computers &
industrial
engineering

PERGAMON Computers & Industrial Engineering 43 (2002) 407-421

www.elsevier.com/locate/dsw

An evolutionary algorithm for optimizing material flow in supply
chains

F. Elizabeth Vergara®*, Moutaz Khouja®, Zbigniew Michalewicz"

*Business Information Systems and Operations Management Department, The Belk College of Business Administration,
The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
*Department of Computer Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

Supply chain management literature calls for coordination between the different members of the chain. Materi-
als should be moved from one supplier to the next according to a just-in-time schedule. In this paper we develop an
evolutionary algorithm (EA) for optimal synchronization of supply chains. In developing our algorithm, we use the
economic delivery and scheduling model and analyze supply chains dealing with multiple-components. We test
the performance of the proposed EA and show that it provides optimal, or near optimal, solutions for a wide range
of problems. The EA is shown to be much faster at solving large problems than an enumeration procedure and
exhibits robust behavior when tested on a variety of different problem parameters. © 2002 Elsevier Science Ltd.
All rights reserved.

Keywords: Evolutionary algorithms; Supply chain management; Synchronized production

1. Introduction

In today’s increasing global and competitive marketplace, it is imperative that members of a supply
chain work together in an effort to minimize overall transportation, holding, and setup cost. Efficient and
effective management of material flow across a supply chain is critical to its success (Handfield &
Nichols, 1999). A supply chain involves suppliers (one or more tiers), assemblers/manufacturers, distri-
bution centers, retailers and customers as shown in Fig. 1. The figure shows two types of supply chain
configurations. A simple supply chain is one in which each supplier is captive and supplies one or more
components to only one upper tier supplier or assembly facility (AF). A complex supply chain is one in

* Corresponding author. Tel.: +1-704-687-3242; fax: +1-704-687-6330.
E-mail addresses: fvergara@email.uncc.edu (F.E. Vergara), mjkhouja@email.uncc.edu (M. Khouja), zbyszek@uncc.edu
(Z. Michalewicz).

0360-8352/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0360-8352(02)00055-4

408 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

Simple Chain Complex Chains
4+—> <« »
Customers Customers Customers Customers Customers
Retailer Retailer Retailer Retailer Retailer
Distributor Distributor Distributor Distributor Distributor
Assembly Assembly Assembly Assembly Assembly
1* Tier supplier 1 Tier supplier 1* Tier supplier 1* Tier supplier 1 Tier supplier
2" Tier 2" Tier supplier 2" Tier supplier
supplier \ /
31 Tier 3" Tier supplier
supplier

Fig. 1. Two types of supply chains.

which at least one supplier supplies one or more components to two or more upper tier suppliers or
assembly facilities.

The purpose of this work is to develop an evolutionary algorithm (EA) that will find the production
sequence at each supplier for multiple-components and a synchronized delivery cycle time that would
minimize transportation, setup, and holding costs across a simple multi-stage supply chain. Synchroni-
zation of the supply chain in terms of a just-in-time cycle time is advocated as a way of achieving
continuous improvement. In well-managed supply chains inventory flows between members of the chain
with little delay (Handfield & Nichols, 1999). The goal of supply chain management is to optimize the
whole system (Simchi-Levi, Kaminsky, & Simchi-Levi, 2000).

The proposed EA identifies a near optimal, or ideally, an optimal, solution for supply chain synchro-
nization problems and then calculates the cost to each supplier if a synchronized delivery cycle time
were to be used, in addition, it calculates the cost to each supplier if their independent optimal delivery
cycle time and production sequence were to be used. Therefore, the cost associated with implementing
the synchronized cycle time and sequence for each supplier can be computed. The EA is intended to find
satisfactory solutions in a short period of time.

The proposed EA is designed for multi-supplier/multi-component supply chain configurations. The
Economic Lot and Delivery Scheduling Problem (ELDSP) introduced by Hahm and Yano (1995a) is the
foundation for this work. However, traditionally the ELDSP encompasses a single supplier and an AF.
This work expands the ELDSP by applying its concepts to cover the entire supply chain. Khouja (2000)
developed an algorithm for solving the multi-supplier ELDSP. The author applied the ideas of the
RAND algorithm of Kaspi and Rosenblatt (1991) to solve the supply chain synchronization problem.

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 409

The main shortcoming of this approach is that can be used for constrained problems. On the other hand,
constraints do not represent a problem for EAs (Michalewicz, 1992).

