
A Personal Perspective on Evolutionary
Computation: A 35-Year Journey

Zbigniew Michalewicz* zm@complexica.com
Complexica, Level 2, 9 Charles Street, West Lakes, SA 5021 Australia
www.complexica.com

https://doi.org/10.1162/evco_a_00323

Abstract
This paper presents a personal account of the author’s 35 years “adventure” with Evolutionary
Computation—from the first encounter in 1988 and many years of academic research through
to working full-time in business—successfully implementing evolutionary algorithms for some
of the world’s largest corporations. The paper concludes with some observations and insights.

1 The Discovery (1988–1990)

Let’s start at the very beginning, a very good place to start.1

During the academic year of 1987/88, I took a sabbatical leave from the Victoria
University of Wellington (I was lecturing mainly on database systems, which was my
main research area at that time) and joined for a year the faculty of the Department
of Computer Science at the University of North Carolina at Charlotte (again, teaching
mainly database courses on graduate and undergraduate levels). However, halfway
through my sabbatical, around January 1988, I attended a seminar where the speaker
talked about genetic algorithms. It was the first time in my life that I heard this term . . . and
I loved it! First, I learned that this was the best technique ever for search, optimization,
and machine learning. It can be applied successfully to any problem. Second, the name
of the technique, genetic algorithm, was absolutely fantastic; it triggered the imagina-
tion and piqued curiosity.2 Whoever came up with this term was a brilliant marketer!

Anyway, all this sounded too good to be true, so on my return to Victoria University
in June of 1988, I decided to run some experiments to check the claims I heard during
the seminar. For some reason (which I cannot recall today), I selected one of the classic
operation research problems, a transportation problem, for my experiments.

The transportation problem is a relatively simple combinatorial optimization prob-
lem; however, it includes several constraints. We must determine the overall mini-
mum cost of the transportation plan for a single commodity from several sources to

*Also, at the Polish-Japanese Academy of Information Technology, ul. Koszykowa 86, 02-008 Warsaw,
Poland; the Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw,
Poland; and the School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia.

1Readers of my generation may recognize this sentence from the movie, The Sound of Music.
2Only years later, I found out that similar techniques were already experimented with for a couple

of decades, but the terms used were not that appealing. Indeed, even in science, “marketing” is impor-
tant; we experience it all the time, for example, watching transformation of “statisticians” into “data
analysts” and then into “data miners” and finally into today’s very sexy “data scientists.”

Manuscript received: 29 December 2022; accepted: 29 December 2022.
© 2023 Massachusetts Institute of Technology Evolutionary Computation 31(2): 123–155

mailto:zm@complexica.com
http://www.complexica.com
https://doi.org/10.1162/evco_a_00323

Z. Michalewicz

several destinations. The problem specifies the level of supply at each source, the level
of demand at each destination, and the transportation cost from each source to each
destination.

There is only one commodity, so any destination can receive its required demand
from one or more sources. The objective is to find the “best” transportation plan, which
is represented as the amount to be shipped from each source to each destination such
that the total transportation cost is minimized. If the cost of transport is directly propor-
tional to the amount transported, then the transportation problem is linear; if the cost of
transport isn’t directly proportional to the amount transported, then the transportation
problem is nonlinear. Linear transportation problems can be solved through linear pro-
gramming methods; however, nonlinear problems lack a general solving methodology.

To illustrate a simple transportation problem,3 we can consider a small example
(Michalewicz, 1992) with three sources (rows) and four destinations (columns):

5.0 15.0 15.0 10.0

15.0 4.1 1.9 7.3 1.7

25.0 0.5 12.1 7.4 5.0

5.0 0.4 1.0 0.3 3.3

where the boldface numbers in the first column represent the levels of supply across
three sources, the boldface numbers in the first row represent the levels of demand
across four destinations, and the twelve numbers in the body of the matrix represent
the transportation plan: the amounts to be transported from each source to each desti-
nation. In the above example, 7.4 units are transported from the second source (second
row) to the third destination (third column). There is also a set of twelve cost functions
that represent the various transportation costs between every source and every destina-
tion. These cost functions are used to evaluate possible transportation plans, which are
the candidate solutions. My goal was to develop a genetic algorithm to solve such a basic
transportation problem. However, at that time I had only one resource available (Davis,
1987) as a reference. A few articles (written by different authors) that were included in
this edited volume were extremely interesting (Grefenstette, 1987),4 but they didn’t an-
swer several questions I had. In particular, the main issue I was struggling with was the
issue of constraints: this transportation problem was constrained on supply (you can’t
supply more than you have) and on demand (you must deliver the required amount),
and I was not sure how to deal with these constraints.

Only some months later, I got a copy of the first text on genetic algorithms
(Goldberg, 1989). I was eagerly searching the book for some answers; however, I found
only a couple of paragraphs (spread over pages 85 and 86, out of 432 pages of the whole
book) on how to handle constraints:

Thus far, we have only discussed genetic algorithms for searching unconstrained objective func-
tions. Many practical problems contain one or more constraints that must be also satisfied. In this
section, we consider the incorporation of constraints into genetic algorithm search.
. . .
At first, it would appear that inequality constraints should pose no particular problem. A
genetic algorithm generates a sequence of parameters to be tested using the system model,

3This transportation problem is balanced: the supply and demand totals are the same.
4This chapter was of particular value. I believe it gave me some initial insights at that time. However,

the chapter considered the Traveling Salesperson Problem for which a vector of integers was used.

124 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

objective function, and the constraints. We simply run the model, evaluate the objective function,
and check to see if any constraints are violated. If not, the parameter set is assigned the fitness
value corresponding to the objective function evaluation. If constraints are violated, the solution
is infeasible and thus has no fitness. This procedure is fine except that many practical problems
are highly constrained; finding a feasible point is almost as difficult as finding the best. As a result,
we usually want to get some information out of infeasible solutions, perhaps by degrading their
fitness ranking in relation to the degree of constraint violation. This is what is done in a penalty
method.

In a penalty method, a constrained problem in optimization is transformed to an uncon-
strained problem by associating a cost or penalty with all constraint violations. This cost is in-
cluded in the objective function evaluation.

In other words, a constrained optimization problem:

optimize f(x)

subject to ci(x) ≥ 0 for i = 1, 2, . . . , k

where x is a vector <x1, x2, . . . , xn>

is transformed into unconstrained form:

optimize f(x) + r × �1≤i≤k �[ci(x)]

where r is a penalty coefficient and � is a penalty function.

Then the concluding paragraph of the section on incorporation of constraints into
genetic algorithm search in David Goldberg’s book was:

A number of alternatives exist for the penalty function �. In this book, we usually square the
violation of the constraints, �[ci(x)] = [ci(x)]2, for all violated constraints i. Under certain condi-
tions, the unconstrained solution converges to the constrained solution as the penalty coefficient
approaches infinity. As a practical matter, r values in genetic algorithms are often sized separately
for each type of constraint so that moderate violations of the constraints yield a penalty that is
some significant percentage of a nominal operating cost.

The advice sounded reasonable; so finally, I got my answer. At this stage I had
everything I needed to start experimenting. A binary string (010001011001010001 . . .
0100111) was used5 to represent a transportation plan (this was the easy part of arrang-
ing all floating-points in the transportation matrix into a sequence and converting each
number into a binary string, with some assumed precision). For my experiments, I also
created a few sets (each set consisted of some linear and nonlinear transportation cost
functions) that would contribute to the evaluation score. Then, to deal with the problem-
specific constraints, I built a family of penalty functions that penalized the evaluation
score for violations of constraints, and I ran many experiments with various weights
for penalty coefficients. To make the story short, the results were quite disappointing.
In general:

5In his book, David Goldberg presented a strong argument as to why bit-strings are the best
method of encoding parameters in genetic algorithms (this is also known as the principle of “minimal
alphabet”).

Evolutionary Computation Volume 31, Number 2 125

Z. Michalewicz

√
Large penalties resulted in a low-quality solution; basically, the first feasible
solution found was selected as the final solution. The algorithm was unable to
escape a feasible solution and search for a better one, as this required crossing
infeasible areas of the search space, and these areas were penalized heavily.

√
Small penalties resulted in a “funny” outcome: usually the optimal transporta-
tion plan was “all zeros”—do not transport anything anywhere! Indeed, you
cannot do better than that from the perspective of cost, and it was also a rea-
sonable plan as penalties for constraint violation were relatively small.

I also experimented with dynamic penalties, where penalty coefficients changed
every number of iterations of the algorithms (without much improvement), as well as
with repair algorithms to return to feasibility after the standard operators were applied;
however, the effort to “repair” a solution was significant and after a while I abandoned
this approach as well. Note that a single mutation (i.e., change of a single bit in a binary
string) applied to a feasible solution would trigger a series of changes in different places
of the string (at least in three other places) to preserve the feasibility of the solution. The
situation was even more complex when I tried to repair a solution that was an offspring
that resulted from crossover, as such offspring would violate numerous constraints.

Only then (out of desperation, I think) I considered the following idea: what would
happen if we departed from binary representation? Clearly, the main consequence of
such a decision would be the need for a new set of operators transforming one (or more)
solutions into new solutions. Fortunately, this task (finding new feasibility-preserving
operators) in the case of the transportation problem was relatively straightforward.
With two feasible matrixes, M1 and M2, a crossover operator was introduced that re-
sulted in two offspring:

O1 = c ∗ M1 + (1 − c) ∗ M2

O2 = (1 − c) ∗ M1 + c ∗ M2

where 0 < c < 1 was a parameter of the operator. Note that if M1 and M2 are feasible,
then O1 and O2 are also feasible.

After some experimentation, two mutation operators were defined. The first mu-
tation explored the boundary of the feasible search space by introducing as many zero
entries into the matrix as possible (still preserving feasibility). The second mutation fol-
lowed the original idea of mutation: it made a small change. It selected two random
rows and two random columns from the original parent matrix (thus creating a mini
2 × 2 matrix), recording its totals form both rows and both columns, and re-initializing
all four values in such a way that the totals remained the same. These four new values
replaced the old values in the original matrix, and of course the resulting solution was
also feasible.

The experimental results were “interesting” (at least for me at this stage). First of
all, my nonstandard genetic algorithm worked. The system was converging nicely on
the optima (which is known in the case of the linear version of this problem) or out-
performing other nonlinear programming methods for the nonlinear versions of this
problem. However, I wasn’t sure whether the developed system deserved the name
“genetic algorithm.” First, a matrix representation was used. Second, the usefulness
of crossover was negligible with respect to mutation operators—contrary to my belief
that crossovers were the “main” operator (responsible for mixing building blocks of
the solution) while mutation was only a “background” operator (guaranteeing that no

126 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

bit is “lost”). I couldn’t imagine reporting any experimental results with the probabil-
ity of crossover set to zero (i.e., running the system without crossovers). However, to
my great relief, the system generated the best results when the probability of crossover
was greater than zero—only 0.05, but still—so I could report experimental results with
both operators present. Third, there were some additional features of this nonstandard
system that emerged from experimentation. For example, in each generation I applied
just one operator and the offspring replaced one individual in the population (later this
feature was labelled as steady state). Also, it was frustrating to observe that in some gen-
erations the system moved “backwards,” in the sense that the best solution found thus
far was lost (replaced by a weaker offspring), so I modified the system to keep the best
individual no matter what (later this feature was labelled as elitism).

