products. Product
companies usually see themselves lasting many product
generations and hope to leverage their collective skills

Rodney W. Johnson is with Wayne E. Meyer Institute of Sys-
tems Engineering, Naval Postgraduate School, Monterey, CA
93943, e-mail: rwjohnso@nps.edu.

Michael E. Melich is with Wayne E. Meyer Institute of Systems
Engineering, Naval Postgraduate School, Monterey, CA 93943,
e-mail: melich@alumni.rice.edu.

Zbigniew Michalewicz is with the School of Computer Science,
University of Adelaide, Adelaide, SA 5005, Australia, and Insti-
tute of Computer Science, Polish Academy of Sciences, ul. Or-
dona 21, 01-237 Warsaw, Poland, and Polish-Japanese Institute
of Information Technology, ul. Koszykowa 86, 02-008 Warsaw,
Poland, e-mail: zbyszek@cs.adelaide.edu.au

Martin Schmidt is with SolveIT Software Pty Ltd. PO Box
3161, Adelaide, SA 5000, Australia, and holds an adjunt re-
search fellow position at the School of Computer Science, Uni-
versity of Adelaide, Adelaide, SA 5005, Australia, e-mail: mar-
tin.schmidt@solveitsoftware.com.

to increase margins. Consulting companies often are
not tied to given products and find themselves work-
ing in a fee for service arrangement on their client’s
problem of the moment. Constantly finding new prob-
lems (and new clients) for the next engagement grows
to dominate the marketing effort and tends to limit the
profitability to the profit on hourly charges. Long-lived
consultancies tend to attach to problems such as “ac-
counting standards,” the “tax code,” and other com-
plexes of regulation and custom.

How are strategic questions to be answered? First,
any analysis will ask if there are customers and com-
petitors, and how are they described. Second, whether
the company can profitably obtain and serve the cus-
tomers in the face of the existing and potential com-
petition? Third, what should be done and in what
order to become successful? Easily stated questions —
but difficult to answer. Even describing what consti-
tutes a good choice or set of choices is complicated by
the tens to thousands of different actions that could
be taken. In larger organizations that have had time
to evolve in response to competitive and environmental
pressures, the allocation of effort — the decision — is
most explicitly presented in the budget. But budgets
tend to describe inputs to the organization’s activities
and not the outputs. Businesses fall back on measures
of profitability over some time period as the measure of
their success. Military organizations look to wars and
conflicts to characterize their success. Thus, analyzing
strategic questions can be cast as asking: Will a par-
ticular sequence of investments, expressed as budgets,
over many years produce a successful result in the face
of competition and a changing environment?

Resource allocation in mission- or market-oriented
large enterprises, either government departments or
large businesses, is made difficult by the large number
of possible investment plans that could be considered.
This complexity is in addition to the normal uncertain-
ties associated with a changing environment — chang-
ing competition, technical innovation, etc. For exam-
ple, within the US Department of Defense it is not un-
common for tens of thousands of different categories to
be examined annually. Decisions are then made to al-
locate funds and personnel for the forthcoming budget

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

year as well as projections for six years in the future.
Similar activities and associated complexities are found
in non-governmental organizations [21].

In the early 1960s, the Department of Defense
created a management system, the Planning, Pro-
gramming, and Budgeting System (PPBS) of con-
siderable complexity to rationalize its resource al-
location problems. A major training program was
instituted to teach the PPBS and a “game” was
created by General Electric’s “TEMPO think tank”
to train people in the use of the new system.
The Defense Management Resource Institute (DRMI)
(see www.nps.navy.mil/drmi/98org.htm) has used the
TEMPO game in its courses for nearly 40 years. Over
20,000 students from 125 countries have benefited from
exposure to this game.

We became interested in resource allocation prob-
lems while conducting large scale, multi-nation “fu-
tures” studies. Our studies used scenario methods [30].
An integral part of the multi-year competitive decision
environment was the allocation of national resources
to defense. This forced trade-offs between investment
in economic growth, foreign assistance, education, etc.
This is a very complex set of decisions and we soon re-
alized that we were trimming a very complex decision
tree and had little hope of understanding what other
options might offer. The work presented here reports
one facet of our research program, initiated in 2000,
to deal with aspects of resource allocation problems in
a world where your competitors are also able to make
choices.

II. Coevolutionary Approaches to Games

Games are characterized by rules that describe the
moves each player can make. These moves constitute
the behavior of the players: the manner in which each
allocates his resources. When a player makes a move,
he receives a payoff; usually he tries to maximize the
cumulative payoff over a period of time. In some games,
such as chess, the payoff comes at the end of the game,
but we can imagine a surrogate payoff, or evaluation
function, that correlates with a player’s chances of win-
ning at each point in the course of the game.

Some games are competitive, others are cooperative,
and still others are mixed, depending on the form of
the evaluation function. If, for example, one player is
gaining in payoff and the other player is losing payoff,
it’s a competitive game.

The evaluation function is a key ingredient in a game-
playing system. Sometimes, however, we have no idea
of how to create a good evaluation function; there may
be no clear measure of performance beyond simply
whether you win, lose, or draw.

As indicated in [23], the situation is similar to that of

living creatures in nature, who are consummate prob-
lem solvers, constantly facing the most critical prob-
lem of avoiding being someone else’s lunch. Many of
their defensive and offensive survival strategies are ge-
netically hard-wired. But how did these strategies be-
gin? We can trace similarities across many species.
For example, many animals use cryptic coloration to
blend into their background. They may be only dis-
tantly related, such as the leafy sea dragon and the
chameleon, and yet their strategy is the same: don’t
be noticed. Other animals have learned that there is
“safety in numbers,” including schooling fish and herd
animals such as antelope. Furthermore, herding an-
imals of many species have learned to seek out high
elevations and form a ring looking outwards, so as to
sight predators as early as possible. These complex be-
haviors were learned over many generations of trial and
error, and a great deal of life and death.

This is a process of coevolution. It is not simply
one individual or species against its environment, but
rather individuals against other individuals, each com-
peting for resources in an environment that itself poses
its own threats. Competing individuals use random
variation and selection to seek out survival strategies
that will give them an edge over their opposition. An-
telope learned to form a ring to spot predators more
quickly; predators learned to hunt in teams, and use
the tall grasses of the savanna to mask their approach.
Each innovation from one side may lead to an innova-
tion from another, an “arms race” wherein individuals
evolve to overcome challenges posed by other individ-
uals, which are in turn evolving to overcome new chal-
lenges, and so forth.

Note that the individual antelopes did not gather
in a convention to discuss new ideas on survival and
come up with the strategy of defensive rings on high
ground. Nevertheless, the development of strategies is
unmistakably a process of learning. When instinctual,
they have been accumulated through random variation
and selection, with no evaluation function other than
life and death. The entire genome of the species is
then the learning unit, with individuals as potential
variations on a general theme.

It is not surprising that coevolutionary processes
have been used by many researchers, whether in op-
timization or in game playing.

An example in optimization is Hillis’s now famous
example of minimizing a sorting network: a fixed se-
quence of operations for sorting a fixed-length string of
numbers [15]. By an evolutionary search he had found
a network that sorted 16 numbers with just 65 com-
parisons. Networks were scored on the fraction of all
test cases (unsorted strings) that they sorted correctly.
Hillis then noted that many of the sorting tests were

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 3

too easy and only wasted time. He therefore devised
a method in which two populations coevolved: sorting
networks and sets of test cases. The networks were
scored according to the limited number of test cases
presented (10 to 20), and the test sets were scored on
how well they found problems in the networks. Vari-
ation and selection were applied to both populations;
the test cases became more challenging as the networks
improved. Hillis reported that the coevolutionary ap-
proach avoided stalling at local optima, and that it
eventually found a network comprising only 61 compar-
isons. (This is just 1 short of the best network known
to date, discovered by Green and using 60 comparisons
[19].)