In Section 2, we describe the problem. In Section 3, we provide a summary of relevant aspects of EAs,
followed in Section 4 by our proposed implementation of the EA for the simple supply chain problem. In
Section 5 we discuss the results of testing the proposed EA. Section 6 wraps up the paper with a brief
discussion of managerial implications, suggestions for future research, and some concluding comments.

2. Supply chain synchronization problem

The goal of the proposed EA is to solve a multi-stage synchronized simple supply chain problem,
which is an extension of the traditional ELDSP. The original ELDSP is characterized by a supply chain
consisting of a supplier that produces components on a single production line or machine, accumulates
the components, and then delivers them to an AF (Hahm & Yano, 1992, 1995a,b). The AF uses the
components at a constant rate. Hahm and Yano (1995a) considered a situation where the supplier is
captive and supplies many components to only one assembly plant. The assumptions of the ELDSP are:

a. the supplier produces the components on a single machine one at a time,

b. production and usage rates are deterministic and constant,

c. the supplier incurs sequence independent setup cost and setup time,

d. there is a single delivery from the supplier to the AF per cycle, during which one batch of each
component is produced,

e. both the supplier and the assembler incur linear holding cost on component inventory, and

f. the delivery charge per shipment is fixed.

Let:
g supplier index, g = 1,...,G
j component index, j = 1,...,J
Pie production time per unit of component j at supplier g
Uj, the value added by supplier g to component j
U the V.alue of (.:omponent J after the transformation by supplier h, Uy, = ZZ=1 Ujg
1 fraction holding cost
Si setup cost for component j at supplier g
Sig setup time for component j at supplier g
Dj, demand for component j at supplier g
A, transportation cost per delivery at supplier g and
T, setup interval (time between setups); also equal to the delivery interval (time between deliv-

eries) for supplier g, a decision variable

Because holding cost is dependent on accumulated inventory, the production sequence of each
component is an important consideration. The number of possible production sequences at any given
supplier is equal to the factorial of the number of components involved. For example, a three-component
problem has six possible supplier production sequences. The inventory levels for two cycles of the
{2,1,3} sequence are shown in Fig. 2 for a given value of T, where T is the delivery cycle time.

410 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

Inventory
level

—_
—_

/

Fig. 2. Inventory levels at the supplier for the {2,1,3} sequence.

Time

We first introduce the independent solution (IS) for each supplier. Under the IS each supplier opti-
mizes its own component production sequence and cycle time. The IS solution is usually infeasible
because it does not allow for synchronization. We then formulate the supply chain synchronization
problem.

2.1. The independent solution

Hahm and Yano (1995a) developed an efficient heuristic algorithm for solving the ELDSP where only
a single supplier is included, and tested the performance of the algorithm. The experimental results
showed that the algorithm identified the optimal solution for a broad range of problems. The algorithm
builds on some results of scheduling theory (Baker, 1974). The idea is to produce components with long
processing times and low holding costs early in the sequence and components with short processing time
and high holding cost late in the sequence. This policy ensures that components with high holding cost
will not wait for long times to be shipped. Let [i{] be the index of the component produced in the ith
position. The total cost for supplier g per unit time is:

Ag t ;Sig 1 L J J J
TCy = ———— + STl > Dipjgttis + 1 Dty > (TeDpg + stie) + Tel D DU
g =1 i=1 j=it1 j=1

)]

Define v, € C, the set of all possible production sequences at supplier g, and

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 411

W _IZ Ujg,
J

Yo = szwjgpjg’
=

C _IZ J Jg I

Zig(v) = Zw[ﬂg Z S[jlgs
Jj=

i+1
and
Zry(v) = Zwmg Z Dyjipjjig-
j=it1

The total cost becomes

Ag+Sg+T[l + Z, (v)+C]+Z(), 2)
2Yg 2g lg

TC, =
8 Tg

and the ELDSP for supplier g is to minimize TC, subject to:
J
S (s +peDiT) =T, g=12,....G 3)

Constraint (3) ensures that there is sufficient time within the delivery 1nterval T, to set up and produce the
components needed at the AF during 7. Since the second derivative d? TC, /dT > 0 for T, > 0, setting
the first derivative dTC,/dT, = 0 gives the optimal delivery cycle for a ﬁxed productlon sequence for
supplier g as