At this stage, the lessons and insights that emerged for me from these early experi-
mentations (which shaped the next few years of my research) were:

√
It is possible to develop an evolutionary system (meaning: a population-based
method) for a particular problem, where candidate solutions are modified by
some unary (mutation) and binary (crossover) operators. Such an evolutionary
method could be quite powerful, and, if applied correctly, could yield good
results. The knowledge of the problem is incorporated in the system by means
of data structures used to represent candidate solutions and operators which
modify them.

√
It seems that the representation of a solution is the key; this is somewhat equiv-
alent to “understanding the problem” that we’re trying to solve.

√
The variation operators are important; again, these transformations of
various solutions should (possibly) incorporate some characteristics of the
problem. For example, in the experiments I conducted on the simple trans-
portation problem it was useful to introduce a special mutation operator (a cou-
ple of years later labelled: boundary mutation) that explored the boundary of the
search space rather than its interior. This was an interesting concept, because
for many real-world problems the best solutions are located at the boundary of
the feasible search space (as constraints often represent limitations in resources
and at least one resource is usually pushed to the limit to generate the best
solution).

√
Finally, it is hard to overstate the importance of the constraint handling tech-
nique used for dealing with constrained optimization problems. There are
hardly any real-world optimization problems that aren’t constrained in some
way, so “processing constraints” is very important. If we don’t handle this is-
sue correctly, the chances are that the developed system would waste too much
time on sampling infeasible solutions. Only later did I discover a wealth of
constraint-handling techniques: dynamic and adaptive penalties, repairs (in-
cluding Baldwin’s effect, Lamarckian evolution, Davis’s 5% rule), feasibility-
preserving operators, decoders, etc.

Later in this paper, I’ll refer to the above points and, in a sense, these insights are as
important for me today (when building real-world applications), as they were 30 years
ago!

Evolutionary Computation Volume 31, Number 2 127

Z. Michalewicz

Let me conclude this section by describing one event that took place in September
1989, just two months after I moved from the University of Wellington in New Zealand
to the University of North Carolina at Charlotte (the place of my earlier sabbatical).
One of my friends from George Mason University invited me to give a talk at his de-
partment (Computer Science), so I thought that I would take this opportunity to discuss
genetic algorithms and my first experiments: my very first talk in my new research area!
However, minutes before my talk I found out that famous6 Ken De Jong with his PhD
students would attend my talk (I wasn’t aware of that earlier and not sure whether I
would have accepted the invitation if I knew). Anyway, the talk went very well. I got
a few very useful comments and suggestions and since that time we have been staying
in a close touch. It was one of the nicest experiences in my professional career.

2 Early Research Years (1991–1993)

The next three years were very important. First, I was already in the United States, so
I was much closer to all events related to evolutionary algorithms. In July 1991, in San
Diego, I attended the Fourth International Conference on Genetic Algorithms (ICGA),
which was my first conference in this area. I met the top researchers at that time and
could finally put faces to the authors of research papers that I had been reading. Hans-
Paul Schwefel attended this conference, and so I also “discovered” evolutionary strate-
gies, an evolutionary technique developed earlier in Germany. I was thrilled to see
that evolutionary strategies used “natural representation”: a vector of floating-point
numbers for numerical optimization. I was convinced this was “the way to go.” Af-
ter all, why would we convert a floating-point number into a binary string, triggering
some issues (e.g., the precision) for processing? Further, I was pondering about this
very question for some months now; at this conference one of my papers (Janikow and
Michalewicz, 1991) compared the efficiency of binary vs. floating-point representations
for numerical optimization; the other paper (Michalewicz and Janikow, 1991) presented
my thoughts on constraint-handling methods other than penalty functions (which were
so disappointing in my early experiments). Also, in 1991, my first two journal papers
on genetic algorithms were published (Vignaux and Michalewicz, 1991; Michalewicz
et al., 1991), which described my early experiments on transportation problems. At that
time, as I explained earlier in this paper, I wasn’t sure whether the systems I developed
deserved the name “genetic algorithms” (hence the term “nonstandard genetic algo-
rithm” in the title of the second paper). After all, I departed from binary representation
and the operators used were also nonstandard, as they included, for example, a repair
mechanism to stay in the feasible part of the search space. On top of that, the usefulness
of crossover operators was minimal, and at that time I was convinced that crossovers
“must be there” as the main operator of the method.

Another landmark of this period was creation of the GENOCOP system (for
GENetic Optimizer for COnstrained Problems7). In 1991, I made the source code of the
system available to all researchers, and the original version (which was followed by
many additional versions) is still available today at my University of Adelaide website

6Ken De Jong’s doctoral dissertation from 1975, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, (together with John Holland’s Adaptation in Natural and Artificial Systems published the same
year), is often considered as a birthday of genetic algorithms (De Jong, 1975; Holland, 1975). My seminar
talk at George Mason University happened fourteen years later!

7Clearly, I was influenced by a 1987 movie, RoboCop.

128 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

(https://cs.adelaide.edu.au/∼zbyszek/).8 I believe the system has outlived its useful-
ness today, but at that time, it had some merit. It was the first system (as far as I was
aware) in which the user could define several floating-point variables, define the do-
main of each variable (from–to), define the objective function, and define several linear
constraints. No need to worry about penalties, and no need to worry about repairs.
There were also some parameters that the user could set, like the population size, the
total number of iterations, probabilities of operators used (there were six operators in
GENOCOP), as well as a parameter to define the strength of the selective pressure. An
article on GENOCOP was submitted for publication to the Communications of the ACM
in 1991 and accepted the same year, but due to some ACM policy changes at that time,
only a short abstract was published after five years of delay (Michalewicz and Janikow,
1996)!

During the next few years, I created additional versions of GENOCOP and put them
into the public domain—versions with improved operators, with improved initializa-
tion methods and selection routines. The best version of this family of systems (note
that only linear constraints were allowed) was GENOCOP 3.0, a mature version that’s
been used by hundreds9 of researchers.

However, the highlight of this period 1991–1993 was the publication of my first
book, Genetic Algorithms + Data Structures = Evolution Programs (Michalewicz, 1992).
The title of the book was inspired10 by a well-known text from 1976, Algorithms + Data
Structures = Programs written by Niklaus Wirth (Wirth, 1976). Wirth’s book covered
some of the fundamental topics of computer programming with an emphasis on the
point that algorithms and data structures are inherently related. I thought that the sys-
tems I was developing shared a similar theme: the operators used in these “genetic algo-
rithms” and the data structures representing candidate solutions were also inherently
related.

At around that same time, the first journal related to evolutionary algorithms was
also established. I was lucky to submit my paper then (Michalewicz, 1993), which was
accepted for the first issue11 of this new journal.12 The paper included some experimen-
tal results (again, on transportation problems) together with some insights. The abstract
of this paper was as follows:

In this paper we present the concept of evolution programs and discuss a hierarchy of such
programs for a particular problem. We argue that (for a particular problem) stronger evolution

8This website also includes the original source codes used for experimentation on linear and nonlin-
ear transportation problems.

9This is just an estimation based on the number of e-mails I was getting around that time; even this
year I got two inquiries about GENOCOP!

10Eight years later, I published (with D. Fogel) a textbook, How to Solve It: Modern Heuristics
(Michalewicz and Fogel, 2000). Here, the inspiration for the title also came from an outstanding
book: How to Solve It (1945) by George Pólya (Pólya, 1945). In this book, Pólya identified basic prin-
ciples of problem solving; later I dedicated one of my books, Puzzle-Based Learning (Michalewicz and
Michalewicz, 2008), to him.

11This is the reason behind this invited paper: to reflect on how the field has developed with respect
to that original contribution in the first issue over the last 30 years.

12Four years later, in 1997, the second journal in evolutionary algorithms was established: IEEE Trans-
actions on Evolutionary Computation. Again, I was lucky to get my paper accepted for the very first issue
(Xiao et al., 1997). In a few years it will be the 30th anniversary of that journal—so it might be that I will
be invited to write another paper on evolutionary computation.

Evolutionary Computation Volume 31, Number 2 129

https://cs.adelaide.edu.au/~zbyszek/

Z. Michalewicz

programs (in terms of the problem-specific knowledge incorporated in the system) should per-
form better than weaker ones. This hypothesis is based on a number of experiments and a sim-
ple intuition that problem-specific knowledge enhances an algorithm’s performance; at the same
time, it narrows the applicability of an algorithm. Trade-offs between the effort of finding an ef-
fective representation for general-purpose evolution programs and the effort of developing more
specialized systems are also discussed.

The paper summarized my earlier experiments on transportation problems and
expanded on my simple intuition that problem-specific knowledge (in terms of the
data structures used, operators, and constraint-handling techniques) enhances an algo-
rithm’s performance. The “more” problem-specific knowledge is incorporated into the
algorithm, the “better” the results. The paper presented five versions of evolutionary al-
gorithms with an increasing amount of problem-specific knowledge incorporated into
each algorithm (hence the term “hierarchy” in the title of the paper); indeed, the results
for “higher” versions were better than those for “lower” versions. The argument was
largely intuitive, as it is difficult to measure the “amount” of problem-specific knowl-
edge that’s incorporated into an algorithm. Nevertheless, this simple observation that
was presented in this paper influenced my research for the rest of my career. Later, I
found this research useful for various commercial applications.

3 Academic Life (1994–1999)

During the next six years, I continued with standard academic life: attending confer-
ences, publishing papers, supervising students. An important milestone was reached in
June 1994: the First IEEE Congress on Evolutionary Computation (Orlando, June 1994)
took place (as a part of the IEEE Congress on Computational Intelligence), and I was
the general chair of the evolutionary part. This congress set the foundation for the IEEE
Transactions on Evolutionary Computation (the first issue appeared three years later, in
1997). Similarly, some discussions during this congress with editors of the Oxford Uni-
versity Press and Institute of Physics resulted in a very interesting publication (Bäck
et al., 1997), where around 100 researchers contributed to this large volume (around
1,000 pages). This Handbook represented a milestone for the field of evolutionary com-
putation; a quote from the Foreword of this volume explained it all:

However, within the field there was a growing sense of the need for more interaction and cohesion
among the various subgroups. If the field as a whole were to mature, it needed a name, it needed
to have articulated cohesive structure, and it needed a reservoir for archival literature. The 1990s
reflect this maturation with the choice of evolutionary computation as the name of the field, the
establishment of two journals for the field, and the commitment to produce this handbook as the
first clear and cohesive description of the field.

Further, I continued my work on additional versions of the GENOCOP system.
Again, the general idea was to keep the objective and set of constraints as indepen-
dent entities, so we could add or remove constraints at will without affecting other
components of the algorithm; later, within business environments, this line of reason-
ing proved very useful. Still, the next two versions of the system that were put into the
public domain provided improvements in terms of operators and types of variables:

√
GENOCOP 3.1 provided self-tuning probabilities of operators. Note that all
previous versions of the system required setting the frequency for all six oper-
ators (these were called uniform mutation, boundary mutation, non-uniform

130 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

mutation, arithmetical crossover, simple crossover, heuristic crossover) which
wasn’t convenient. This research later resulted in a publication on parameter
control in evolutionary algorithms (Eiben et al., 1999).

√
GENOCOP 4.0 added the possibility to declare integer/Boolean variables. This
was missing in all previous versions and many test cases required this feature.