Sebald and Schlenzig studied the design of drug con-
trollers for surgical patients by coevolving a population
of so-called “CMAC” controllers, chosen for effective-
ness, against a population of (simulated) patients, cho-
sen for presenting difficulties [31]. Many researchers
have studied pursuit-evasion games, for example [29],
[6], [9]. Various interesting approaches to constraint-
satisfaction problems are reported in [26], [27], [24],
[20]. With a bit of thought, what would appear to be
a straightforward optimization problem can often be
recast with advantage as a problem of coevolution.

In 1987 Axelrod studied the Iterated Prisoner’s
Dilemma (IPD) by an evolutionary simulation [2].
Strategies were represented as look-up tables giving a
player’s move — cooperate or defect — as a function
of the past 3 moves (at most) on each side. Strate-
gies competed in a round-robin format (everyone plays
against every possible opponent) for 151 moves in each
encounter. The higher-scoring strategies were then fa-
vored for survival using proportional selection, and new
strategies were created by mutation and by one-point
crossover. Axelrod made two observations. First, the
mean score of the survivors decreased in the early gen-
erations, indicating defection, but then rose to a level
indicating that the population had learned to cooper-
ate. Second, many of the strategies that eventually
evolved resembled the simple but effective strategy of
“tit-for-tat” — cooperate on the first move, and then
mirror the opponent’s last move.

In 1993 Fogel studied the effect of changing the rep-
resentation of strategies in the IPD, replacing Axelrod’s
look-up tables with finite state machines [10], [11]. The
results were essentially the same as what Axelrod had
observed. Harrald and Fogel, on the other hand, ob-
served entirely different behavior in a version of IPD
where the player could make moves on a continuous
numeric scale from −1 (complete defection) to 1 (com-
plete cooperation) [14]. Strategies were represented by
artificial neural networks. In the vast majority of trials
payoffs tended to decrease, not increase. Darwen and

Yao observed similar results in a variation of IPD with
eight options, rather than two or a continuous range
[7]. They observed, first, that as the number of options
to play increases, the fraction of the total game matrix
that is explored decreases. Second, when the IPD had
more choices, strategies evolved into two types, where
the two types depended on each other for high pay-
offs and did not necessarily receive high payoffs when
playing against members of their own type.

These observations are very interesting, yet they per-
haps do not fully explain the degradation in payoff that
is seen when a continuous range of options is employed.
Hundreds of papers about the prisoner’s dilemma are
written each year, and very many of the contributions
to this literature have involved evolutionary algorithms
in different forms. These and many other studies indi-
cate the potential for using coevolutionary simulation
to study the emergence of strategies in simple and com-
plex games.

In the late 1990s and into 2000, Chellapilla and Fogel
[3], [4], [5] implemented a coevolutionary system that
taught itself to play checkers at a level on par with
human experts. The system worked like this. Each
position was represented as a vector of 32 components,
corresponding to the available positions on the board.
Components could take on values from {−K, −1, 0,
+1, K}, where K was an evolvable real value assigned
to a king, and 1 was the value for a regular checker.
A 0 represented an empty square, positive values in-
dicated pieces belonging to the player, and negative
values were for the opponent’s pieces. The vector com-
ponents served as inputs to a neural network with an in-
put layer, multiple hidden layers, and an output node.
The output value served as a static evaluation function
for positions — the more positive the value, the more
the neural network “liked” the position, and the more
negative, the more it “disliked” the position. Minimax
was used to select the best move at each play based on
the evaluations from the neural network.

The coevolutionary system started with a population
of 15 neural networks, each having its weighted connec-
tions and K value set at random. Each of the 15 parent
networks created an offspring through mutation of the
weights and K value, and then the 30 neural networks
competed in games of checkers. Points were awarded
for winning (+1), losing (−2), or drawing (0). The 15
highest-scoring networks were selected as parents for
the next generation, with this process of coevolution-
ary self-play iterating for hundreds of generations. The
networks did not receive feedback about specific games
or external judgments on the quality of moves. The
only feedback was an aggregate score for a series of
games.

The best neural network evolved (at generation

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

840) was tested by hand, using the screen name
“Blondie24,” against real people playing over the In-
ternet in a free checkers website. After 165 games,
Blondie24 was rated in the top 500 of 120,000 regis-
tered players on the site. The details of this research
are in [3], [4], [5], [12].

There are 1020 possible positions in checkers, far too
many to enumerate, and checkers remains an unsolved
game: nobody knows for sure whether the game is a
win for red, a win for white, or a draw. Chess, at
1064 positions, is still further from being solved. But
Fogel and Hays have combined neural networks and
coevolution to create a grandmaster-level chess-playing
program, again without giving the simulated players
any feedback about specific games [13].

Coevolution can be a versatile method for optimizing
solutions to complex games, and a reasonable choice
for exploring for useful strategies when there is little
available information about the domain.

III. The TEMPO game

The TEMPO Military Planning Game is a two-sided
zero-sum competitive game. Teams of players compete
in building force structures by dividing limited budgets,
over a succession of budgeting periods (“years”) be-
tween categories such as “acquisition” and “operation”
of “offensive units” and “defensive units.” The rules
are no more complex than the rules of, say, Monopoly.
However, players learn that the rules’ apparent sim-
plicity is deceptive: they pose challenging and difficult
decision problems. No feasible algorithm for optimal
play is known.

The full set of investment categories for the TEMPO
game comprises: (1) operation of existing forces, (2)
acquisition of additional or modified forces, (3) re-
search and development (“R&D”), (4) intelligence, (5)
counter-intelligence.

There are four types of forces: two offensive (“Offen-
sive A and B”) and two defensive (“Defensive A and
B”). Each type comprises several weapon systems with
varying acquisition and operation costs (measured in
“dollars”), measures of effectiveness (in “utils”), and
dates of availability (in “years”). A team’s objective
is to maximize its total “net offensive utils.” A team’s
net offensive utils of type A are the total utils for its op-
erating Offensive A units, minus the opposing team’s
Defensive A, but not less than zero, and likewise for
type B. Thus there is no advantage in investing more in
a defensive system than is necessary to counter the op-
ponent’s offensive systems of the same type. A team’s
total net offensive utils are the sum of its net offensive
utils of types A and B.

R&D is current investment that buys the possibility
in a future year of acquiring new weapon systems, pos-

sibly with better price/performance ratios than those
now available. Investment in intelligence buys infor-
mation about the opponent’s operating forces and in-
vestment activities. Investment in counter-intelligence
degrades the information the opponent obtains through
intelligence.

Every year the probability of war (PWar) is an-
nounced. When this is low, players may well decide
to invest heavily in R&D and acquisition of new units;
when it is high, they may prefer to concentrate on op-
erating existing units.

IV. Initial experiments

In 2000 we performed experiments aimed at seeing
whether with evolutionary methods we could obtain
reasonable players for a TEMPO-like game. Being
mindful of the usual tradeoff between programming
convenience and execution speed, we began with a Lisp
implementation, using Koza’s Simple Lisp Code for Ge-
netic Programming [18] before deciding to invest sub-
stantial programming effort. We used a very rudimen-
tary version of the TEMPO game. There were only one
offensive and one defensive weapon system (“OA1” and
“DA1”). R&D was eliminated; however the operating
and acquisition costs of the systems could vary from
year to year. Intelligence and counter-intelligence were
also eliminated, but each player was given the oppo-
nent’s current inventory of the two weapon systems. A
game ended with the outbreak of war, or after a speci-
fied number of years (typically 10). Finally, utils were
equated with units, i.e., the util values were set at 1
per unit. This meant that operating and acquisition
costs were effectively given in dollars per util, and op-
erating and acquisition decisions could be made with a
granularity of 1 util.