. A, + S,
TgU = . (4)
Yol2 + Zs(v,) + C,

Since Eq. (4) may not always yield a feasible solution, the optimal delivery cycle time for a given
production sequence is given by

T, = max{TZg, Tg}, %)

412 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

where
S
T, = 7;’7 . (6)
1= ijng
=1

2.2. The synchronized solution

If the supply chain is synchronized at a delivery cycle time 7, the total inventory holding cost at the
AF per unit time is

= o Z + 200, @)

where S;4 is the ordering cost at the AF. The total cost for the whole chain is

G+1

Z(A +S,)

1 J
TC:TI:EIZDJ- G+Z[o+ Co + 2o, (v,]] Zzlg(v)+ f' (8)
j=1

For a fixed sequence

G+1

D A+ Sy

ch -
[ZD G+Z[o+ Cy + Zoy(v)]]——g1 = , 9)

and
G+1
2 (A + S)
dzTC g
dr? T3 (10)

For any T > 0, d*TC/dT? > 0. Therefore, for a fixed set of sequences at the different suppliers, TC is
convex in T and the optimal value of T is:

G+1
Z (A, +S,)
T; =1 . (11)

\[;,ngU, S[an+a om0 >]]

Since constraint (3) may be binding for one or more suppliers, the optimal cycle time is given by

T, = max{Ti*, Tg}. (12)

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 413

Table 1

Number of local minimums

Components Suppliers

2 3 4 5 6

2 4 8 16 32 64
3 36 216 1296 7776 46,656
4 576 13,824 331,776 7,962,624 191,102,976
5 14,400 1,728,000 207,360,000 24,883,200,000 2,985,984,000,000
6 518,400 373,248,000 268,738,560,000 193,491,763,200,000 139,314,069,504,000,000

Because there are a finite number of candidate solutions, an enumeration procedure for minimizing Eq.
(8) can be developed. For each set of sequences (v(li), v(zi), o V(C?), the optimal value of T can be obtained
using Eq. (12). The enumeration procedure can therefore identify all local minima and subsequently the
global minima. Thus, the enumeration procedure provides means for checking the EA solution against
the global minima. While the enumeration procedure will guarantee a global optimal solution it is
computationally prohibitive for large problems. The problem size increases very rapidly as illustrated
in Table 1. A problem with G suppliers and J components will have (J!)¢ local minima. For example, a
four-supplier five-component problem has (5!)* = 207,360,000 local minima, each corresponds to a

unique combination of production sequences for each supplier.

3. Evolutionary algorithms

An EA is a problem solving technique that uses the concepts of evolution and hereditary to produce
quality solutions to complex problems that typically have enormous search spaces and are therefore
difficult to solve. A well designed EA allows for the efficient and effective exploration and exploitation
of the problem’s search space of feasible solutions in an effort to identify the global optimal, or near
optimal, solution to difficult problems.

EAs create and manipulate a group of possible solutions referred to as a population. Each possible
solution within the population is called an individual. The population undergoes change throughout the
run of the EA thereby evolving the individuals toward a best solution. Within the EA, the population
loops through a series of processes a number of times; each executed loop is known as a generation.
These processes include an evaluation process, an alteration process, and a selection process. These
processes may occur in various orders, however, each is required at each generation (Michalewicz,
1992).

The evaluation process uses an evaluation function that assesses the relative fitness of each individual
of the population at each generation. In addition, at each generation a number of individuals are
subjected to some form of change. These alterations are manifested through the use of genetic operators.
Genetic operators can be either mutation operators, which introduce small changes within a single
individual, or crossover operators, which cut and paste different parts from two or more individuals
together in order to create new individuals called offspring. The probability of an individual experien-
cing some form of transformation within any given generation is subject to the predefined parameters of
the probability of mutation, and/or the probability of crossover. Through this process, some, or all, of the

414 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

<+— Supply Chain ———»

[TC |T [1 |seql [...[seq2 |... |... [seq-G |... | AF
[J [] [J
Supply Chain - Supplier #1 || Supplier #2 | | Supplier #G|

Dependent
Solution

*Any given seq location above contains a randomly generated combination of all integers from 1 toJ. For example,
if J = 3 the possible sequence combinations that could be recorded in any seq location are {1,2,3}, {1,3,2}, {2,1,3},
{2,3.1}, {3,1,2}, {3.2,1}.