However, all versions of GENOCOP presented so far handled linear constraints
only, so it was time to turn attention to nonlinear constraints. Two versions of the GENO-
COP system were released (referred to as GENOCOP II and GENOCOP III) that handled
nonlinear constraints, and a bit later, the final version of the system was placed in the
public domain13:

√
GENOCOP 5.0 allowed for the handling of nonlinear constraints through the
use of a decoder.

The issue of constraints in evolutionary algorithms remained one of my main re-
search topics; during that period, I worked closely with Marc Schoenauer and this
cooperation resulted in a few papers (Michalewicz and Schoenauer, 1996; Michalewicz
et al., 1996; Schoenauer and Michalewicz, 1996, 1997, 1998).

Some of these publications dealt with situations where the optimum solution lies on
the boundary between feasible and infeasible parts of the search space; again, from the
perspective of real-world problems, this was a very fruitful research direction. Fifteen
years later, with two other researchers, I returned to this topic, and our paper pointed
out that this area is significantly under-explored in research (Bonyadi, Wagner et al.,
2014). I believe that we should analyze the impact of constraints more in the future, as
it also goes towards decision support, albeit more strategic than operational. There was
also one additional paper (Michalewicz et al., 2000) worth mentioning in the context of
research on constraints in evolutionary algorithms, as it discussed a test-case generator
for constrained parameter optimization techniques that could create various test prob-
lems with various characteristics—for example, test problems with different relative
size of the feasible region within the search space, problems with different number and
types of constraints, problems with convex and non-convex objective functions (pos-
sibly with many optima), problems with highly non-convex constraints consisting of
(possibly) disjoint regions. The idea was to get some insights into why some constraint-
handling techniques (e.g., penalties, decoders, repairs) performed well on some con-
strained problems but not others.

The paper on the test-case generator for constrained parameter optimization tech-
niques was completed during the academic year of 1998/99, which I spent at Aarhus
University in Denmark (sabbatical leave). During this stay (great place, great crowd
of graduate students) I was also working on a new book (Michalewicz and Fogel,
2000). This work, in some sense, closed the period of 12 years during which I was fully
immersed in research on evolutionary algorithms in the context of academic life, and
little did I know about “real-world applications.” Of course, there were a few pub-
lications on real-world applications of evolutionary algorithms; almost every confer-
ence had a session on real-world problems and almost every paper on evolutionary
algorithms talked about applicability of these algorithms to problems in real-world

13This version was based on a method described in a paper by Kozieł and Michalewicz (1999).

Evolutionary Computation Volume 31, Number 2 131

Z. Michalewicz

settings (usually within the introductory section of the paper). Even myself, I co-edited
an application-oriented book (Dasgupta and Michalewicz, 1997) and also wrote a few
papers where evolutionary algorithms were applied to problems in real-world set-
tings (the early papers on the transportation problem also fell into this category). And
so I published many papers where evolutionary algorithms were applied to evolv-
ing trading rules (Ghandar, Michalewicz, Schmidt et al., 2009), portfolio management
(Ghandar, Michalewicz, and Zurbruegg, 2009), forecasting economic time series (Wag-
ner et al., 2008), strategic decision support (Johnson et al., 2005), material flow in sup-
ply chains (Vergara et al., 2002), control tasks in dynamic systems (Ursem et al., 2002),
joint replenishment problem (Khouja et al., 2000), design of electromagnetic devices
(Wieczorek et al., 1998), economic lot and delivery scheduling problem (Khouja et al.,
1998), and modeling of ship trajectory in collision situations (Śmierzchalski and
Michalewicz, 2000). All these papers had a real-world flavor; however, they were not
really “real-world applications.”

I began to realize that the term “real-world application” was used in the evolution-
ary computation community somewhat arbitrarily. Some researchers just experimented
with applications (e.g., numerical optimization, constraint-handling, multiobjective op-
timization) that had the label “real-world.” Other researchers experimented with appli-
cations that were tested on some known model (e.g., TSP, VRP, JSSP) of a real-world
problem. And some other researchers tested their applications on some real data (e.g.,
taken from a hospital, city council, a particular business organization). However, it was
very hard to find any application based on evolutionary algorithms that was used in
some business or industry on a daily (regular) basis.

At that time, I was thinking about large-scale software systems where evolutionary
algorithms could play a significant role, systems that could be used on a regular basis
by staff within large organizations and where the recommended “optimal solutions”
were considered in the final decisions, systems that could successfully compete with
software provided by big players (e.g., Microsoft, SAP, or Oracle). In other words, I was
after evolutionary algorithms that were used in “real action” as opposed to, for example,
some off-line applications for making a one-time decision (such as a design decision).
I thought that the two sisters14 of evolutionary computation (artificial neural networks
and fuzzy systems) broke into the mainstream of industry much earlier, and it would be
good if evolutionary computation joined them. Anyway, my desire of doing something
“for real” was growing stronger and stronger, and the opportunity presented itself in
early 2000.

4 From the Halls of Academia into the Skyscrapers of Business
(2000–2012)

In January 2000 I co-founded my first business, NuTech Solutions. The timing seemed
to be good. The dot-com boom of the late 1990s facilitated a massive increase in start-up
companies, and between 1995 and its peak in March 2000, the Nasdaq rose 400%.15 It
was boom times for technology companies. The general idea behind NuTech Solutions
was to apply science (in particular, evolutionary methods) to solve hard optimization

14Traditionally the three main pillars of Computational Intelligence (understood as the theory,
design, application, and development of biologically and linguistically motivated computational
paradigms) have been neural networks, fuzzy systems, and evolutionary computation.

15Only to fall 78% from its peak by October 2002, giving up all its gains during the bubble.

132 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Figure 1: Off-lease cars and auction sites on one particular day.

problems for industry. Little did I know about running a business at that time, but it
was a great adventure and a great learning experience.16

This event also started my gradual transition from academia into business. On the
one hand, during the next twelve years, 2000–2012, I was still in academia (at the Uni-
versity of North Carolina at Charlotte and later, from 2005, at the University of Adelaide,
Australia), but on the other hand, during these twelve years there were periods of time
when I worked either part-time in my own company or was on leave from university.
After all, it is quite difficult to maintain your academic activities and run a business at
the same time.

Without going into too much detail, let me present one project (from 2001) that
provided me with many observations and insights.

4.1 Car Distribution System

The project was for GMAC, a car financing organization in the United States that was
leasing around one million cars each year to consumers, organizations, and rental agen-
cies (see the case study in Michalewicz et al., 2005). When a car lease agreement expired,
which could be from one to five years, the car was either returned to GMAC or pur-
chased by the lessee (in either case, these cars are called off-lease cars). GMAC didn’t
need to worry about the purchased off-lease cars, but it needed to sell the returned
off-lease cars at one of many available auction sites located across the United States.
Each of these returned cars was different in its make, model, body style, trim, color,
year, mileage, and damage level, and the overall number of cars leased each year trans-
lated into approximately 5,000 returned off-lease cars each day. Figure 1 illustrates a

16Some years later we described our experiences in Winning Credibility: A guide for building a business
from rags to riches, (Michalewicz and Michalewicz, 2006). The book may serve as a guide on how to start
and run a business; it was used as a text in business schools at a few universities.

Evolutionary Computation Volume 31, Number 2 133

Z. Michalewicz

particular day, where green circles represent the returned off-lease cars and yellow cir-
cles represent the 50 auction sites at which GMAC sells its cars.

The larger the green circle, the more cars were returned at that location, with the
sizes and locations of these circles varying from one day to the next (as different people
and organizations returned their cars at different locations). The yellow circles, on the
other hand, represent the designated 50 auction sites where the returned off-lease cars
were sold. The locations of these auction sites were fixed.17

GMAC’s task was to distribute this daily intake of approximately 5,000 cars to the
50 designated auction sites; in other words, to assign an auction site to each off-lease car.
For example, if the first car were located at a dealership in Northern California, GMAC
would consult some reports18 on what the average sale price for that car was at different
auction sites (after adjusting for mileage, trim, damage level, etc.), and then ship that car
to the auction site with the highest average sale price. Of course, GMAC also needed to
estimate the transportation cost to each auction site (the longer the distance, the higher
the cost, and longer transportation times also resulted in higher depreciation and dam-
age risks). Although straightforward, this approach for distributing off-lease cars didn’t
allow GMAC to capture the full value of each off-lease car. Because the entire process
was based on manual analysis and individual, car-by-car decisions, any small mistake
that resulted in a net reduction of “only” $50 per car would cost GMAC $250,000 in a
single day.

As such, GMAC defined their business problem and objective as:

Maximize the aggregate resale value of all returned off-lease cars by optimizing the distribution of individ-
ual cars to individual auction sites.

This was a difficult business problem to solve and objective to realize, for the fol-
lowing reasons:

1. Number of possible solutions. There were 50 possible solutions for each individ-
ual car, as GMAC could ship a car to any of the 50 auction sites; for two
cars, there were 2,500 possible solutions (50 × 50); for three cars, 125,000 pos-
sible solutions (50 × 50 × 50), and so on. For 5,000 cars, however, there were
approximately 505,000 possible solutions (50 multiplied by itself 5,000 times)!
Nevertheless, GMAC had to make daily decisions for these cars, irrespective of
how complex the problem was or the number of possible solutions.

2. Transportation costs. When GMAC shipped an entire truckload of cars from one
location to another, it would realize a better price per car than when it shipped
only one car (or few cars), which lowered the overall logistics cost. This occurred
because the cost of transport was primarily tied to individual trucks and drivers,
with the number of cars on each truck being of secondary importance.

17Although the locations of the 50 auction sites are fixed, GMAC may, from time to time, change
the auctions it does business with by dropping some sites and adding new ones (thereby changing the
location of the 50 yellow circles). This may happen if cars are routinely damaged at some sites, auction
fees go up, or some other reason arises. However, these decisions raise several additional questions,
such as: How do we evaluate the monetary impact of dropping some sites and adding others? and Can we increase
profits by replacing some auction sites with others? We will address these important questions later.

18Many reports are available for estimating the auction price of cars, including Black Book, Kelley Blue
Book, the Manheim Market Report, and others.

134 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

3. Volume effect. Although GMAC wanted to send each car to the auction site where
the highest price could be realized, sending too many cars of same color, make,
and mileage to the same auction site would trigger the volume effect. For exam-
ple, if GMAC sent 45 white Chevrolet Camaros to the same auction site (which
might have all been returned from a rental agency on the same day), then these
cars were likely to sell for the minimum opening price, because with 45 identi-
cal cars for sale, there wouldn’t be enough buyers to bid the price up on each
car (meaning there was a limit to how much supply could be absorbed by each
site). On the other hand, if GMAC sent only five Chevrolet Camaros to the same
auction site, then these five cars would fetch a higher price because the same
number of buyers would be bidding on a smaller number of cars.

4. Price depreciation and inventory holding costs. To further complicate matters, every
auction site had a fixed day for selling cars (e.g., every second Friday at 10 am).
Because of this, if GMAC shipped 100 cars to an auction site and the cars arrived
one or two days after the auction day, then these cars would sit until the next sale
day, incurring depreciation and holding costs. Because of this, GMAC needed to
check the exact auction day and inventory levels across all 50 auction sites before
making any new distribution decisions.