Koza’s Simple Lisp Code is a generational, tree-
based genetic-programming kernel written in Common
Lisp. Individuals (candidate algorithms) are repre-
sented as computer programs in a simple Lisp-like lan-
guage, written in terms of user-specified terminals (con-
stants and variables) and functions. In addition to (1)
the set of terminals and (2) the set of functions, the
user must specify (3) the fitness measure, (4) a set of
fitness cases, (5) a termination condition, and (6) a set
of GP parameters such as population size and proba-
bility of mutation.

For the rudimentary TEMPO game, the terminals
were random floating-point constants and variables de-
scribing the current state of the game. State variables
included the current total available budget, PWar, cur-
rent acquisition limits, prices, and operating costs for
the offensive and defensive units, and both the player’s
and the opponent’s current inventories of these units.

The function set included operations that attempt

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 5

to allocate funds for the coming budgeting period to
acquisition and operation of the offensive and defen-
sive units. For example (AcOA1 u) allocates funds to
acquiring at most u units of “Offensive A1,” subject
to constraints: the number of units is a nonnegative
integer, total expenditures do not exceed the available
budget, and total units acquired do not exceed the ac-
quisition limit for OA1. Arguments u that attempt
to violate these constraints incur a penalty; for exam-
ple, if the requested number of units would exceed the
acquisition limit, the player receives only the allowed
number of units, but the budget is still decremented by
the total cost of the number requested. Besides these
TEMPO-specific operations, the function set included
the elementary arithmetic operations (+,−,×,÷) and
two general programming constructs: (if3 n x y z) eval-
uates n and then, depending on whether the result is
negative, zero, or positive, evaluates and returns the
value of x, y, or z; and (progn3 x y z) evaluates its
three arguments in order and returns the value of the
last.

Investment algorithms were evaluated for fitness by
pitting each in games against a selection of others from
the same population and adding up penalties according
to the result: 0 for a win, 1/2 for a draw, and 1 for a
loss. For simplicity, the fitness was 1/(1+F), where F
is the sum of the penalties.

A fitness case consisted of initial inventories of the
two weapon systems, the maximum number of game
years, and initial values, rates of increase or decrease,
and volatilities for the budget, PWar (actually the cor-
responding odds) and the acquisition costs, acquisi-
tion limits, and operating costs of the weapon systems.
(These latter parameters were updated from year to
year within each game by random factors drawn from
lognormal distributions determined by the correspond-
ing rates of change and volatilities.) Six fitness cases
were defined, and each player was evaluated by one
game (each with a different opponent) for each fitness
case.

The termination criterion for evolution was simply
reaching the specified number of generations.

The main GP parameters for the run reported here
were: population 12,000, number of generations 100,
and the following probabilities for reproduction meth-
ods: crossover 0.89, copying 0.10, and mutation 0.01.
Other parameters included method of selection (fitness-
proportionate) and method of generation (ramped half-
and-half, see [18] for the definition).

The question was whether anything reasonable
would emerge in such a simple framework. And in-
deed, starting from an initial generation of completely
random programs, an algorithm was evolved that al-
located funds according to rudimentary sensible rules,

which can be characterized as “dumb, but not crazy.”
If the budget and inventories are adequate, it is equiv-
alent to:
(OPOA1 OA1INV)
(ACDA1 DA1ACLIM)
(OPDA1 DA1INV)
(ACOA1 OA1ACLIM)
Here OP means “operate,” AC means “acquire,” INV
is “inventory,” and ACLIM is “acquisition limit.” Thus
the algorithm would not attempt to acquire units be-
yond the appropriate acquisition limits or to operate
units beyond the number in inventory. The actual code
was nearly 100 lines of Lisp, mostly introns, which some
hand editing reduced to:
(OPOA1 OA1INV)
(IF3 (+ PWAR BUDGET) 0 0

(PROGN
(ACDA1 DA1ACLIM)
(IF3

(OPDA1
(IF3 DA1INV

DA1ACCOST
(OPDA1 DA1ACLIM)
DA1INV))

0
(OPOA1 OA1OPCOST)
(ACOA1 OA1ACLIM))))

This incorporates a check to ensure that an initial
allocation to operation of offensive units has not ex-
hausted available funds (by more than a fractional dol-
lar) before further allocations are attempted. This re-
sult took just under 10 hours to obtain on a Pentium
III processor.

We did not pursue the Lisp route further. We found
this last result sufficiently encouraging to proceed to a
C++ program and to a more substantial subset of the
TEMPO game.

V. Design of a New System

In an attempt to improve the evolution of human
readable rules we attempted to design a coevolutionary
system that evolves fuzzy logic rule-bases to play the
TEMPO game.

There have been two basic approaches to such evo-
lution of readable fuzzy logic rule-bases:
• Interpretability-oriented approach, where rules are
based on symbols and then the symbols are translated
into crisp/numeric values for the membership func-
tions, the inference system, and the output member-
ship function.
• Precision-oriented approach, where rules are based
on crisp numbers that define all membership functions
but then the rules have to be translated into more hu-
man interpretable form. Such translation would not

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

take place during the fuzzy logic calculations but only
to output some more human readable rules.

As stated in [8]:

“There is a well-known tradeoff between numerical ac-
curacy and linguistic interpretability. This tradeoff is
the consequence of a well-known limitation of the hu-
man brain to represent a limited number of categories
on a given domain. [...] On the other hand, the numer-
ical accuracy is very important in the implementation
of policies and control actions oriented to obtain a de-
sired result from the system. This issue of accuracy is
very critical when the models are used in dynamic way,
where the predicted value is fed back and the small er-
rors will be propagated and reflected as errors in the
long term prediction.”

The interpretability-oriented approach evolves read-
able rules yet the translation to crisp numbers via mem-
bership functions has to be defined. On the other hand,
the precision-oriented approach is easy for internal cal-
culations but readable rules have to be created at the
end by a translation into more human readable rules.
For both approaches there are techniques to reinforce
the “missing” aspect (e.g., [32], [28], [8]).

In our design, a precision-oriented approach was cho-
sen. Hence, the evolved rules are inherently crisp and
“numerical” on the genotype level, which means that
the evolutionary optimization works directly on the
crisp parameters. The internal calculations still use
fuzzy logic for all calculations, yet the evolved mem-
bership functions are based on numerical parameters.
The translation of such exact rules will be explained in
details later but is inherently a uniformly spaced seg-
mentation of input ranges into symbols like “very low,”
“low,” “medium,” “high,” and “very high.” These
symbols are then used for humans to attempt to un-
derstand why a fuzzy logic rule-base performs well or
not (whatever the case might be). The new system has
the following features:

Each individual can encode a maximum of w rules
for acquiring and operating weapons (called “weapon
rules”) and q rules for buying intelligence or counter-
intelligence (called “intel rules”).

The chromosome is based on the structure given in
Figure 1.

There are m = w + q rules altogether; each Rulei is
built from several fields (Figure 1 expands Rule3):

• U3 is a Boolean defining whether the rule Rule3 is
used,
• Bi3 are Booleans defining whether input i is used,
• Ci3 are centers of the Gaussian in range [0, 1] for
input i,
• Si3 are sigmas of the Gaussian in range [0,∞) for
input i, and

Rule Rule RuleRule
1 2 3 m

. . .