Fig. 3. Representation of an individual with n suppliers.

individuals are altered and used to create a new population for the next generation. Finally, the EA uses
the evaluated fitness of each individual to promote the survival of the best individuals to the next
generation. This use of selective pressure encourages the population to converge to a quality solution.
The EA will run for a predetermined maximum number of generations or until some specified terminat-
ing condition is meet.

Each EA is unique in its design with regard to several important elements. Some of these elements
include data structure, genetic operators, method for creating the initial population, constraint handling
techniques, evaluation function, selection method, generational policy, parameters, and terminating
conditions. Parameters include population size, maximum number of generation, probability of muta-
tion, and/or the probability of crossover. However, regardless of the differences, all EAs attempt to
evolve the individuals within the population through the use of genetic operators and selective pressures
to converge at a suitable solution to complex problems.

4. An evolutionary algorithm for supply chain synchronization

The proposed EA is designed for the simple supply chain configuration of Fig. 1 and provides a
starting point for future work with complex supply chains. The proposed EA begins with a randomly
generated initial population that is composed of individuals with only feasible solutions. Randomly
generated integer sequences that represent permutations of possible production sequences for all suppli-
ers within the supply chain are added to each individual. The generation of integers is accomplished
using a random generator and then scaling the generated numbers as needed and rounding them to the
closest integer. In addition, modifications and changes produced by the two operators used in the EA on
the population of individuals are restricted so that only feasible solutions are produced. Finally, the
population size is maintained constant throughout the run of the EA.

The problem has one constraint, the minimal cycle time 7, given by Eq. (6), necessary to produce the
required demand for all the components at each supplier. The value of T for the supply chain can never
be less than the largest 7 of any of the suppliers.

The main elements of an EA include an evaluation function, representation, genetic operators, and
selection method. The evaluation function used here is the total cost for the supply chain, given by Eq.
(8). Individuals within the population with the lowest total cost are deemed to be of a better quality than
those with a higher total cost.

The proposed EA uses a unique data structure. While synchronized supply chain problems are

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 415

Parent #1:

[Tc [T <[t J2]3] . 3]z .. J2]1]3] ...]AF]
Parent #2: A il Y s

[Tc [Tlef2]1 3] .. J2]3]1]..J2]1]3]..]aF]
Offspring #1:
[Tc[T[<J21[3]..[3]1[2]...J2]1]3]..[AF]
Offspring #2:

[Tc T2l . J2]3[1[..J2]1]3].. [AF]

Fig. 4. High level cross-over operator process.

essentially discrete permutation problems that are best represented using integer values that correspond
to real world representation of possible solutions, the actual data structure used for this work is a floating
point array. This floating point array data structure allows for the recording of detailed cost and cycle
time values as well as sequence information for each supplier within each individual in the population.
The data structure is designed to be dynamic, allowing the EA to be used for a wide variety of possible
combination of suppliers and components without modification to the EA program code. Fig. 3 is a
graphical representation of an individual with G suppliers. The first three locations within an individual
contains the total cost (TC), synchronized delivery cycle time (7"), and the maximum 7 for all suppliers.
The next part of the individual is populated with a sequence of integers that represent a possible
sequence in which to produce the components for the first supplier. Following this sequence, additional

Parent #1:

[te [T <23t . T3]l T2t]3] ...]AF]
Parent #2:

ITc [T« z2]3]..J2]3[1]..]2]1]3]..]AF]

Ordinal Representation:

'\ a randomly generated number indicates which supplier sequence to use

Parent #1:
1 1 0
TC | T 1w [2]3 1 3 1 2 2 1 3 AF
Parent #2:
0jJo0fo
TC | Tz |1 |f2]3]|...[2]3]1 21713 AF
'\ a randomly generated number indicates cut location within the
sequence
Offspring #1:
1 (0[]0
TC [T |t |2 [1]3 312 21113 AF
Offspring #2:
0|1]0
TC | T | = [SISFE3NF2 2 1311 211713 AF

Fig. 5. Low level cross-over operator process.

416 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

information about the supplier is added to the individual, which pertains to the IS. The remaining array
elements of the individual contains similar information for each supplier in order of the material flow in
the chain. The last entry in the individual array is the cost to the AF.