5. Price changes. Used car prices change over time, and these changes may be slow
and subtle (over many years as consumer preferences change), sudden and dra-
matic (as was the case in March 2020 when the COVID-19 panic set in), or region
specific (e.g., convertible cars become unpopular in northern states during the
winter months, and consequently, they fetch lower prices, which is part of the
“seasonality effect”). GMAC also had to deal with next year’s models entering
the market during August and September, causing older models to drop sharply
in price (also part of the seasonality effect). During this time of year, it was bet-
ter to ship cars nearby and sell them quickly, rather than shipping them longer
distances to more lucrative auction sites. Additionally, new body style models
were introduced every few years, causing an even bigger drop in price for older
body styles.

Coming up with a daily decision of where to send the returned off-lease cars wasn’t
easy, as the decision needed to consider all these factors.

Furthermore, the process of transporting a car to a specific auction site could take
up to two weeks, as the truck would have to drive to the pick-up location, load the car,
pick up some additional cars (possibly somewhere close by), and then finally deliver
the cars to the designated auction. Because of this, GMAC had to consider the sale price
for each car a couple of weeks ahead of time. For example, for a car located in Jack-
sonville, Florida, GMAC might consider sending this car to an auction site in Georgia,
Pennsylvania, or California. The price prediction for these three auction sites would be
different, because GMAC would be predicting the sale price five days into the future for
the Georgia auction site, ten days into the future for the Pennsylvania auction site, and
fifteen days into the future for the California auction site. The differences in time were
due to the transportation distance. However, to predict these prices, GMAC needed to
consider the seasonality effect, price depreciation, volume effect, and inventory levels.
In making the decision of Georgia vs. Pennsylvania vs. California, GMAC would also
need to weigh the possibility of a better price in California against the higher trans-
portation cost, higher depreciation, and higher overall risk.

Evolutionary Computation Volume 31, Number 2 135

Z. Michalewicz

One of the main features of the developed system was a separation of the objec-
tive (maximization of the aggregate resale value of all returned off-lease cars) and con-
straints (in the spirit of my experimental GENOCOP systems). Consequently, the users
of the system had the additional option to add, modify, or delete various constraints
and business rules. Constraints that were applied to all auction sites were regarded as
global constraints (e.g., “maximum transportation distance” which limited the trans-
portation distance of all cars) and GMAC could also implement a large variety of local,
auction-specific constraints within the system, such as:

• Mileage constraints, which defined the upper and lower mileage of cars that
could be shipped to a specific auction site. An example of this constraint would
be “only ship cars that have between 30,000 and 70,000 miles to the ADESA
Atlanta auction site.”

• Model year constraints, which specified a range of model years that could be sent
to a specific auction site. For example, GMAC could specify that a particular
auction site could only accept model years between 2002 and 2004.

• Make/model exclusion constraints, which specified certain makes/models that
were to be excluded from specific auction sites.

• Color exclusion constraints, which specified certain colors that were to be ex-
cluded from specific auction sites.

• Inventory constraints, which specified the desired inventory level at each auc-
tion site. For example, GMAC could specify an inventory level between 600
and 800 cars for an auction site at any particular time.

Each auction site could have different constraint settings, which represented the
business rules that GMAC wanted to operate under for that site. For the ADESA Boston
auction site, the constraints represented the following business rules (as shown in
Figure 2):

• “Send only cars with 25,000 to 50,000 miles”

• “Send only 2001, 2002, or 2003 model years”

• “Do not send any Honda or Toyota Camry cars”

• “Do not send any yellow or black cars”

• “Keep the inventory between 300 and 400 cars”

Except for the inventory constraint, all these constraints were defined as hard con-
straints. If the system had to break a hard constraint, it would mark this recommenda-
tion with the notation “constraint violation.” Inventory constraints, on the other hand,
were defined as “soft” constraints and a penalty was assigned to solutions that violated
these constraints. The penalty for violating a soft constraint would grow exponentially,
and so instances where this constraint was violated in a significant way were rare. How-
ever, if the system had to process a very large number of cars on a single day, then the in-
ventory constraint might have been violated at almost every auction site. In such cases,
the exponential penalty function would make these violations uniform. For example,

136 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Figure 2: Screenshot showing local constraints set for the “ADESA Boston” auction site.

in a case where all auction sites have a maximum inventory constraint of 300 cars but
the current number of cars to be distributed would increase this inventory level to an
average of 400 cars per auction, then the penalty for violating this soft constraint would
be evenly distributed across all sites (so that they have the same degree of violation).

Because these constraints allowed GMAC to set various business rules (e.g., “do not
send any red cars to Florida”), the configuration screen served as a link between GMAC
and the system. GMAC could also use this configuration screen to investigate various
“what-if” scenarios, such as “what would be the distribution of cars if the maximum
transportation distance was limited to 500 miles?” Because 300 auction sites were con-
figured in the system and only 50 were “active,” GMAC could also activate or deactivate

Evolutionary Computation Volume 31, Number 2 137

Z. Michalewicz

any auction site, and then re-run the optimization process to test a specific what-if sce-
nario, such as “what would happen to the aggregate resale value of all cars if we used
60 auction sites instead of 50?”

GMAC could also use different what-if scenarios to investigate different transporta-
tion cost options available from different suppliers. The system calculated the trans-
portation cost from any distribution site to any auction for any number of cars, and two
factors influenced this cost: (1) the distance between a distribution site and auction, and
(2) the number of cars being shipped.

The optimization model generated a variety of possible distribution plans that
served as input to the prediction model. This input provided a destination assignment
(i.e., auction site) for each off-lease car, which the prediction model then used to gen-
erate a predicted sale price. The optimization model then summed all these predicted
prices (i.e., the output data) to evaluate the quality of the distribution plan—the higher
the sum of the predicted sale prices, the better the distribution plan (hence, there was a
strong relationship between the prediction and optimization models). An evolutionary
algorithm based on indirect representation was used, where all available auction sites
were sorted by distance from a particular car. In other words, auction 1 was the closest
(distance-wise), auction 2 was the second closest, and so forth. Hence, each solution
was represented by a vector of auction site indices (relative to a particular car), and the
length of the vector was equal to the number of cars being distributed:

3 4 4 · · · 1 1

The vector above represents a solution where the first car is shipped to the third
closest auction (for this particular car), the second car is shipped to the fourth closest
auction (for this particular car), the third car is shipped also to the fourth closest auc-
tion (note, however, that the second and third car are most likely shipped to different
auction sites, as the fourth closest auction for the second and third car need not be the
same), and so on, with the last two cars being shipped to the closest auction sites. In this
implementation of evolutionary algorithms, the optimization model applied the elitist
strategy, which forced the best solution from one generation to the next, as well as var-
ious mutation and crossover operators that were discovered through experimentation.

To enable learning within the system, the prediction model updated itself with the
arrival of new data. The prediction model contained numerous parameters (different
values for various adjustments) that were automatically updated to capture changing
trends in the used car market at regular intervals.

When used in a high-volume setting, where thousands of cars were returned off-
lease each day, the system generated a significant lift in the aggregate resale value. This
was one of the most successful projects at that time—a project where evolutionary algo-
rithms played the key role and where my earlier experience (on separation of objective
and constraints) proved to be very useful.

4.2 Adaptive Business Intelligence

The GMAC project also provided me with a very interesting observation: namely, that
a significant gap existed in business between having the necessary domain-specific
knowledge and being able to use it to make the best decision. Because knowledge
is an essential component of any decision-making process (as the old saying goes,
knowledge is power!), many businesses viewed knowledge as the final objective. But the
GMAC project demonstrated that knowledge wasn’t enough. GMAC knew a lot about
their operation—they had hundreds of graphs and charts that visualized every bit of

138 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Figure 3: Components of adaptive business intelligence.

data—but the decision-makers weren’t able to apply this knowledge effectively to opti-
mize the daily distribution decisions! In short, all the knowledge in the world wouldn’t
guarantee the right or best decision for GMAC or any other organization.

So, around 2003 or so, I came to the realization that the future of business intelli-
gence would be in systems that could recommend optimized decisions (rather than just
providing reports, analytics, and insights). This is how a new term, adaptive business
intelligence, was born. While business intelligence was defined as “a broad category of
applications and technologies for gathering, storing, analyzing, and providing access
to data,” the term adaptive business intelligence was defined as “the discipline of using
prediction and optimization techniques to build self-learning decisioning systems.” As
illustrated in Figure 3, in addition to performing the role of traditional business intelli-
gence functions (i.e., transforming data into knowledge), adaptive business intelligence
also includes these crucial decision-making components: prediction, optimization, and
learning (called “adaptability” at that time).

In hindsight, the GMAC project resulted in a new concept for me, and a few
years later the idea of adaptive business intelligence was presented in book form
(Michalewicz et al., 2007).

Towards the end of 2004, after 16 years in the United States, I moved to Australia
(School of Computer Science, University of Adelaide) and a couple of months later
(February 2005) I co-founded my second business, SolveIT Software. Again, I will skip
the description of the first (painful) years of starting a new business on a new conti-
nent, and instead describe another “discovery” made while analyzing some real-world
business problems that we encountered during that time.

4.3 Multicomponent Problems

An observation that emerged from one of our commercial projects at SolveIT Software
was the following: real-world problems are sometimes comprised of several “compo-
nents” that interact with each other; organizations realize that these components are re-
lated and affect one another, and what is most desirable is that a solution for the overall

Evolutionary Computation Volume 31, Number 2 139

Z. Michalewicz

problem takes into account all these subcomponents.19 For example, scheduling produc-
tion lines (e.g., maximizing the efficiency or minimizing the cost) is directly related to
inventory costs, labor costs, and service levels to customers, among other business met-
rics, and shouldn’t be considered in isolation. Moreover, optimizing one component
may negatively impact another. For these reasons, organizations could unlock more
value through “globally optimized” solutions that consider all the components together,
simultaneously, rather than just a single component at a time.

One of the projects that displayed this multicomponent characteristic was related
to optimizing the transportation of water tanks. In this case, a manufacturer produced
water tanks of different shapes and sizes based on customer orders. The total number
of customer orders per month was approximately 10,000, which varied in delivery loca-
tions. Each customer ordered a water tank with specific characteristics (including size)
and expected to receive it within a period of time (usually one month). These water
tanks were then transported by a fleet of trucks (operated by the water tank company)
that had different characteristics and some were equipped with trailers. A subset of
orders was selected and assigned to a truck and the deliveries were then scheduled.
Because the tanks were empty and of different sizes, they could be bundled inside each
other to maximize the truck’s load. A bundled tank had to be unbundled at special sites,
called “bases,” before the tank’s delivery to the final destination. There might be several
bases close to the various customer locations where the tanks were going to be deliv-
ered, and selecting different bases affected the best overall solution. When the tanks
were unbundled at a base, only some of them fit back onto the truck, as unbundled
tanks required more space. So, the truck was loaded with a subset of these unbundled
tanks and delivered them to the customer, while the remaining tanks were kept in the
base until the truck returned to continue the delivery process.

The goal of the optimization algorithm was to group the customer orders into sub-
sets of tanks that were bundled and loaded onto trucks for delivery (possibly with
trailers), and then determine the best base for unbundling these tanks before delivery
to each customer, so that the overall delivery cost was minimized. Each of the men-
tioned procedures in this problem (tank subset selection, base selection, delivery rout-
ing, bundling and unbundling) was just one component of the problem and finding a so-
lution for each component in isolation didn’t lead to the optimal solution for the overall
problem.