. . .B C SU B C S B C S Y
3 313 13 13 23 23 23 n3 n3 n3

Fig. 1. A structure of a chromosome

• Y3 is the output in range [0, 1] of rule Rule3.
There is one rule set for weapon allocations and a sec-
ond similar rule set for buying intelligence. The first
set has a total number of floating-point genes equal
to w(1 + 3nw + 1); for the second set, the number is
q(1 + 3nq + 1) (see Figure 1). The parameters of the
weapon rule set used in the initial runs with fuzzy-
logic system reported further in the paper were w = 34
and nw = 15.1 The intelligence rule set used q = 16
and nq = 7.2 The complete chromosome was encoded
as one string of floating point numbers (booleans were
represented as floating point numbers as well).

We use the Mamdani fuzzy logic system with
Gaussian membership functions,3 singleton fuzzyfier,
product operation rule for fuzzy AND, and center of
average defuzzyfication.

The weapon rules assign a value (a “desirability”)
to each weapon system; the intel rules assign a value
to each intelligence/counter-intelligence category. The
budget is allocated by linear scaling of these values,
followed by normalization in order not to exceed the
available budget.

We use two populations, X and Y, each consist-
ing of pop size individuals. This was 200 for the
initial runs mentioned, with a fixed genotype length

1Note again, that each rule can use one or more of the available
environmental parameters for weapon allocation and intelligence
gathering. The environmental weapon related parameters are:
probability of war, budget, weapon category (offensive or de-
fensive), weapon type (A or B), weapon subtype (0, 1, 2, etc.),
initial units available, maximum number of units available for ac-
quisition, acquisition cost per unit, operations cost per unit, utils
(i.e., effectiveness of weapon), utils per operation cost, utils per
acquisition cost, year available, enemy offensive force change, and
enemy defensive force change; so altogether there are nw = 15
environmental weapon related parameters (maximum number of
weapon inputs).

2The environmental intelligence related parameters are: prob-
ability of war, budget, intelligence category, offensive and de-
fensive force change for weapon types A and B; so altogether
there are nq = 7 environmental intelligence related parameters
(maximum number of intelligence inputs).

3We use one Gaussian spreading parameter for each input.

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 7

l = 34(1 + 3 · 15 + 1) + 16(1 + 3 · 7 + 1) = 1, 966.
The decoded phenotype has a varying number of rules
and membership functions4 with a maximum number
(given by the maximum length l of the chromosome).

Note that the fitness function created for the intial
experiments (and discussed in section IV of the pa-
per), was defined just as 1/(1 + F). It did not involve
utilities; its value was determined by the number of
wins, draws, and losses in a number of games. For the
new system, a new fitness function was implemented
that created more dragging towards improved and more
compact rules. This required more gradual control by
the evolutionary algorithm over the complexity of the
rule-base. More precisely, the fitness f of an individual
is calculated as follows.

Each individual from each population is evaluated by
letting it compete against o randomly chosen opponents
from the other population. (For the initial runs we
had o = 200.) Thus each individual from population
X plays o games against opponents from Y and also
has the expectation of being chosen at random about
o times to serve as an opponent for a player from Y.
That is, a player from X plays at least o games, but the
expected number is 2o games, all of which contribute
to the fitness score of X. The same is true of each player
from Y. The fitness of each individual is computed from
its average “net offensive utils” and average number of
games won, with a penalty term that is linear in the
number of parameters and rules used by the fuzzy logic
system (for “pruning”). More precisely, the fitness f of
an individual is calculated as follows:

f = k · r + u − p · (w + wi/nw) − p · (g + gi/nq),

where r is the average number of wins (per game
played), u is the average net offensive utils, w is the
total number of weapon rules used, wi is the total num-
ber of weapon inputs used, g is the total number of
intelligence rules used, gi is the total number of intel-
ligence inputs used, nw = 15 is the maximum number
of weapon inputs, nq = 7 is the maximum number of
intelligence inputs. The chosen penalty constants were
k = 108, and p = 106.5

The components and constants included in the fit-
ness function have the following roles:

• k · r should maximize the average number of games
won by maximizing r.
• u should maximize the average net offensive utils (per
game).

4Rules and inputs can be “pruned,” i.e., be “NULL” and hence
not used. Pruning reduced the effect of overlearning. The fit-
ness reflects that a smaller rule-base is preferable using a static
penalty approach.

5Parameter values were determined by preliminary experimen-
tation.

• p · (w + wi/nw) should minimize the total number of
weapon rules used w and minimize the total number
of weapon inputs used by weapon rules (expressed as a
fraction wi/nw).
• p · (g + gi/nq) should minimize the total number of
intelligence rules used g and minimize the number of
inputs used by intelligence rules (expressed as a fraction
gi/nq).

Note that the fitness f is constructed in such a way
that its major component is the average number r of
wins; the constant k is set so that simply winning is
given much greater weight than sometimes winning by
a large margin u. In other words, it is “better” to win
10 games by a small margin than winning 9 games by
large margins and losing one game (even by a small
margin). The constant p, on the other hand, is a pro-
lixity penalty that controls the degree of parsimony
pressure. Hence, more well-performing and compact
rule-bases are preferred during the evolution, which is
more in accordance to the well-known Ockhams Ra-
zor principle.6 As the constant p is set two orders of
magnitude lower than k, again, winning is much more
important than simplicity of rules.

The mutation operator could perform either small
or large mutations of each parameter (floating point
number) with a probability pmut = 0.7. If mutation
is selected then each gene has a probably of 0.5 to be
mutated. If a gene is selected for mutation then there
is a fixed probability of 0.1 for a “big mutation” and
0.9 for a “small mutation.” A “big mutation” adds a
random number in range [−d,+d] to the gene, while
the “small mutation” adds a random number in range
[−d/10,+d/10] (d = 0.1 is used). Notice that it might
seem like overly strong mutation, but due to unex-
pressed parts of the chromosome which are not trans-
lated to the phenotype there are many unused intron-
like segments in the chromosome.

The crossover operator is a standard two-point
crossover with pcross = 0.3.

For each population the environment changes from
game to game, i.e., available weapons and effectiveness
and prices change. This results in a dynamically chang-
ing environment in which the rule-bases have to make
budget allocations.

Starting from random populations the coevolution-
ary system develops interesting fuzzy logic rule-bases.
In order to get an understanding of some kind of “ab-
solute” performance, the best-performing individual is
played against a static “expert” based on simple heuris-

6Of two equivalent theories or explanations, all other things
being equal, the simpler one is to be preferred.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

tics (expressed as fuzzy logic rules).7 The “expert” uses
the following rules:

if [UtilsPerOperationCost IS Very Low – Low]
then [Evaluation IS Very Low]

if [UtilsPerOperationCost IS Low – High]
then [Evaluation IS Medium]

if [UtilsPerOperationCost IS High – Very High]
then [Evaluation IS Very High]
In other words, the “expert” looks at the effectiveness
of each weapon only and disregards any other available
information. The performance against the “expert” is
not included in any fitness calculations but is used to
understand the quality of the evolved rule-bases during
the evolution.