The mechanisms used to manipulate the individuals within the EA, known as genetic operators, are
another important characteristic of any EA. Two operators were created, the high level crossover
operator shown in Fig. 4 and the low level crossover operator shown in Fig. 5. These two operators
were developed to address the unique nature of the problem and the structure of the chosen data
representation. As can be seen in Fig. 3, each individual is composed of many sub-chromosomes and
other data related to the whole supply chain. Each sub-chromosome represents one supplier and appears
within the individual, a large composite chromosome, in the order in which the supplier appears within
the supply chain. In addition, each sub-chromosome contains two separate parts. The first part contains a
component production sequence for that supplier. The second part contains pertinent information about
the supplier. Therefore, because of the unique nature of the sub-chromosomes and their non-interchange-
able relationship within the large composite chromosome (i.e. the individual) traditional crossover and
mutation genetic operators could not be used.

Because the first part of each sub-chromosome is ostensibly a Traveling Salesman Problem (TSP)
where each supplier’s production sequence is dependent on the synchronized cycle time T for the supply
chain, traditional genetic operators used within a sub-chromosome would inevitably create infeasible
solutions. The infeasibility can result from including any given component more than once and exclud-
ing one or more components from the production sequence. While some EAs allow for the inclusion of
such infeasible solutions, or include repair algorithms to transform them into feasible solutions, the
proposed EA was designed to control alterations so that only feasible solutions will be created (Micha-
lewicz, 1992).

For the high level crossover operator, the program randomly generates two numbers that identify two
individuals from the present generation of individuals. The individual with the best (lowest) total cost is
chosen to be the first parent. This process is then repeated to find a second parent. The high level genetic
operator then treats each sub-chromosome as a gene and alternately swaps these genes between two parents
in order to create two new offspring individuals. This technique maintains the order of the sub-chromosomes
within the composite individual, introduces random change into the supply chain, and creates two feasible
offspring individuals. These two new individuals are added to the next generation’s population.

The low level genetic operator was developed to introduce changes into corresponding sub-chromo-
somes of two individuals while maintaining feasibility. This was realized by implementing an ordinal
representation technique that has been previously used in TSPs (Michalewicz, 1992). The ordinal
representation technique allows for the introduction of random changes within the component produc-
tion sequence part of a sub-chromosome while maintaining its feasibility.

As with the high level crossover, two parents are selected by choosing the best two individuals from
two pairs of randomly selected individuals from the present generation. A randomly generated number is
used to select a supplier within the supply chain. This supplier’s sequence becomes subject to modifica-
tion. Another randomly generated number is produced to indicate a cut location for a one-point cross-
over. The corresponding supplier sequence within each of the two parents is then translated into an
ordinal representation prior to a one-point crossover operation. After the crossover is completed on the
ordinal representation of each parent’s chosen supplier sequence, the resulting ordinal representation is
translated back to its original format. This creates two new offspring individuals that are subsequently
added to the population of individuals for the next generation.

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 417

Table 2
Average number of generations for the EA to find a solution (average of five problems for each problem size)
Number of components Number of suppliers
2 3 4 5 6
2 1 1 1 1 1
3 1 1.4 29 6 8.2
4 1.5 6.9 13.8 23 27.8
5 7 16.6 342 43.6 45.2
6 14 30.2 452 49.8 54.2

Several selection methods are incorporated within the EA. An elitist selection method is used to
ensure that the best solution from each generation is retained in the population for the next generation. In
addition, for both the high and low level operators, a tournament selection is conducted to choose the
best individuals to be used as parents. Finally, a tournament selection is used to fill in the remaining
individuals of the population for the next generation from the previous generation’s population. There-
fore, it is possible that a given individual may be used to create the new population for undetermined
number of times.

The termination condition for the EA states that if all members of the population have the same total
cost value (i.e. all members of the population have converged and have the same value for total cost)
then the program should stop. Otherwise, processing will terminate when the program has cycled
through a predetermined number of generations.

5. Results

To test the performance of the EA, an enumeration procedure that identifies the global minima was
used. The enumeration procedure was used because there are no other algorithms for solving the
problem when dealing with many suppliers in series. The results of the EA are compared to the results
from the enumeration procedure and both the dollar and percent differences are calculated. The number
of local minimums for each size in Table 1 are computed using (J!)°. The 17 problem sizes shown in
bold in the table were used to test the EA.