For example, if we just focused on the subselection of tanks (based on customer
orders), there is no guarantee that there exists a feasible bundling solution that would
allow this subset to fit onto a truck. Also, by selecting tanks without considering the
location of customer destinations and location of bases, the best solution might not be
a high-quality one, as there might be a customer destination that required a low-cost
tank, but that location was far from any base, making delivery very expensive. On the
other hand, it is impossible to select the best route for customer destinations before
selecting the tanks, because without first selecting the tanks, the best solution (lowest
possible cost and distance) was to deliver nothing. Thus, solving each component of
the problem in isolation didn’t lead to an optimized overall solution, especially when
we added additional considerations, such as the rostering of drivers (who often had

19There are similar concepts to multicomponent problems in other disciplines, such as operations
research and management science, with different names such as integrated systems, integrated supply
chains, system planning, and hierarchical production planning.

140 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Figure 4: Steps in mine-to-port supply chain.

different qualifications), fatigue factors and labor laws, traffic patterns on the roads,
usability of different trucks for different segments of roads, maintenance schedules, and
so on, which further complicated the problem as well as the interaction between its
various components.

Another project that displayed this multicomponent characteristic was related to
optimizing the mine-to-port supply chain. In such operations, a mining company tries
to satisfy customer orders by providing a predefined amount of product (e.g., coal, iron
ore, etc.), graded to a specific quality (such as the percentage of iron within the ore)
on a particular due date when the product must be ready for ship loading. The supply
chain would have multiple stages, starting with planning the extraction of ore at the
mine, all the way through to planning the rail corridor and when each ship will be
berthed and loaded (see Figure 4). Each of these steps is significantly complex by itself,
such as coming up with an optimized ore extraction sequence, or the most efficient
train schedule (which must consider maintenance, the availability of various drivers,
the number of junctions in the network where trains can pass, etc.), representing hard
optimization problems to solve even on their own.

Apart from the complexity within each component, optimizing a single component
in isolation will not lead us to a globally optimized solution20 for the whole supply
chain. As an example, scheduling trains to optimality (moving as much product as pos-
sible from the mine to port) might result in too much product at the port or even the
wrong product at the wrong time, because we’re only worried about maximizing the
asset utilization of the train network, rather than what’s optimal for the mine or port.
Solving each component individually and then assembling the solutions together is un-
likely to result in an overall, globally optimum solution; and if all solutions are local,
then many business opportunities may be lost. Hence, solving an individual component
of the mining supply chain provides us with a local optimum as far as the whole prob-
lem is concerned, rather than the global optimum, especially given there are strong de-
pendencies between all components of the supply chain (e.g., some decisions on which
blocks to mine directly impact crushing and blending activities, which in turn impact
train logistics).

20There is some confusion related to terminology used in academia and industry with respect to
“local optimum” (or local solution) versus “global optimum” (or global solution). In academia, the
highest peak in a landscape is called global optimum and possibly many lower peaks, which are the
local optima. So this concept of local vs. global optima in academia is strictly “vertical,” where the qual-
ity measure score determines the height of a peak, and by having all the measurements we can easily
identify all local peaks. In business, however, the term “global optimum” has a different meaning. Note
that when we’re dealing with multicomponent problems, we can get a locally optimum solution for
each individual component by solving each component separately, and then try to put the components
together. Still, the result is likely to be suboptimal.

Evolutionary Computation Volume 31, Number 2 141

Z. Michalewicz

A global optimization algorithm, on the other hand, would simultaneously address
the objectives of each component of the supply chain. However, the implementation of
such algorithms for global optimization is scientifically challenging, and there are two
general approaches: (i) a centralized approach, where a global “agent” is responsible
for “supervising” local agents (that are dealing with the individual components of the
overall operation) and tries to synchronize their activities and recommended decisions,
and (ii) an approach based on distributed optimization, where local optimization algo-
rithms “talk” to each other in order to synchronize their actions.

With this in mind, I suggested a new and possibly interesting research direction
for the evolutionary computation community at that time, and with two co-authors put
together a paper (Bonyadi et al., 2013) on a travelling thief problem (this was a new
term at that time; I did not find this term in existing literature). The idea followed the
structure of problems that I encountered in business and which I described earlier: take
two well-known components and merge them together in such a way that these two
components, when solved separately, wouldn’t yield the optimal solution to the overall
problem. So the travelling thief problem was a combination of two well-known op-
timization problems: the travelling salesman problem and the knapsack problem. So,
there are n cities, and the cost matrix for moving from one city to another is given. Also,
there are m items; each of them has some value and a weight. There is a thief who is
going to visit these cities exactly once and pick some items from the cities and fill his
knapsack (the maximum weight for the knapsack is given). The aim is to find a tour
that visits all the cities exactly once and gets back to the starting city, optimizing ob-
jective function(s) while the total weight of the knapsack is not violated. Note that the
objective function(s) might be related to the time of the travel and/or the total theft
value from picking the items. However, the values in the cost matrix for moving from
one city to another depend on the current weight of the knapsack, that is, the heavier
the knapsack, the larger the cost. The travelling thief problem became popular in the
evolutionary computation community. Apart from several research papers published
at various journals, there have been competitions on the travelling thief problem or-
ganized at various EC conferences (including this year GECCO ’23). I couldn’t resist
either, and a few years after leaving academia I was still involved in some research on
multicomponent problems (Przybyłek et al., 2018).

4.4 Puzzle-Based Learning

I was also involved in another activity during this period. I found some similarities
between “solving” real-world problems and solving puzzles, and I realized that in
academia we teach a variety of subjects, except one: how to think! So, in 2008, I wrote
a textbook on problem-solving (Michalewicz and Michalewicz, 2008) and amazingly,
hundreds of universities all over the world were introducing puzzle-based learning
courses in their curriculums. Such courses are still taught today (judging from emails I
am getting on a regular basis), and five years later, an editor at Springer convinced me
to write a sequel to the original textbook with emphasis on how to teach such courses
(and how to evaluate the performance of a student). This is indeed far from trivial;
imagine an exam during which a student gets a puzzle to solve and either solves it or
not! So, with the assistance of a few co-authors (who were already involved in teach-
ing puzzle-based learning courses at their universities), a new text (Meyer et al., 2014)
was published, where we shared our experiences. Some additional information (includ-
ing videos and software illustrations of selected puzzles) is available at http://www
.puzzlebasedlearning.edu.au/ and lecture materials are available on request.

142 Evolutionary Computation Volume 31, Number 2

http://www.puzzlebasedlearning.edu.au/

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

4.5 Departure from Academia

However, around 2011–2012, I realized that there is a significant gap between theory
and practice in evolutionary algorithms. For example, in 2011, with Frank Neumann
and Andreas Ernst, we placed a call for papers for the special issue on “Heuristic Search
Methods for Large Scale Optimization Problems in Industry” for the Evolutionary Com-
putation Journal. In the call for papers, we inserted the following phrase: “This special
issue solicits novel high-quality contributions on heuristic methods for large, applied optimiza-
tion problems that have been used in practice.” You can probably guess how many papers
we received . . . and so the idea of this special issue was abandoned.

Many other changes were also happening in 2012. I found myself enjoying vari-
ous business applications and challenges more and more and discovered that being a
“business owner” gave me greater pleasure than being a professor. Furthermore, I read
an essay (Ullman, 2009) where Jeff Ullman (my hero from 40 years ago—I used his ex-
cellent textbooks on data structures, algorithms, and databases in the pre-evolutionary
period of my life) placed some of his thoughts on advising students. He wrote:

Look at the last section [of some paper], where there were always some “open problems.” Pick
one, and work on it, until you are able to make a little progress. Then write a paper of your own
about your progress, and don’t forget to include an “open problems” section, where you put
in everything you were unable to do. Unfortunately this approach, still widely practiced today,
encourages mediocrity. It gives the illusion that research is about making small increments to
someone else’s work. But worse, it almost guarantees that after a while, the work is driven by
what can be solved, rather than what needs to be solved.

and

People write papers, and the papers get accepted because they are reviewed by the people who
wrote the papers being improved incrementally, but the influence beyond the world of paper-
writing is minimal.

I couldn’t agree more. That year I wrote my two (and only) essays (Michalewicz,
2012a, 2012b) that relate to the last phrase of Ullman’s essay, “but the influence beyond
the world of paper-writing is minimal,” where I tried to share my experiences (theory vs.
practice) with the evolutionary computation community.

In January 2013, I left academia for good. A few months earlier SolveIT Software21

was acquired by Schneider Electric and I did not plan to stay there much longer after
the acquisition. But I had also lost my taste for academic research. So, I resigned from
my university position, and then resigned from all editorial boards and program com-
mittees. Since that time, I have not reviewed any papers (I keep reading some, but no
reviews, thank you!)—and life without reviewing is pretty good.

5 Back to Business (2013–2023)

It was difficult for me to leave academia for good. Still, I was involved in some paper-
writing activities with my former students or students who were in the process of com-
pleting their degrees (I could not leave them halfway through their programs), so I
contributed to their research efforts and assisted them in putting together some papers

21SolveIT Software became the third-fastest-growing company in Australia in 2012, as ranked by
Deloitte; the company won numerous awards and counted among its customers some of the largest
corporations in the world, including Rio Tinto, BHP Billiton, and Xstrata. SolveIT Software won all
major mining tenders competing against the largest companies of the world.

Evolutionary Computation Volume 31, Number 2 143

Z. Michalewicz

on particle swarm optimization (Bonyadi and Michalewicz, 2014a; 2014b; Bonyadi, Li
et al., 2014; Bonyadi and Michalewicz, 2016a, 2016b, 2017a, 2017b), wheat blending (Li
et al., 2014), car racing (Bonyadi et al., 2016), finance (Ghandar et al., 2016), and schedul-
ing (Abello and Michalewicz, 2014a, 2014b, 2014c; Zhang et al., 2016; Weise et al., 2014),
but my heart was already somewhere else.

On July 30, 2014, I co-founded my third (and I believe, the last) company, Complex-
ica. Again, many interesting problems poured in, but I found out that the same prin-
ciples would apply: truly intelligent systems that could make meaningful recommen-
dations required a predictive module, optimization module, and learning component.
Besides, great care needed to be taken while incorporating constraints and business
rules. Probably it would be the best to illustrate all these important issues by discussing
one application, where the necessity of incorporating problem-specific knowledge is
also very apparent. The application is for promotional planning and pricing,22 which has
all the hallmarks of a super complex business problem worthy of discussion.

We’ve all experienced product promotions (e.g., Sale! 50% off! Buy one, get one free!),
which manufacturers and retailers use to drive foot traffic into stores, increase vol-
ume and market share, and build awareness for new products (have you ever bought a
product on promotion, liked it, and then switched to that product permanently?). These
promotional activities are typically funded by both the retailer and participating man-
ufacturer and can account for more than 50% of the revenue of such companies. Hence,
promotions are a big deal. And not only is the problem of promotional planning in-
herently complex—where it’s difficult to make “good” decisions that generate real im-
provements in revenue, margin, and overall profitability—but it’s also an inherently
high-value problem, where the difference between good and bad decisions can mean mil-
lions of dollars and many percentage points of market share.