The rules can be presented in a form that can be
understood easily by humans, which is one reason for
choosing fuzzy logic. Here is an example:
RULE 1:

if [PWar IS Very Low – Low]
[CATEGORY IS DEFENSIVE]
[SUBTYPE IS 1 OR 2]
[Inventory IS Low]
[MaxAcquisitonUnits IS Low – Medium]
[AcquisitionCost IS Very Low]
[UtilsPerAcquisitionCost IS Very Low – Low]

then [Evaluation IS Low]
The terms of the “if” part refer to seven of the envi-

ronment variables that are available for constructing a
weapon rule. A term such as “AcquisitionCost IS Very
Low” refers to the degree of membership of the acqui-
sition cost in a certain fuzzy set represented internally
by a Gaussian membership function with a given cen-
ter c and standard deviation σ. The program uses the
actual numeric values of c and σ internally, and these
are the quantities that mutation and crossover oper-
ate on. But for the human reader, expressions such as
“Very Low” are presented, and are presumably more
palatable than a pair of floating-point numbers.

The ranges of meaningful acquisition costs (normal-
ized to the interval [0, 1]) are divided into subranges
running from “Very Low” to “Very High” in the fol-
lowing way: “Very Low” refers to the range [0, 1/8],
“Low” to the range (1/8, 3/8], “Medium” to the range
(3/8, 5/8], “High” to the range (5/8, 7/8], and “Very
High” to the range (7/8, 1]. The reason for this split-
up is that the “imaginary center” for each category

7We use the term “expert” as applicable to any system that
incorporated rules of thumb derived by consultation with human
experts, regardless of whether the system actually exhibited any
particular level of expertise. Our “expert” incorporates a rule
of thumb that human players find useful (e.g., “more bang per
buck is better”) but we do not actually claim that it a very
strong player. It wins handily in the early generations, against
opponents that play more or less at random, but within the first
hundred generations or so, evolved players usually arise that can
beat the “expert” more than half the time.

is placed as follows: “Very Low” is at 0, “Low” is
at 1/4, “Medium” is at 1/2, “High” is at 3/4, and
“Very High” is at 1. Hence, the imaginary category
centers have maximum distance to each other. A point
in [0, 1] is assigned to the category with the closest cen-
ter. The human-readable output is generated using the
categories of the points c ± σ. If these are in the same
category, a single label is used. In the example, the
entire central part (width 2σ) of the Gaussian for Ac-
quisitionCost falls in the category “Very Low.” A term
such “AcquisitionCost IS Very Low – Low” would have
been used if the points c± σ had been in different cat-
egories.

The “Evaluation IS Low” in the “then” part of the
rule refers to a “desirability” value. Again the program
uses a specific number. The human reader is told that
the number is in the low subrange of possible desirabil-
ity values (the same category limits are used as for the
“if” part).

In addition to the developed coevolutionary system,
there is a game system that lets a human player play
against a saved individual. The computer distributes
its budget according to its rule base, while the hu-
man player interacts with the game system, currently
through a spreadsheet interface.

VI. New Experiments

Initial experience with the coevolution code imme-
diately demonstrated the utility of the approach — it
proceeded to win first games with most of those who
played against the derived rules. It was also clear early
on, that the coevolved rules did not value information
about the opponent’s choices. That is, no rules for buy-
ing intelligence or counter-intelligence were of sufficient
value to be included in the evolved set. Similar behav-
ior had been seen in the play of the TEMPO paper
game when we were using it to teach our students. We
attributed this either to avoidance of excessive inputs
— a common human strategy for coping with informa-
tion overload — or to the “gaming of the game” that
occurs when you know approximately when the game
will be over. Another possibility was that since the
initial version of the TEMPO code provided informa-
tion that was not quantitative on what the opponent
was getting with the investments made, there was truly
little value.

We did some preliminary investigations to determine
if we could configure the game so that there might be
value to buying intelligence. We gave player X a larger
budget and immediate access to all weapons as they
became available, while player Y had a smaller budget
and was delayed one year in having investment oppor-
tunity on the various weapons. This coupled with a
reduction in the prolixity penalty did produce a few

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 9

“weak” rules for the purchase of intelligence by the dis-
advantaged player.

We also modified the rule inputs to enhance the value
of the information a player could obtain by buying intel.
A rule input was provided indicating whether the oppo-
nent had bought counterintelligence. The opponent’s
operating forces were given in total utils rather than
number of weapon units and these values were given as
absolute current values, rather than as changes relative
to the previous year. This last change was motivated
by the fact that the rules incorporate no “memory” of
previous years’ decisions. Finally, an input giving the
initially available number of units of a weapon system
was replaced with one giving the player’s current in-
ventory.

The results of a coevolution have been used in a
course at NPS, “Economics for Defense Managers.”
Students played the game on line through the spread-
sheet interface. Many of the students needed three or
four tries before achieving an outcome that they were
willing to submit for grading. Thus we continue to see
human-competitive play in the coevolved rules. One
of our colleagues, an economist with previous experi-
ence with the DRMI paper form of the game, was able
through prolonged and concerted effort to beat the ma-
chine by a small margin on a first try. During play, he
was ascribing all manner of sophisticated motivations
to the machine for its moves. He was dismayed to learn
afterward that he had been competing against a set of
precisely three rules: the one shown above in section V
and the following two others.

RULE 2:
if [Budget IS Low – Medium]

[EnemyCounterintel IS NOT BOUGHT]
[SUBTYPE IS 1]
[Utils IS Low]
[UtilsPerAcquisitionCost IS Very High]
[YearAvailable IS Medium]

then [Evaluation IS Low]

RULE 3:
if [Budget IS Low]

[CATEGORY IS OFFENSIVE]
[TYPE IS B]
[Utils IS Very High]
[YearAvailable IS Medium - High]
[EnemyOffensiveUtils IS Unkn. OR Very Low]
[EnemyDefensiveUtils IS Unkn. OR Very Low]

then [Evaluation IS Very High]

Such a low number of rules is not atypical. The above
three rules (RULE1, RULE2, and RULE3) constitute
a complete rule-base after a completed coevolutionary
run. However, it was a bit surprising that the system

did not evolve any “intelligence rules.” We were hoping
to see rules like:

RULE 4:
if [PWar IS Low]

[IntelligenceCategory IS OffensiveForceIntel]
then [Evaluation IS High]

However, we did not get any (we return to this topic
later in the paper).

Some analysis revealed that RULE1 acts as a base-
line rule stating that unless a weapon has special char-
acteristics it is not worth investing in. RULE2 states
that certain defense weapons are worth investing in. It
might seem counter-intuitive that this is the case since
both RULE1 and RULE2 state “Evaluation IS Low,”
but analysis revealed that the Evaluation from RULE1
is significantly lower than from RULE2. Both have
the same human-readable output “Evaluation IS Low”
but the actual value in the phenotype is very different.
Hence, this is an example where the human-readable
output can actually be misleading the interpretation of
the rule-base. RULE3 on the other hand declares that
certain offensive weapons are desirable.

Figure 2 shows how the number of rules used by the
best player during the coevolution varied over the first
600 generation. The actual run went to generation
1927, but instances of 3-rule best players were already
appearing before generation 500.

0 100 200 300 400 500 600
0

5

10

15

20

25

Generation

U
se

d
R

ul
es

Fig. 2. Number of rules used by best player as a function of
generation number

Figure 3 shows how the performance of the best
player, playing against the static “expert,” varied over
the first 600 generations.

0 100 200 300 400 500 600
−4

0

4

8

Generation

Fi
tn

es
s

vs
 E

xp
 (1

07)

Fig. 3. Fitness of best player, playing against “expert,” as a
function of generation number

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

Each player’s fitness was computed from the out-
comes of o = 100 games against the “expert.”