A number of preliminary tests using three supplier, five-component (3 X 5) problems were run to
determine the optimal combination of population size, maximum number of generations, and the prob-
ability of the two crossover operators. For this research, a population size of 500, a probability of high
level crossover of 0.2, and a probability of low level crossover of 0.79 were found to be the best. The
maximum number of generations was set to equal 100. However, for all tests of the EA, the best
solutions have consistently been found in relatively small number of generations, well below 100. As
expected, the larger and more complex the problem, the more generations, on average, are required to
identify the best solution. Table 2 shows the average number of generations it takes the EA to find a good
solution.

In addition, it is interesting to note the difference in the running time of the EA as opposed to the
enumeration procedure. The top number in each cell of Table 3 represents the run time of the enumera-
tion procedure, while the lower number is the run time of the EA. As the table shows, as the problems

418 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

Table 3

Average run time for enumeration method vs. EA

Components Suppliers
2 3 4 5 6

2 0 0 0 0 0.01
0.54 0.68 0.80 0.96 1.04

3 0.02 0.03 0.02 0.11 0.75
0.67 0.83 1.01 1.2 1.34

4 0.02 0.14 4.49 135.51 3252
0.8 1.03 1.22 1.43 1.67

5 0.14 22.06 1* 88" 10,589*
0.98 1.22 1.45 1.72 2

6 5.6 1 806" 580,608" 418,037,760*
1.13 1.38 1.68 2.06 2.34

* Estimated and given in hours. All other estimates are in seconds.

become larger, the EA quickly becomes much faster than the enumeration procedure. For example, for
an average five-supplier and four-component problem, the EA took 1.43 s to find a solution vs. 135.51 s
for the enumeration procedure.

To verify that the EA performs well for a broad range of problems the following experiment was
conducted. Table 4 shows the seven uniform distributions that were used to generate problem parameters
to test the EA. The three parameters used are (1) the ratio of the setup cost to the holding cost (S;,/]), (2)
the tightness of the capacity constraint (¥, = Z;'Z:I PjeD;), and (3) the amount of value added at each
supplier (uj,).

Thirty problems were generated for each of the seven different distributions of Table 4 resulting in 210
randomly generated problems for each of the 17 different problem sizes shown in bold in Table 1 for a
total of 3570 problems.

For clarity, problems are classified as type I or type II. Type I problems are ones for which the EA
identified the global optimal solution. Type II problems are ones in which the EA did not identify the
global optimal solution (which was found using enumeration). Table 5 shows the percentage of all type I
and type II problems for each tested distribution. From this table it can be observed that the lowest type I

Table 4

Distributions used to generate test problem parameters

Parameter group Sl Y, U,

1 U[10-15] U[0.85, 0.95] U[30, 60]

2 U[10-15] U[0.55, 0.65] U[30, 60]

3 U[10-15] U10.55, 0.65] U130, 60] + j X U[20, 25]
4 U[10-15] U10.85, 0.90] U[30, 60]

5 U[20-25] U[0.55, 0.65] U[30, 60]

6 U[20-25] U[0.55, 0.65] U130, 60] + j X U[20, 25]
7 U[20-25] U[0.85, 0.90] U[30, 60]

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 419

Table 5

Summary of all type I and type II problems for each group
Group Type I (%) Type 1I (%)
1 97.6471 2.3529

2 97.8431 2.1569

3 96.2745 3.7255

4 96.8627 3.1373

5 96.6667 3.3333

6 96.2745 3.7255

7 96.6667 3.3333
Average 96.8908 3.1092

percentage is 96.2745%, the average type I percentage for all problems is 96.8908%, and the highest
type I percentage is 97.8431%.

Table 6 breaks down type II problems by size. Note that only five sizes out of the 17 tested resulted in
type II problems. The 2 X 6 size (two-supplier and six-component) experienced more type II problems
than any other size even though it is smaller. One possible explanation for this is that there are many
alternate near optimum solutions clustered together in different regions of the search space.

When type Il problems are examined, it is easy to get a clear understanding of how the EA performed
even when it failed to identify the global minimum. Type II problems have extremely small errors. Table
7 shows the average percent difference for all type II problems by size. From this table we can see that
although the 2 X 6 problems have the largest frequency of type Il problems, they have the lowest average
percent difference (0.001730%). The highest average percent differences belong to 5 X4 and 3 X5
problems at 0.003818 and 0.003331%, respectively. The largest type II problem percent difference of
0.011125% is found for a 3 X 5 problem. For this problem, the EAs solution was $334,313.844, and the
enumeration solution process was $334,276.656, resulting in $37.188 difference.