Now, let’s consider the structural elements of the problem. There’s a certain length
of time for which we must plan our promotions, and let’s assume that we plan for the
entire year, so our planning horizon is 52 weeks. Let’s also assume that the promotional
period is one week, which provides us with the plan’s granularity and the level of detail
we must plan to. We can represent this granularity with a promotional calendar, called
a slotting board, where each column is a week, and each row is a particular product, al-
lowing for promotions to be slotted into each column/row combination. For example,
the slotting board in Figure 5 is just for one product category (e.g., wine, while other
categories may include spirits, beer, etc.) in just one area of operations (e.g., a state).
Note also that the structure of the matrix in Figure 5 is not flat; usually products are or-
ganized into subcategories (e.g., category of “wine” is split into subcategories of “white
wine,” “red wine,” sparkling,” etc.). And if there are only 100 individual products for us
to plan in a category, then the simple decision of whether to promote a particular prod-
uct for any given week requires 5,200 individual “yes” or “no” decisions (52 weeks x
100 products). If we ignore other elements of the problem (such the promotional price,
promotion type, ancillary marketing, holidays and seasonality, catalog placement, and
so on) the number of individual binary yes/no decisions still implies an astronomical
number of possible plans (1 followed by 1,565 zeros!). Just for one category of products
in just one area.

22There are several related terms to the area of promotional planning, including promotional program-
ming, trade promotions, trade promotion optimization (TPO), and so on. For the sake of simplicity, however,
we’ll use “promotional planning” throughout this paper even though at times there may be a more fit-
ting term.

144 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Figure 5: Slotting board for one product category in one area of operation.

The promotional plan must also adhere to business rules for individual products.
For example, business rules may prevent the promotion of specific products for less than
four weeks or more than twelve weeks during any twelve-month period, known as min-
imum and maximum frequency. Furthermore, these business rules may apply to the “gap”
in between promotions for the same product, known as the minimum and maximum pro-
motional gap, so that promotions don’t happen too often or too infrequently (such as
promoting the same product for nine consecutive weeks and then not promoting it for
the rest of the year). Such business rules also apply to prices, where the minimum pro-
motional price might be set at no less than 50% of the shelf price (i.e., the non-promoted
price) and not more than 90% and must move by some price step increment (e.g., 50
cents or one dollar, to avoid awkward prices like $8.13). We need to also bear in mind
that different geographic regions may have their own business rules, which adds fur-
ther complexity to the problem. There may also be specific rules tied to the promotional
period itself, such as the minimum and maximum number of products on promotion at
any given time (which may differ from week to week as we consider holidays or other
events). For example, during most weeks of the year, it may be permissible to have 30%
of our products on promotion at the same time, but for certain weeks of the year, such
as before major holidays like Easter, Christmas, and New Year’s, it may be appropriate
to increase this percentage.

These business rules may be quite complex, and yet, we’ve only considered prod-
ucts in isolation, and not thought about products being constrained by the promotional
activity of other products. Hence, we might need to extend our business rules to cover
different pack sizes of the same base product, different varieties or flavours of the same
product (e.g., where all go on promotion or none at all), or different products altogether
(e.g., where we can promote a subset of our products in a category at any given time,
but not all of them within the same promotional period). And lastly, the promotional
plan, as a whole, must meet certain KPI thresholds, such as volume or volume growth,
revenue or revenue growth, and gross profit (among others), which we must also de-
fine as business rules. When we consider all these additional factors, it seems that the
job is quite challenging! Just creating a single feasible plan—one that doesn’t violate
any business rules or constraints—is already a Herculean task, most likely involving a
multitude of spreadsheets and endless hours of evaluating new plans against historical
promotions to “guess” the likely outcome.

One of the challenges is constructing an evaluation function for the optimizer.
Clearly, we are talking about a predictive model that would estimate the outcome of

Evolutionary Computation Volume 31, Number 2 145

Z. Michalewicz

any promotional plan. Using historical data, we can investigate many factors that affect
the outcome, most important of which is price elasticity (or simply elasticity). Elasticity
has its roots in Economic Theory and is part of the Law of Demand, which states that
demand for any given product will go up as its price goes down, and vice versa (with a
few exceptions, such as some luxury goods and other limited circumstances). All prod-
ucts have an elasticity curve; some of these curves are steep, where a small change in
price causes a large change in demand, and some shallow, where a large change in price
causes a small change in demand.

We can also increase our knowledge by trying to understand why a reduction in
price caused an increase in sales. For some products, a change in price may have af-
fected a consumer’s decision on whether to buy the product at all, so the promotion
resulted in a real change in consumption. However, some products (such as ice cream
and champagne) may experience a real increase in consumption when placed on pro-
motion, because people not only buy more, but they also consume more as well. Some
products are highly seasonal, and we may find seasonality to be the dominant factor
driving sales (with our analysis possibly revealing that any increase in sales wasn’t
attributable to the promotion). Furthermore, we may discover long-term trends for par-
ticular products, brands, or even entire categories (as some categories might be expe-
riencing growth while others are in a state of decline), providing us with even more
knowledge of why demand increased or decreased at certain points in time. And lastly,
when a product is on promotion, we can expect consumers to stock up on this prod-
uct, therefore “bringing forward” future purchases. This is called the pull-forward effect,
which influences non-perishable products (those that consumers can easily store). The
pull-forward effect results in a fall in demand to below baseline levels after the promo-
tion has ended and is something we need to understand and consider when planning
future promotions.

When we’re planning future promotions, one of our goals is to maximize the “gain”
from competitor products (so that consumers switch from a competing product to our
own) and minimize the “loss” from our own product range. If an increase in promo-
tional sales comes at the cost of another one of our products, this is called cannibalization,
which means that consumers have switched from one of our products they regularly
buy to the one on promotion. Through data analysis, we can create a cannibalization ma-
trix, which is a table that outlines the expected cannibalization effect of certain products
when placed on promotion. However, the practical challenges of constructing such a ta-
ble are significant. Without applying any domain knowledge or business rules, it might
be necessary to look up each individual product and calculate its cannibalizing effect
on every other product in our range. For most manufacturers, which may sell hundreds
or even thousands of products, this would result in a table with tens or even hundreds
of thousands of values. While it’s possible to calculate this automatically, there’s no easy
way to validate these values without going through them line by line. And finally, an in-
crease in sales could be due to external factors; for example, sporting events can increase
demand for beer and snacks, while hot weather is positively correlated with higher ice
cream sales. Not only is this type of knowledge important for decision making, but it
also forms the basis of our predictive modelling efforts.

Prediction models use past data to make forward-looking predictions, in effect an-
swering the question: Based upon what we know about the past, what’s likely to happen in
the future? A predictive model to “evaluate” a plan by predicting an outcome, such as
Volume (the total unit quantity of products sold in whatever measure is used), Net rev-
enue (the total revenue generated, based on the promotional sales price and volume),

146 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Retailer gross profit (the total retailer gross profit, typically calculated as the difference
between the promotional price and the retailer’s cost of the product plus promotional
funding, multiplied by the total units sold), or Manufacturer gross profit (the gross profit,
typically calculated as the difference between the net revenue and total product cost,
including all production and freight costs, as well as any promotional co-funding
costs).

Once a prediction model is developed for evaluating our promotional plans, we
then need to create several plans and find the “best” one through a process of optimiza-
tion. First, however, we need to define what “best” means to us, which in this case might
be “any promotional plan that maximizes overall volume while satisfying our business
rules and constraints.” Note that some of these business rules and constraints might be
for the entire category, while others are just for individual products. In one category, as
an example, we may have the following business rules and constraints:

• No fewer than 30 products and no more than 60 products on promotion in any
given promotional period (soft)

• The overall minimum net revenue should be $1,000,000 (hard)

• The overall gross profit growth over last year should be 3% (hard)

• The overall minimum retailer margin growth over last year should be 2%
(hard)

whereas for Product 43, we may have some additional business rules and constraints:

• Minimum promotional price of $4.00 and maximum price of $7.00 (soft)

• Price or discount step: $0.25 (soft)

• Minimum of five and maximum of eight promotional frequencies (hard)

• Maximum of three consecutive promotional periods (hard)

• Maximum of five consecutive non-promotional periods (hard).

Such business rules and constraints typically reside in the minds of human experts
within each organization, and it’s often a significant undertaking to extract and docu-
ment them; however, such a process is highly beneficial, because it reduces key man
risk, provides visibility of the rules and constraints under which decisions are made,
and allows for “testing” of each rule and constraint to ensure ongoing relevance.

There are other important considerations related to optimization. Usually, we start
the search for the best plan from some starting position, for example, last year’s plan
or a new promotional plan that we manually create. Sometimes it’s desirable to restrict
the type of changes made to the original plan (e.g., whether the optimization algorithm
can switch between two products, removing one from promotion and adding another)
or restrict the number of changes, perhaps due to retailer requirements, or to assist in
software adoption and implementation, as people can become disheartened if the slot-
ting board they’ve worked on for three days comes back with 150 changes! This is also
important from the perspective of explainability of the optimizer (we refer to this issue
in the following section).

Evolutionary Computation Volume 31, Number 2 147

Z. Michalewicz

Altogether, the problem of promotional planning and pricing is super difficult.23

The search space is enormous, the structure of a solution (with individual products,
their categories and subcategories, and many different geographical areas) is very rich
(a set of multi-layered matrices), there are tens or hundreds of business rules and con-
straints of different weights and complexities, that apply to all levels of the solution
(varying from individual products through categories and subcategories, to various
geographical areas), a few conflicting objectives (e.g., volume vs. margin), and a very
complex predictive model that serves as an evaluation function for the optimizer. Think
about the complexity of the data structure that captures the structure of the problem;
think about tens of operators that introduce changes to promotional plan considering
all business rules and constraints; think about possible constraint-handling methods.
It is a lot of fun to deal with problems of such caliber! And what an opportunity for
evolutionary algorithms!

And yet, the promotional planning and pricing problem is like the transportation
problem that I studied at the beginning of my career, in a sense that many issues that
I was dealing with at that time are also present; the difference is mainly in scale. It’s
because the main theme remained the same: how to incorporate problem-specific
knowledge into a genetic algorithm in terms of data structures, operators, and
constraint-handling techniques to create a successful implementation? This was the case
for the transportation problem, and it’s also the case for the promotional planning and
pricing problem, as well as most real-world problems that I have been dealing with.

Note also that there is an additional challenge in developing such system for any
given organization: the finished system should be easily adjustable to different organi-
zations that face of promotional planning and pricing decisions. Different organizations
may have promotional plans of different structures (e.g., sub-subcategories on the top of
categories and subcategories), possibly slightly different objectives, and definitely dif-
ferent sets of business rules and constraints. So again, as it was done within the GENO-
COP system with constraints, it’s important to provide end users with flexibility for
activating/deactivating/modifying their set of business rules and constraints without
changing the optimizer itself.

6 Conclusions

Let me summarize my last 20+ years of business experience by making a few (more
or less) general observations in no particular order of importance. By the way, these
observations relate to discrete problems; I have never experienced a continuous type
of problem within business environments. Don’t get me wrong—most of my academic
“training” was done on continuous domains; all constraint-handling approaches were
experimented with on continuous domains. Further, there are many important real-
world problems—for example, engineering design problems—that require numerical
optimization; the only thing I am saying is that I didn’t experience these types of prob-
lems during my business life.

My observations are limited to evolutionary algorithms only (as opposed to the
whole software systems) because the topic of how to implement a commercially successful
application is very broad and complex (and outside the scope of this paper). I would like
to share just one thought on this topic, and the following well-known story illustrates
this point. A scientist invented a new type of food for dogs, and he proved that dogs

23A detailed discussion on this problem (together with descriptions of other real-world problems) is
included in Michalewicz et al. (2021).