The initial efforts had immediately highlighted an-
other problem. It had taken approximately 2 weeks
of computation on a single 3 GHz processor to coe-
volve the initial rules. To properly investigate issues
of the sort just described would require faster com-
putational turnaround. We embarked on porting the
coevolutionary code to the Processing Graph Method
Tool (PGMT), a parallel computing program support
system developed at the Naval Research Laboratory
(see [17], [1]). An application under PGMT is rep-
resented as a data-flow graph (similar to a Petri net)
whose processing nodes can run in parallel on sepa-
rate processors. The mapping of nodes to physical
processors takes place at runtime. This flexibility facil-
itates moving an application, without rewriting, from
one parallel-processing system to a very different one
— from a small, heterogeneous network of worksta-
tions, say, to a large, homogeneous, high-performance
shared-memory multi-processor system. (TEMPO ex-
amples were run on two machines of the latter type at
NRL’s Distributed Center for High Performance Com-
puting: Silicon Graphics Origin 3800 and Altix sys-
tems. We have also installed PGMT on a cluster at
UNC-Charlotte and conducted runs there).

With the availability of the PGMT port, we are be-
ginning to be able to experiment with somewhat larger
problems than previously, in particular to increase the
number of weapon systems from two to a dozen or so.
Doing so, with further relaxation of parsimony pres-
sure, seems to encourage appearance of rule sets (now
larger than three rules) containing intel rules with High
or Very High in their “then” parts.

We have done a few runs varying just the prolixity
setting p. This (unsurprisingly) confirmed the expec-
tation that the average number of used rules tends to
be lower when the prolixity setting is higher.8 To track
convergence of runs we have also been recording diver-
sity levels of both populations during a run. The diver-
sity measure is computed as follows. Let P = pop size
be the number of individuals in the population and G
be the number of genes in the rule set, and let xig

(0 ≤ i < P , 0 ≤ g < G) be the floating-point gene
value for gene number g of individual i. Define the
average ag of gene number g over the population by

ag = (1/P)
∑P

i=0 xig.
Then the diversity d is the average magnitude of the
difference of the gene values from the mean:
d = (1/PG)

∑P

i=0

∑G

g=0 |xig − ag|.
Figures 4 and 5 display the diversity of the two com-
peting populations (players X and Y, respectively)

8Prolixity settings of 103, 104, 105, and 106 resulted in the
number of rules decreasing from about 30 to about 4.

for three single runs in which we varied the prolixity
penalty. Each figure contains three plots, one of each
setting of the prolixity penalty p.

0 500 1000 1500 2000
0

100

200

300

400

500

Generation Number

D
iv

er
si

ty
 o

f P
op

ul
at

io
n

X

Prolixity 1e5
Prolixity 1e4
Prolixity 1e3

Fig. 4. Diversity of the first population as a function of genera-
tion number

0 500 1000 1500 2000
0

100

200

300

400

500

Generation Number

D
iv

er
si

ty
 o

f P
op

ul
at

io
n

Y

Prolixity 1e5
Prolixity 1e4
Prolixity 1e3

Fig. 5. Diversity of the second population as a function of gen-
eration number

We were hoping to see a relationship between diver-
sity of the population and the prolixity level, but none
is apparent in the two figures. The population diversity
decreased with the number of generations until some
equilibrium appeared to be reached. But the apparent
equilibrium values do not go monotonically with pro-
lixity, nor is the ordering consistent between the two
figures. In fact the diversities in the two populations
may stay quite apart from each other: while the dashed
line in figure 5, for example, hovers around 120, that
in figure 4 stays near 300. We currently do not under-
stand fully this relationship; investigations are under
way to analyze and explain it. However, there is con-
siderable variability from run to run — Figure 6 shows

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 11

the solid line from Figure 4 (prolixity 1e5) together
with four other traces: the results of four other runs
with the same parameters. This variability indicates
that any systematic correlation between prolixity and
divergence is likely to be washed out in the random
variation from run to run. Moreover, further exper-
iments described below, though undertaken for other
reasons than to study the relation between prolixity
penalty and diversity, have revealed that the conver-
gence properties of the coevolutionary system are not
as simple as they appeared.

0 500 1000 1500 2000
0

100

200

300

400

500

Generation Number

D
iv

er
si

ty
 o

f P
op

ul
at

io
n

X

Fig. 6. Diversity of the first population — five runs

Our most ambitious run to date has used 12 weapon
types (A, B,...,L), or 72 weapon systems in all, and has
run for over 17,000 generations with a population of
2,500. (The prolixity penalty was p = 105.) The di-
versity of the two populations is plotted as a function
of generation number in Figure 7. In contrast to the
behavior shown in Figures 4 and 5 the diversities, after
apparently converging over the first few hundred gen-
erations, then start to peak up again, reaching a max-
imum for player Y at about 7,000 generations before
starting to drop off again. It is somewhat surprising
that the diversity reaches values greater than the orig-
inal random population, but we do have evidence that
some of the Gaussian centers are drifting out of the
ranges in which they were originally randomly chosen.

Apparently, after an initial shakeout in which the
“losers” are replaced, some rule-sets get recombined or
mutated, creating innovation that leads to an increase
in diversity. If one strategy is “better” that means it
exploits a weakness of the opposition. If that happens,
the “better” strategy may start to dominate the pop-
ulation, reducing diversity. Then the opposing pop-
ulation may find a good specific defense and start to
defeat the former “better” solution. This flip-flopping
may continue ad infinitum.

0 3000 6000 9000 12000 15000 18000
0

200

400

600

800

1000

Generation Number

D
iv

e
rs

ity

Population X
Population Y

Fig. 7. Diversity of both populations as a function of generation
number (run with 12 weapon types)

The following plot is for a run in which we var-
ied the ratios of crossover to mutation (pcross/pmut)
from 0.3/0.7 to 0.7/0.3. Otherwise the distribution of
weapon characteristics and the evolution parameters
were as in the run of Figure 7.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

Generation Number

D
iv

er
si

ty

Population X
Population Y

Fig. 8. Diversity of both populations as a function of generation
number (run with modified pcross/pmut)

The next two plots are from two long runs, with 2
weapon types, in which we attempted to promote in-
tel purchase by (a) lowering the costs of intelligence
and counterintelligence to make them essentially free
(Figure 9) or (b) making intelligence essentially free
but making counterintelligence prohibitively expensive
(Figure 10).

An observation: It is not hard to see that, at least
when there are 3 or more weapon types, non-transitive
orderings of strategies can occur. Consider a player
who buys Offensive A and Defensive B versus a player

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

1200

1400

1600

1800

Generation Number

D
iv

e
rs

ity

Population X
Population Y

Fig. 9. Diversity of both populations as a function of generation
number (run with “free” intelligence and counterintelligence)

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

1200

1400

1600

1800

Generation Number

D
iv

e
rs

ity

Population X
Population Y

Fig. 10. Diversity of both populations as a function of genera-
tion number (run with “free” intelligence and unaffordable
counterintelligence)

who buys Offensive B and Defensive C. The first player
will get credit for all his offensive utils, and his defense
will counter some of the second player’s offense. The
second player will get credit for only part of his of-
fensive utils, and his defense will be wasted. But the
second player will similarly win against a player who
buys Offensive C and Defensive A. And the latter will
in turn beat the original player who bought Offensive
A and Defensive B.

One of our colleagues (Mike Sovereign, an economist)
played against the best player from generation 11,106
of population Y of the run of figure 7. He observed
that the machine player was playing an absolutely bal-
anced strategy, allocating equal amounts to each offen-
sive type, and equal amounts to each defensive type.
The machine player never bought intel/counterintel,

despite the fact that the intel rule-set contained a rule
with a higher desirability value in its right-hand side
than any rule in the weapon-rule set. Sovereign could
therefore see its allocations at every stage. He also
played a balanced strategy for several rounds, wait-
ing to see whether the machine player would break the
symmetry. He finally concentrated a fair number of
utils in a single offensive system and shortly thereafter
won by essentially the number of excess utils in that
offensive type.