6. Discussion and conclusion

We propose an EA which identifies an optimal, or near optimal, synchronized delivery cycle time and
suppliers’ component sequences for a multi-supplier, multi-component simple supply chain. The EA

Table 6

Summary of type II problem by problem size
Size Count Frequency (%)
2X5 4 3.60

2X6 45 40.54

3x5 36 32.43

4x4 7 6.31

5%x4 19 17.12

Total 111 100.00

420 F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421

Table 7
Average percent difference of all type II problem by problem size

Size Average (%) difference
2X5 0.002568
2X6 0.001730
3X5 0.003331
4x4 0.002690
5x4 0.003818

also calculates a synchronized delivery cycle time for the entire supply chain, the cumulative cost
throughout the supply chain, and the cost to each supplier.

The EA has been shown to be very efficient at finding, if not the global optimal solution, at least a very
near optimal solution to complex permutation problems. Of particular interest is the speed at which the
EA is able to identify solutions for supply chain synchronization problems.

This work addresses a unique type of problem from an evolutionary computing perspective. Past work
that focused on solving complex scheduling problems using evolutionary computing techniques, such as
Khouja, Michalewicz, and Vijayaragavan (1998), Khouja, Michalewicz, and Wilmot (1998), Khouja,
Michalewicz, and Satoskar (2000), typically focused on solving scheduling problems for a single
manufacturing facility and used classical binary and Grey representation, both crossover and mutation
genetic operators, allowed individuals within the population to contain infeasible solutions, and used
two-point crossover. This is in contrast to the proposed EA which used floating point representation
(eliminating the need for mapping techniques), used two hybrid crossover genetic operators, allowed for
only feasible solutions, and employed one-point crossover. As can be seen from Fig. 3, each
individual is made up of a sub-chromosomes for each supplier as well as aggregate information
about the supply chain and information pertaining to the final AF. While the data stored within
an individual is complex, the data structure is designed to be easy to read and dynamic, allowing
the EA to solve a variety of different size problems. In addition, the maximum number of
generations for this EA was set relatively low, 100, because the EA identified good solutions
in a very small number of generations, and the population size was set rather high, 500, based on
the results of preliminary tests.

Future research may focus on the modification of the two genetic operators, or perhaps the introduc-
tion of a third genetic operator, to further improve the EAs performance. The use of two-point crossover
may also prove to be beneficial. Another possibility is to create a new population by performing a
tournament selection on a current population before the genetic operators are applied. This technique
may increase selective pressure, thereby improving the performance of the EA. The initial results
reported in this work are very promising and it is anticipated that the proposed EA will be expanded
in future research to address complex supply chain problems shown in Fig. 1. It appears that EAs may be
used to provide real time solutions to complex practical business problems.

References

Baker, K. R. (1974). Introduction to sequencing and scheduling, New York: Wiley.

F.E. Vergara et al. / Computers & Industrial Engineering 43 (2002) 407421 421

Hahm, J., & Yano, C. A. (1992). The economic lot delivery scheduling problem: The single item case. International Journal of
Production Economics, 28, 235-252.

Hahm, J., & Yano, C. A. (1995a). The economic lot delivery scheduling problem: The common cycle case. IIE Transactions,
27, 113-125.

Hahm, J., & Yano, C. A. (1995b). The economic lot delivery scheduling problem: Models for nested schedules. //E Transac-
tions, 27, 126—139.

Handfield, R. B., & Nichols Jr., E. L. (1999). Introduction to supply chain management, Upper Saddle River, NJ: Prentice-Hall.

Kaspi, M., & Rosenblatt, M. J. (1991). On the economic ordering quantity for jointly replenishment items. International
Journal of Production Research, 29, 107-114.

Khouja, M. (2000). Synchronization in supply chains: Implications for design and management, unpublished.

Khouja, M., Michalewicz, M., & Vijayaragavan, P. (1998). Evolutionary algorithm for economic lot and delivery scheduling
problem. Fundamenta Informaticae, 35, 113-123.

Khouja, M., Michalewicz, Z., & Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling
problem. European Journal of Operational Research, 110, 509-524.

Khouja, M., Michalewicz, M., & Satoskar, S. (2000). A comparison between genetic algorithms and the RAND method for
solving the joint replenishment problem. Production Planning and Control, 11, 556-564.

Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs, New York: Springer.

Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2000). Designing and managing the supply chain, New York: Irwin
McGraw-Hill.