148 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

would benefit from this food by never getting sick, having shinier fur, stronger teeth, etc.
The list of benefits was long and compelling. However, there was one serious problem
with his dog food invention: no dog wanted to eat it. And the same applies to software
systems. The software may include powerful science components, super-precise pre-
dictive models, first-class multiobjective optimizers, etc.—and yet, people within the
business may not wish to use it. We can look at this from another perspective, which
might be summarized by the so-called Anna Karenina principle24: “All happy families
are alike; each unhappy family is unhappy in its own way” (Tolstoy, 1877).

In other words, happy families share a common set of attributes that lead to happi-
ness, while any variety of attributes can cause unhappiness. The same concept applies
to software projects. All commercially successful projects are alike: they have users that
see value in the software and actively use it. However, software projects can be unsuc-
cessful for many reasons (slow response time, insufficient business benefit, too complex
user interface, inadequate training, lack of change management, etc.) with one outcome:
no one in the organization uses the software!

So, let’s turn our attention to evolutionary algorithms. The lessons I’ve learned over
the preceding years are the following:

1. To implement a commercially successful evolutionary algorithm, the data struc-
ture used to represent a candidate solution is key. This observation is consistent
with my first paper published in the Evolutionary Computation Journal; nothing
has really changed since then. But the richness of the data structures used often
implies enormous size of the search space; often the number of possible solutions
is beyond astronomical.

2. In most systems, the task of the optimizer (e.g., evolutionary algorithm) is not
really to find the optimal solution, but rather to improve on a given solution,
which very often is generated in a manual way by a team of experts. Clearly, the
degree of improvement is one of the key measures in the success of the project.
Further, the running time of the algorithm is also essential; even for longer-term
decisions (like a yearly promotional plan) end users often want to see an “im-
proved plan” within minutes!

3. A complex data structure also requires specialized operators that transform cur-
rent solutions into new solutions (offspring). The design of such operators is
of fundamental importance. Note that the search space is usually enormous
and heavily constrained (recall the last example of promotional planning and
pricing). There is no time for experimenting much with infeasible solutions; all
changes to the original solution should be meaningful. Most of the problem-
specific knowledge is incorporated in these operators and the number of possible
operators might be quite substantial. For example, referring to the last example
of promotional planning and pricing, some operators may work on the subcate-
gory level (e.g., swapping promoted products within a subcategory), some may
adjust the length of a particular promotion, while others may delete or insert a
new promotion. These operators must have some “understanding” of the busi-
ness rules and constraints and suggest meaningful changes to the current plan.

4. Further, we should separate the constraints and objectives in such a way that au-
thorized users are able to activate/deactivate business rules and constraints (in

24The name of the principle derives from Leo Tolstoy’s 1877 novel, Anna Karenina.

Evolutionary Computation Volume 31, Number 2 149

Z. Michalewicz

addition to selecting the objective), effectively providing the organization with
what-if scenario analysis. Note that activation/deactivation of business rules
and constraints may relate to the activation/deactivation of some families of
operators.

5. Many researchers have studied evolutionary algorithms within dynamic set-
tings (i.e., time-changing environments) and many methods have been consid-
ered (e.g., niching, sharing, introduction of a memory) to enhance diversity of
the population of individual solutions, as diversity of the population was per-
ceived as a hedge against a dynamic (or noisy) environment. Researchers have
been considering changes in the evaluation function or some constraints (as the
result of some changes in real environment) and ways to address them. How-
ever, it seems to me that the most important component of this line of research
was somehow overlooked: in most optimization projects (e.g., car distribution
system, promotional planning and pricing) a predictive model serves as the eval-
uation function: it would assess the merit of candidate solutions. There are a few
consequences of this approach. First, noise is inherent, as any predictive model
carries (sometimes significant) error, so the optimizer should be robust enough to
handle variability. Second, new data arrive at regular intervals (e.g., sometimes
daily, like new sales results from the previous day), and these new data sets may
require (automatic) modification of the prediction model, hence a change in the
environment. Third, with some frequency, the predictive model compares pre-
dicted values vs. actual values, and again, this may call for an update of the pre-
dictive model. It seems that the relationship between evolutionary algorithms
and predictive models (as their evaluation function), with all new data arriving
at regular intervals, with all comparisons and measures of error, and updates of
the predictive model, present an interesting research direction for cases of dy-
namic environments. On top of this, it’s often necessary to develop two separate
predictive models: an approximate one (that evaluates a candidate solution quite
fast) and another that’s precise for the final evaluation. This is because very often
there are severe limitations on the running time of the optimizer (users are not
willing to wait hours to see results), and the precise model used as an evaluation
function will not do.

6. An additional aspect of research that’s often overlooked is the explanatory fea-
ture of an optimizer. On the one hand, such features may seem unnecessary, as
it may seem that there’s very little to “explain”! After all, the optimizer returns a
feasible solution with the best objective score; what else is there to explain? Ac-
tually, a lot! Quite often, end users in most organizations would not just “accept”
the best recommendation of any optimizer. They need to understand why such a
recommendation was generated. So often it’s necessary to either develop an “ex-
planatory box” where a few points are displayed providing some reasons for the
final recommendation (usually in connection with business rules, constraints,
and the objective values of “similar” solutions) or to provide a mechanism that
can be used to “investigate” the recommendation (e.g., in promotional planning,
the ability to make a very small number of changes to the original plan). Note
again that this point is important for practical reasons: as discussed earlier, the
main goal is to get the software accepted and used in the organization.

7. The final observations are the following: As discussed earlier, real-world prob-
lems are usually comprised of some “components” that interact with each other,

150 Evolutionary Computation Volume 31, Number 2

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

and algorithms should search for a solution to the overall problem that considers
these components. Further, some problems require optimizers that can handle
different time horizons; for example, schedulers should be able to optimize for a
day as well as for the week, and the synchronization between such optimizers is
far from trivial. Finally, I found that only a limited number of organizations re-
quire true multiobjective optimization algorithms; multiobjective aspects of their
problems are usually handled (I believe, for simplicity reasons) by selecting just
one objective (out of a few) and by defining goals for the remaining ones.

Point #3 from the above list is probably the most important, and also consistent
with the observations I described in my paper published in the Evolutionary Computation
Journal 30 years ago; recall two sentences from the last paragraph of Section 2 of this
paper:

The paper summarized my earlier experiments on transportation problems and expanded on my
simple intuition that problem-specific knowledge (in terms of data structures used, operators,
and constraint-handling techniques) enhances an algorithm’s performance. The “more” problem-
specific knowledge is incorporated into the algorithm, the “better” the results.

To conclude, I would like to say that over the past 35 years I was simply lucky:25

the first experiment on the transportation problem from 1988 set a particular trajectory
for my research interests and instead of spending too much time on other important
topics (e.g., convergence of evolutionary algorithms, population structures, selection
mechanisms, self-adaptation, hardware realizations) I just concentrated on the is-
sue of incorporating problem-specific knowledge into algorithms (in general) and on
constraint-handling techniques (in particular).

This observation is consistent with one paragraph that I found in an excellent book
written by the founder of Nike (Knight, 2016):

Luck plays a big role. Yes, I’d like to publicly acknowledge the power of luck. Athletes get lucky,
poets get lucky, businesses get lucky. Hard work is critical, a good team is essential, brains and
determination are invaluable, but luck may decide the outcome.

Acknowledgments

I would like to thank Emma Hart for her invitation to write this paper for the 30th

anniversary issue of the Evolutionary Computation Journal; it was a great pleasure to
contribute—so many memories came back! Also, this is an excellent opportunity to
thank all my 200+ co-authors and co-editors, as well as other scientists from NuTech
Solutions, SolveIT Software, and Complexica, who, at different stages, worked with me
exploring various research ideas over this 35-year journey and/or developed evolu-
tionary engines for challenging business applications. I am grateful to the IEEE Com-
putational Intelligence Society for the 2019 Evolutionary Computation Pioneer Award,

25One of my friends (Raja Sooriamurthi) made me aware of a popular anecdote (often attributed
to either Niels Bohr, Albert Einstein, or Enrico Fermi) about a journalist who visited the home of a
prominent physicist. The visitor was surprised to find a horseshoe above the front doorway of the
scientist’s abode (tradition asserts that a horseshoe acts as a talisman of luck when placed over a door).
The visitor asked the physicist about the purpose of the horseshoe while expressing incredulity that
a man of science could possibly be swayed by a simple-minded folk belief. The physicist replied: “Of
course, I don’t believe in it, but I understand it brings you luck, whether you believe in it or not!”

Evolutionary Computation Volume 31, Number 2 151

Z. Michalewicz

which recognized my contributions to some concepts and sustained developments in
the field of evolutionary computation. Further, I would like to thank Leonardo Arantes,
Łukasz Brocki, Andres Colombari, Krzysztof Krawiec, Henri Luchian, Juan Martin San-
guinetti, Raja Sooriamurthi, and Markus Wagner for their great comments and sugges-
tions on the first draft of this paper. Finally, my special thanks go to Matt, my son, who
not only co-authored four books with me and reviewed the earlier draft of this paper,
but above all he assisted me with my transition from academia to industry!

References

Abello, M., and Michalewicz, Z. (2014a). Multi-objective resource-constrained project schedul-
ing with time-varying number of tasks. The Scientific World Journal, special issue on Recent
Advances in Information Technology, Article ID 420101.

Abello, M., and Michalewicz, Z. (2014b). Implicit memory-based technique in solving dynamic
scheduling problems through response surface methodology—Part I. International Journal of
Intelligent Computing and Cybernetics, 7(2):114–142. 10.1108/IJICC-12-2013-0053

Abello, M., and Michalewicz, Z. (2014c). Implicit memory-based technique in solving dynamic
scheduling problems through response surface methodology—Part II. International Journal
of Intelligent Computing and Cybernetics, 7(2):143–174. 10.1108/IJICC-12-2013-0054

Bäck, T., Fogel, D., and Michalewicz, Z. (Eds.) (1997). Handbook of evolutionary computation. Oxford
University Press and Institute of Physics.

Bonyadi, M., Michalewicz, Z., and Li, X. (2014a). An analysis of the velocity updating rule of par-
ticle swarm optimization algorithm. Journal of Heuristics, 20(4):417–452. 10.1007/s10732-014
-9245-2

Bonyadi, M., and Michalewicz, Z. (2014b). A locally convergent rotational invariant particle
swarm optimizer. Swarm Intelligence, 8(3):159–198. 10.1007/s11721-014-0095-1

Bonyadi, M., and Michalewicz, Z. (2016a). Analysis of stability, local convergence, and transfor-
mation sensitivity of a variant of particle swarm optimization algorithm. IEEE Transactions
on Evolutionary Computation, 20(3):370–385. 10.1109/TEVC.2015.2460753

Bonyadi, M., and Michalewicz, Z. (2016b). Stability analysis of the particle swarm optimization
without stagnation assumption. IEEE Transactions on Evolutionary Computation, 20(5):814–
819. 10.1109/TEVC.2015.2508101

Bonyadi, M., and Michalewicz, Z. (2017a). Impacts of coefficients on movement patterns in
the particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation,
21(3):378–390.