Another colleague (Chip Franck, another economist)
speculated that what is going on with regard to the
diversity is this: We know from the theory of 2-person
0-sum games that if one adopts an optimal (minmax)
mixed strategy, then it doesn’t matter what the op-
ponent does (as long as he avoids dominated strate-
gies). (For example, in rock-paper-scissors, if one plays
the three moves randomly with probabilities (1/3, 1/3,
1/3) then there is a guaranteed expected outcome of
1/3 wins, 1/3 draws, 1/3 losses, regardless of my oppo-
nent’s strategy.) Thus, if one side in the tempo game
evolves something analogous to an optimal mixed strat-
egy, that may take much of the evolutionary pressure
off the other side and permit the other side to evolve a
quite disparate population without much penalty.

VII. Conclusions and Future Work

Four years ago when we started this work we didn’t
know if resource allocation problems of the type rep-
resented by the TEMPO game would be approachable
using coevolutionary computation methods. And, even
though the initial LISP experimental system suggested
an affirmative answer, the nature of what we could
learn from a coevolutionary system was not obvious
to us. We have learned a number of things, which also
suggest future research.

The environment, e.g., PWar, budget size, sequence
of available weapon types, cost per util, etc., is impor-
tant, but knowing what your opponent is doing — via
intelligence information — is a far slipperier component
in a sequential game in which the order of decisions
matters.

Though the derived rules can beat most human play-
ers immediately, the human players are able to learn
the “manner of play” of the machine codes. This sug-
gests that “intel” may after all be important for the
machine players to win consistently. Human players
usually do buy intel, but the machine does not. The
human players use the information they get from intel
purchases to good advantage. This works, of course,
when the machine rules are not changed from com-
petition to competition. During coevolution, on the
other hand, the rules faced by a player do change from
competition to competition, since the identity of the

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 13

opponent changes.
A reviewer of this paper wrote of “...conceiving, and

evolving, solutions that can also learn or adapt their
own strategy. As long as an evolved strategy is fixed
it will exhibit mid-or long-term weakness when con-
fronted to human counterparts. The mechanism to per-
form adaptation might be subject to (co-)evolution.”
And indeed a primary need is to solve the mystery of
why the code produces rules that allocate most effort to
evaluating weapon characteristics and ignore available
information about the opponent’s behavior.

To explore the conditions under which intelligence
on the opponent’s inventory of weapons is useful we
have coevolved rules where knowing should matter. In
particular we have expanded the number of weapons
types to 12, drawing the cost and utils and availability
from the same distribution, and we have tried lower-
ing the cost of intelligence and preventing the purchase
of counterintelligence. It was expected that a player
should base its investment decisions on the offensive
weapons the opponent owns and operates as well as on
the “bang per buck” for a given weapon. When a set
of evolved rules that did seem as though it ought to
do so competed against a human player, it appeared
that in actual play the rules did not lead to buying
and using intelligence information. Further, several of
us have played against the coevolved rules and we are
now generally able to win.

One might ask whether the currently used represen-
tation for the rules is expressive enough. We have made
a start toward exploring alternative representations.
In particular, a student in a recent class project [22]
tried replacing fuzzy-logic rules with LISP-like expres-
sion trees as evaluators for the “desirability” of weapon
systems, while otherwise retaining the architecture of
the current system. (The system was thus quite differ-
ent from the LISP-based system mentioned in Section
IV.) It was found that the tree-based system performed
quite creditably against the existing system, and the
idea is well worth pursuing further.

Another idea worth trying is to evolve a population
against opponents with more “human-like” strategies
than arise in a purely coevolutionary setting. (Two re-
viewers have made roughly similar suggestions.) For
example, we could hand-craft rule sets based on strate-
gies that humans have found effective. (In particu-
lar they would buy and make plausible use of intel.)
Then we would seed one of the two populations with
instances of these rule sets. Two sorts of questions
arise. First, how do the seeded individuals fare in their
own population? Do they thrive and propagate them-
selves? What do they evolve into? Second, how does
their presence as opponents affect the other popula-
tion? Will adaptable opponents on one side encourage

the evolution of adaptable players on the other side?
Our colleague, when playing the 12 weapons type

game, perceived that to compute the potential outcome
of a competition required much more analysis than for
the two weapons case. Further, if the weapons types
don’t have the same “bang for buck” then the deci-
sions become even more challenging. Thus, we see in
this case evidence of the effects of information overload.
There are three standard techniques for dealing with in-
formation overload: filtering (discarding information),
clustering (creating a hierarchy), and random selection
of what to do [25]. We are interested in how clustering
might arise and how effective it might be in reducing
the computational load, though at the expense of re-
ducing the information used for making decisions. The
current system has PWar and budgets as externally
supplied values. A hierarchical competition where the
higher-level system that determines these values inter-
acts with the current game is of considerable interest.

The prolixity penalty appears likely to be useful as a
proxy for the information handling capacity of the “de-
cision maker.” As mentioned, teams playing the paper
TEMPO game will sometimes deliberately forego in-
telligence entirely, possibly to cope with information
overload. Once, in an attempt to help a poorly per-
forming team, an instructor gave them free, accurate,
completely detailed information about the opponents’
decisions. This conferred no advantage — to the con-
trary, they lost decisively. The more rules an organi-
zation uses to make decisions, the greater the demand
for information processing capability. Since most large
organizations use fairly simple metaphors for making
decisions, and these metaphors can be captured as “if-
then” rules, it is possible to imagine exploring alter-
native rules using different fitness functions to deter-
mine why organizations have come to the rules they
use. This is very much like the “inverse problem”
where given a result we have to find a potential cause of
that result [16]. This is why “1R” and “Naive Bayes”
[33] work so well so often. This leads us to consider
putting an explicit cost function into the coevolution
that would pay for the increasing demand for informa-
tion processing.

Exploring questions such as these will require a large
and growing computational environment. Fortunately,
the choice of PGMT has facilitated our ability to move
between different multi-processor environments with a
minimal amount of recoding. Our research has now
moved from our preliminary trials on desktop comput-
ing machines to networks of processors. We thus far
have done our computation in 2-3 GHz desktop com-
puters, on a loosely coupled network of 2 Sun and 3 Sili-
con Graphics workstations, on 28 processors in a tightly
coupled network of 128 processor in the SGI 3800, and

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH 2005

we are prepared to do experiments in other networked
environments. We have also worked on a cluster of
computers at UNCC. The use of PGMT has permitted
us to move efficiently from one computing environment
to another. Once PGMT has been installed bringing
our TEMPO codes into operation has taken between
4-18 man-hours. Our expectation is that this combi-
nation of a very flexible representation of the resource
allocation problem and the computational environment
that PGMT provides will permit research on a growing
family of poorly understood problems encountered in
large living systems [25].

Our planned future work includes incorporating in-
vestment in R&D into the game, analysis of the devel-
oped coevolutionary system with selection of different
fitness functions for the competitors, and the possibil-
ity of investigating a non-zero sum game (note that
we can already set the environment variables in such
a way, that the game is not symmetrical: the play-
ers start with different budgets, different weapons are
available at different iterations, etc.). These are po-
tential research questions that TEMPO can be used to
explore. There are also other issues of proper repre-
sentation, e.g., whether fuzzy logic is the best way to
co-evolve a hierarchical system. We hope that within
the next year we should have answers for some of these
questions.

Acknowledgements

This work was initially supported by Dr. William
Mularie of DARPA/ISO and subsequently by the Of-
fice of the Secretary of Defense. We greatly appreciate
their interest and encouragement for our research on
the complexities of using scenarios for planning. The
parallel TEMPO game coevolutionary examples were
run on resources provided under the auspices of the
High Performance Computing Modernization Program
Office. We are grateful for their support.

Parts of material from chapter 14 of [23] were used in
section II (background information on coevolutionary
approaches to games) with the authors’ permission.

We thank Prof. Michael Sovereign and Prof. Ray-
mond (“Chip”) Franck for their interest and for much
thoughtful commentary. Thanks to Professor Franck
for giving one of our machine players exposure in
the classroom, and to Professor Sovereign for good-
naturedly serving as a guinea pig by playing more than
once against the machine.

The authors extend thanks to Yunjun Mu for writ-
ing code for the TEMPO Fuzzy-Logic coevolutionary
system; to Wendell Anderson and Roger Hillson for an
education in PGMT and for support in parallelizing the
system; to John Thornton, also for support in the par-
allelization and for thought-provoking discussions as

well; and to Neal Wagner, for running and analysing
several experiments. Finally, we thank anonymous re-
viewers, who provided us with excellent comments, and
David Fogel for his useful suggestions.

References

[1] W. Anderson, “Processing Graph Method (PGMT) User’s
Manual,” US Naval Research Laboratory, October 2002.

[2] R. Axelrod, “Evolution of strategies in the iterated pris-
oner’s dilemma,” in Genetic Algorithms and Simulated An-
nealing, L. Davis, ed., Pitman, London, pp.32-41, 1987.

[3] K. Chellapilla and D.B. Fogel, “Evolution, neural networks,
games, and intelligence,” Proceedings of the IEEE, Vol.87,
No.9, pp.1471-1496, 1999.

[4] K. Chellapilla and D.B. Fogel, “Evolving neural networks
to play checkers without expert knowledge,” IEEE Trans-
actions on Neural Networks, Vol.10, No.6, pp.1382-1391,
1999.

[5] K. Chellapilla and D.B. Fogel, “Evolving an expert check-
ers playing program without using human expertise,” IEEE
Transactions on Evolutionary Computation, Vol.5, No.4,
pp.422-428, 2001.

[6] D. Cliff and G. F. Miller (1996), “CoEvolution of
Neural Networks for Control of Pursuit and Eva-
sion,” University of Sussex, U.K. [Online]. Available:
http://www.cogs.susx.ac.uk/users/davec/pe.html

[7] P.J. Darwen and X. Yao, “Why more choices cause less co-
operation in iterated prisoner’s dilemma,” Proceedings of
the 2001 Congress on Evolutionary Computation, IEEE,
Piscataway, NJ, pp.987-994.

[8] J. Espinosa and J. Vandewalle, “Constructing fuzzy models
with linguistic integrity from numerical data-AFRELI algo-
rithm,” IEEE Transactions on Fuzzy Systems, Vol.8, No.5,
pp.591-600, 2000.

[9] D. Floreano. and S. Nolfi, “God save the Red Queen! Com-
petition in co-evolutionary robotics,” Genetic Programming
1997, J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Gar-
zon, H. Iba, and R.L. Riolo, eds., Morgan Kaufmann, San
Mateo, CA, pp.398-406, 1997.

[10] D.B. Fogel, “Evolving behaviors in the iterated prisoner’s
dilemma,” Evolutionary Computation, Vol.1, No.1, pp.77-
97, 1993.

[11] D.B. Fogel, Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence, IEEE Press, Piscataway,
NJ, 1995.

[12] D.B. Fogel, Blondie 24: Playing At The Edge of AI, Morgan
Kaufmann, San Francisco, CA, 2002.

[13] D.B. Fogel, T.J. Hays, S.L. Hahn, and J. Quon, “A self-
learning evolutionary chess program,” Proceedings of the
IEEE, Vol.92, No.12, pp.1947-1954, 2004.

[14] P.G. Harrald and D.B. Fogel, “Evolving continuous behav-
iors in the iterated prisoner’s dilemma,” BioSystems, Vol.37,
pp.135-145, 1996.

[15] W.D. Hillis, “Co-evolving parasites improve simulated evo-
lution as an optimization procedure,” Artificial Life II, C.G.
Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, eds.,
Addison-Wesley, Reading, MA, pp.313-324, 1992.

[16] E.T. Jaynes, Probability Theory: The Logic of Science,
Cambridge University Press, 2003.

[17] D. Kaplan, “Introduction to the Processing Graph
Method,” U.S. Naval Research Laboratory, March 1997.

[18] J.R. Koza, Genetic Programming, Cambridge, MA: MIT
Press, 1992.

[19] D.E. Knuth, Sorting and Searching, Vol.3 of The Art of
Computer Programming, Addison-Wesley, New York, NY,
1973.

[20] R. Le Riche, C. Knopf-Lenoir, and R.T. Haftka, “A seg-
regated genetic algorithm for constrained structural opti-
mization,” Proceedings of the Sixth International Confer-

JOHNSON, MELICH, MICHALEWICZ, SCHMIDT: COEVOLUTIONARY PROCESSES FOR STRATEGIC DECISIONS 15

ence on Genetic Algorithms, L.J. Eshelman, ed., Morgan
Kaufmann, San Mateo, CA, pp.558-565, 1995.

[21] D. Lovallo and D. Kahneman, “Delusions of success,” Har-
vard Business Review, vol.81, no.7, pp.57-63, July 2003.

[22] J. Merritt, “Function tree strategy for TEMPO,” UNC-
Charlotte Project Report, May 2005.

[23] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern
Heuristics, 2nd edition, Springer, Berlin, 2004.

[24] Z. Michalewicz and G. Nazhiyath, “GENOCOP III: A co-
evolutionary algorithm for numerical optimization problems
with nonlinear constraints,” Proceedings of the 1995 IEEE
Conference on Evolutionary Computation, IEEE Press, Pis-
cataway, NJ, pp.647-651, 1995.

[25] J.G. Miller, Theory of Living Systems, University of Col-
orado Press Niwot, Colorado, 1995.

[26] J. Paredis, “Co-evolutionary constraint satisfaction,” Pro-
ceedings of the 3rd Conference on Parallel Problem Solving
from Nature, Y. Davidor, H.-P. Schwefel, and R. Manner,
eds., Lecture Notes in Computer Science, vol.866, Springer,
Berlin, pp.46-55, 1994.

[27] J. Paredis, “The symbiotic evolution of solutions and their
representations,” Proceedings of the Sixth International
Conference on Genetic Algorithms, L.J. Eshelman, ed.,
Morgan Kaufmann, San Mateo, CA, pp.359-365, 1995.

[28] C.-A. Peña-Reyes and M. Sipper, “Fuzzy CoCo: A
cooperative-coevolutionary approach to fuzzy modeling,”
IEEE Transactions on Fuzzy Systems, Vol.9, No.5, pp.727-
737, 2001.

[29] C. Reynolds, “Competition, coevolution and the game of
tag,” Proceedings of Artificial Life IV, R. Brooks and P.
Maes, eds., MIT Press, Cambridge, MA, pp.56-69, 1994.

[30] P. Schwartz, The Art of the Long View: Planning for the
Future in an Uncertain World, Currency/Doubleday, New
York, NY, 1991.

[31] A.V. Sebald and J. Schlenzig, “Minimax design of neural-
net controllers for uncertain plants,” IEEE Transactions on
Neural Networks, Vol.5, No.1, pp.73-82, 1994.

[32] J. Valente de Oliveira, “Semantic constraints for member-
ship function optimization,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A: Systems and Humans,
Vol.29, No.1, pp.128-138, 1999.

[33] I.H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 1999.