Bonyadi, M., and Michalewicz, Z. (2017b). Particle swarm optimization for single objective con-
tinuous space problems: A review. Evolutionary Computation, 25(1):1–54. 10.1162/EVCO_r
_00180, PubMed: 26953883

Bonyadi, M., Michalewicz, Z., and Barone, L. (2013). Travelling thief problem: The first step
in transition from theoretical problems to realistic problems. Proceedings of the 2013 IEEE
Congress on Evolutionary Computation. 10.1109/CEC.2013.6557681

Bonyadi, M., Michalewicz, Z., Nallaperuma, S., and Neumann, F. (2016). Ahura: A heuristic-based
racer for the open racing car simulator. IEEE Transactions on Computational Intelligence and AI
in Games, 9(3):290–304. 10.1109/TCIAIG.2016.2565661

Bonyadi, M., Li, X., and Michalewicz, Z. (2014). A hybrid particle swarm with a time-adaptive
topology for constrained optimization. Swarm and Evolutionary Computation, 18(1):22–37.
10.1016/j.swevo.2014.06.001

152 Evolutionary Computation Volume 31, Number 2

https://doi.org/10.1108/IJICC-12-2013-0053
https://doi.org/10.1108/IJICC-12-2013-0054
https://doi.org/10.1007/s10732-014-9245-2
https://doi.org/10.1007/s11721-014-0095-1
https://doi.org/10.1109/TEVC.2015.2460753
https://doi.org/10.1109/TEVC.2015.2508101
https://doi.org/10.1162/EVCO_r_00180
https://www.ncbi.nlm.nih.gov/pubmed/26953883
https://doi.org/10.1109/CEC.2013.6557681
https://doi.org/10.1109/TCIAIG.2016.2565661
https://doi.org/10.1016/j.swevo.2014.06.001

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Bonyadi, M., Wagner, M., and Michalewicz, Z. (2014). Beyond the edge of feasibility: Analy-
sis of bottlenecks. Proceedings of the 10th International Conference on Simulated Evolution and
Learning.

Dasgupta, D., and Michalewicz, Z. (Eds.). (1997). Evolutionary algorithms in engineering applications.
Springer.

Davis, L. (Ed.). (1987). Genetic algorithms and simulated annealing. Pitman.

De Jong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems. Technical Report
UMR0635. College of Engineering, University of Michigan.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141. 10.1109/4235.771166

Ghandar, A., Michalewicz, Z., Schmidt, M., To, T.-D., and Zurbruegg, R. (2009). Computational in-
telligence for evolving trading rules. IEEE Transactions on Evolutionary Computation, 13(1):71–
86. 10.1109/TEVC.2008.915992

Ghandar, A., Michalewicz, Z., and Zurbruegg, R. (2009). Return performance volatility and adap-
tation in an automated technical analysis approach to portfolio management. Journal of In-
telligent Systems in Accounting and Finance Management, 16(1):127–146. 10.1002/isaf.297

Ghandar, A., Michalewicz, Z., and Zurbruegg, R. (2016). The relationship between model com-
plexity and forecasting performance for computer intelligence optimization in finance. In-
ternational Journal of Forecasting, 32(3):598–613. 10.1016/j.ijforecast.2015.10.003

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Addison-
Wesley.

Grefenstette, J. (1987). Incorporating problem specific knowledge into genetic algorithms. Genetic
Algorithms and Simulated Annealing, 42–60.

Holland, J. (1975). Adaptation in natural and artificial systems. MIT Press.

Janikow, C., and Michalewicz, Z. (1991). An experimental comparison of binary and floating point
representations in genetic algorithms. Proceedings of the Fourth International Conference on Ge-
netic Algorithms, pp. 31–36.

Johnson, R., Melich, M., Michalewicz, Z., and Schmidt, M. (2005). Coevolutionary optimization
of fuzzy logic intelligence for strategic decision support. IEEE Transactions on Evolutionary
Computation, 9(6):682–694. 10.1109/TEVC.2005.856208

Khouja, M., Michalewicz, Z., and Satoskar, S. (2000). A comparison between genetic algorithms
and the RAND method for solving the joint replenishment problem. Production Planning &
Control, 11(6):556–564.

Khouja, M., Michalewicz, Z., and Vijayaragavan, P. (1998). Evolutionary algorithm for economic
lot and delivery scheduling problem. Fundamenta Informaticae, 35(1–4):113–123. 10.3233/
FI-1998-35123407

Knight, P. (2016). Shoe dog. Simon & Schuster.

Kozieł, S., and Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary Computation, 7(1):19–44.

Li, X., Bonyadi, M., Michalewicz, Z., and Barone, L. (2014). A hybrid evolutionary algorithm for
wheat blending problem. The Scientific World Journal, special issue on Recent Advances on
Bioinspired Computation, Article ID 967254.

Meyer, E., Falkner, N., Sooriamurthi, R., and Michalewicz, Z. (2014). A guide to teaching puzzle-
based learning. Springer.

Evolutionary Computation Volume 31, Number 2 153

https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/TEVC.2008.915992
https://doi.org/10.1002/isaf.297
https://doi.org/10.1016/j.ijforecast.2015.10.003
https://doi.org/10.1109/TEVC.2005.856208
https://doi.org/10.3233/FI-1998-35123407

Z. Michalewicz

Michalewicz, M., and Michalewicz, Z. (2006). Winning credibility: A guide for building a business
from rags to riches. Hybrid Publishers.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer, Arti-
ficial Intelligence Series.

Michalewicz, Z. (1993). A hierarchy of evolution programs: An experimental study. Evolutionary
Computation, 1(1):51–76. 10.1162/evco.1993.1.1.51

Michalewicz, Z. (2012a). Quo vadis, evolutionary computation? On a growing gap between
theory and practice, pp. 98–121. Lecture Notes in Computer Science, Vol. 7311. 10.1007/
978-3-642-30687-7_6

Michalewicz, Z. (2012b). The emperor is naked: Evolutionary algorithms for real-world applica-
tions. ACM Ubiquity, 1–13.

Michalewicz, Z., Deb, K., Schmidt, M., and Stidsen, T. (2000). Test-case generator for nonlinear
continuous parameter optimization techniques. IEEE Transactions on Evolutionary Computa-
tion, 4(3):197–215. 10.1109/4235.873232

Michalewicz, Z., and Fogel, D. (2000). How to solve it: Modern heuristics. Springer.

Michalewicz, Z., and Janikow, C. (1991). Handling constraints in genetic algorithms. Proceedings
of the Fourth International Conference on Genetic Algorithms.

Michalewicz, Z., and Janikow, C. (1996). GENOCOP: A genetic algorithm for numerical optimiza-
tion problems with linear constraints. Communications of the ACM, p. 118.

Michalewicz, Z., and Michalewicz, M. (2008). Puzzle-based learning: An introduction to critical think-
ing, mathematics, and problem solving. Hybrid Publishers.

Michalewicz, Z., and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, 4(1):1–32. 10.1162/evco.1996.4.1.1

Michalewicz, Z., Arantes, L., and Michalewicz, M. (2021). The rise of artificial intelligence: Real-world
applications for revenue and margin growth. Hybrid Publishers.

Michalewicz, Z., Dasgupta, D., Le Riche, R. G., and Schoenauer, M. (1996). Evolutionary algo-
rithms for constrained engineering problems. Computers & Industrial Engineering Journal,
30(4):851–870.

Michalewicz, Z., Schmidt, M., Michalewicz, M., and Chiriac, C. (2005). Case study: An intelligent
decision support system. IEEE Intelligent Systems, 20(4):44–49. 10.1109/MIS.2005.64

Michalewicz, Z., Schmidt, M., Michalewicz, M., and Chiriac, C. (2007). Adaptive business intelli-
gence. Springer.

Michalewicz, Z., Vignaux, G. A., and Hobbs, M. (1991). A nonstandard genetic algorithm for
the nonlinear transportation problem. ORSA Journal on Computing, 3(4):307–316. 10.1287/
ijoc.3.4.307

Pólya, G. (1945). How to solve it. Princeton University Press.

Przybyłek, M., Wierzbicki, A., and Michalewicz, Z. (2018). Decomposition algorithms for a multi-
hard problem. Evolutionary Computation, 26(3):507–533.

Schoenauer, M., and Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility.
Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, pp. 245–
254. Lecture Notes in Computer Science, Vol. 1141.

Schoenauer, M., and Michalewicz, Z. (1997). Boundary operators for constrained parameter opti-
mization problems. Proceedings of the 7th International Conference on Genetic Algorithms, 320–
329.

154 Evolutionary Computation Volume 31, Number 2

https://doi.org/10.1162/evco.1993.1.1.51
https://doi.org/10.1007/978-3-642-30687-7_6
https://doi.org/10.1109/4235.873232
https://doi.org/10.1162/evco.1996.4.1.1
https://doi.org/10.1109/MIS.2005.64
https://doi.org/10.1287/ijoc.3.4.307

A Personal Perspective on Evolutionary Computation: A 35-Year Journey

Schoenauer, M., and Michalewicz, Z. (1998). Sphere operators and their applicability for con-
strained parameter optimization problems. Proceedings of the 7th Annual Conference on Evolu-
tionary Programming, pp. 241–250. Lecture Notes in Computer Science, Vol. 1447.

Śmierzchalski, R., and Michalewicz, Z. (2000). Modeling of ship trajectory in collision situations
by an evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 4(3):227–241.

Tolstoy, L. (1877). Anna Karenina. Simon & Schuster.

Ullman, J. (2009). Advising students for success. Communications of the ACM, 52(3):34–37. 10.1145/
1467247.1467260

Ursem, R., Krink, T., Jensen, M., and Michalewicz, Z. (2002). Analysis and modeling of con-
trol tasks in dynamic systems. IEEE Transactions on Evolutionary Computation, 6(4):378–389.
10.1109/TEVC.2002.802871

Vergara, F., Khouja, M., and Michalewicz, Z. (2002). An evolutionary algorithm for optimizing
material flow in supply chains. Computers & Industrial Engineering, 43:407–421.

Vignaux, G., and Michalewicz, Z. (1991). A genetic algorithm for the linear transportation prob-
lem. IEEE Transactions on Systems, Man, and Cybernetics, 21(2):445–452. 10.1109/21.87092

Wagner, N., Khouja, M., Michalewicz, Z., and McGregor, R. R. (2008). Forecasting economic
time series with the DyFor genetic program model. Journal of Applied Financial Economics,
18(5):357–378. 10.1080/09603100600949200

Weise, T., Chiong, R., Lässig, J., Tang, K., Tsutsui, S., Chen, W., Michalewicz, Z., and Yao,
X. (2014). Benchmarking optimization algorithms: An open source framework for the
traveling salesman problem. IEEE Computational Intelligence Magazine, 9(3):40–52. 10.1109/
MCI.2014.2326101

Wieczorek, J., Gol, O., and Michalewicz, Z. (1998). An evolutionary algorithm for the optimal de-
sign of induction motors. IEEE Transactions on Magnetics, 34(6):3882–3887. 10.1109/20.728298

Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall.

Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K. (1997). Adaptive evolutionary plan-
ner/navigator for mobile robots. IEEE Transactions on Evolutionary Computation, 1(1):18–28.
10.1109/4235.585889

Zhang, R., Chiong, R., Michalewicz, Z., and Chang, P.-C. (2016). Sustainable scheduling of manu-
facturing and transportation systems. European Journal of Operations Research, 248(3):74–743.

Evolutionary Computation Volume 31, Number 2 155

https://doi.org/10.1145/1467247.1467260
https://doi.org/10.1109/TEVC.2002.802871
https://doi.org/10.1109/21.87092
https://doi.org/10.1080/09603100600949200
https://doi.org/10.1109/MCI.2014.2326101
https://doi.org/10.1109/20.728298
https://doi.org/10.1109/4235.585889

