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Revisiting Hartley’s Normalized Eight-Point
Algorithm

Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel, and Darren Gawley

Abstract— Hartley’s eight-point algorithm has maintained an
important place in computer vision, notably as a means of
providing an initial value of the fundamental matrix for use in
iterative estimation methods. In this paper, a novel explanation
is given for the improvement in performance of the eight-point
algorithm that results from using normalized data. It is first
established that the normalized algorithm acts to minimize a
specific cost function. It is then shown that this cost function
is statistically better founded than the cost function associated
with the nonnormalized algorithm. This augments the original
argument that improved performance is due to the better
conditioning of a pivotal matrix. Experimental results are given
that support the adopted approach. This work continues a wider
effort to place a variety of estimation techniques within a coherent
framework.

Index Terms— Epipolar equation, fundamental matrix, eight-
point algorithm, data normalization

I. I NTRODUCTION

I N a landmark paper, Longuet-Higgins [1] proposed the
eight-point algorithm—a simple direct method for compu-

tation of theessential matrix. The algorithm extends straight-
forwardly to computation of thefundamental matrix, the
uncalibrated analogue of the essential matrix [2], [3]. While
simple and fast, the algorithm is very sensitive to noise in
the specification of the image coordinates serving as input for
computation and, as such, is of limited use. Many alternative
methods have been advanced since Longuet-Higgins’ proposal,
including more sophisticated and computationally intensive
iterative algorithms [4], [5]. Hartley [6] discovered that the
accuracy of the eight-point algorithm can be greatly improved
if, prior to applying the method, a simple normalization
of image data is performed. This fundamental modification
dramatically extended the applicability of the algorithm, and,
in particular, rendered it an excellent tool for generation of
initial estimates for iterative methods.

Hartley attributed the improved performance of the normal-
ized eight-point algorithm to the better numerical conditioning
of a pivotal matrix used in solving an eigenvalue problem. In
this paper, we analyze the normalized eight-point algorithm
and offer a new insight into the working of the method.
A crucial observation is that the estimate produced by the
normalized eight-point algorithm can be identified with the
minimizer of a cost function. The minimizer can be directly
calculated by solving a generalized eigenvalue problem. We
confirm experimentally that the estimate obtained as a solution
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of the generalized eigenproblem coincides with the estimate
generated by Hartley’s original method. Exploiting the cost
function, we propose an alternative explanation of the im-
proved performance of the normalized eight-point algorithm,
based on a certain statistical model of data distribution. Under
this model, the summands of the cost function underlying the
normalized eight-point algorithm turn out to be more balanced
in terms of spread than the summands of the cost function
underlying the standard eight-point algorithm. Summation of
more balanced terms leads to a statistically more appropriate
expression for minimization, and this in turn translates into
a more accurate estimator. The proposed approach continues
a line of research due to Torr [7], M̈uhlich and Mester
[8], and Torr and Fitzgibbon [9], in which variants of the
normalized eight-point algorithm are analyzed statistically.
The work presented here also forms part of a wider effort
to place a variety of estimation techniques within a coherent
framework (e.g., see [10], [11], [12], [13]).

II. ESTIMATION PROBLEM

A 3D point in a scene perspectively projected onto the image
plane of a camera gives rise to animage pointrepresented by
a pair (m1,m2) of coordinates, or equivalently, by the “ho-
mogeneous” vectorm = [m1,m2, 1]T . A 3D point projected
onto the image planes of two cameras endowed with separate
coordinate systems gives rise to a pair ofcorresponding points.
When represented by(m,m′), this pair satisfies theepipolar
constraint

m′T Fm = 0, (1)

whereF = [fij ] is a3×3 fundamental matrix that incorporates
information about the relative orientation and internal geome-
try of the cameras [4], [5]. In addition to (1),F is subject to the
singularity constraint(or, equivalently, therank-2 constraint)

det F = 0. (2)

Using x = [m1,m2,m
′
1,m

′
2]

T as a compact descriptor
of the singleimage datum(m,m′), the estimation problem
associated with (1) and (2) can be stated as follows: Given a
collection{x1, . . . ,xn} of image data and a meaningfulcost
function that characterizes the extent to which any particular
F fails to satisfy the system of the copies of equation (1)
associated withx = xi (i = 1, . . . , n), find anestimateF̂ 6= 0
satisfying (2) for which the cost function attains its minimum.
Since (1) and (2) do not change whenF is multiplied by
a nonzero scalar,̂F is to be found only up to scale. If the
singularity constraint is set aside, then the estimate associated
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with a particular cost functionJ = J(F ;x1, . . . ,xn) is
defined as theunconstrainedminimizer F̂ of J ,

F̂ = arg min
F 6=0

J(F ;x1, . . . ,xn).

Such an estimate can further be converted to a nearby rank-2
fundamental matrix by applying one of a variety of methods
[4], [12]. In this paper, we shall confine our attention to
the pivotal component of this overall process that determines
exclusively the unconstrained minimizer, as this will prove
critical to rationalizing the Hartley method. For alternative
integratedapproaches to computing a constrained minimizer,
see the CFNS method [14], [15] or the Gold Standard Method
[4].

III. A LGEBRAIC LEAST SQUARES

A straightforward estimation method employs the cost func-
tion

JALS(F ;x1, . . . ,xn) = ‖F ‖−2
F

n∑
i=1

(m′
i
T Fmi)2 (3)

with ‖F ‖F = (
∑

i,j f2
ij)

1/2 the Frobenius norm ofF .
Here, m′

i
T Fmi is the signedalgebraic distancebetween

the individual datumxi and the candidate matrixF . The
algebraic least squares(ALS) estimate, F̂ ALS, is defined as
the minimizer ofJALS.

A practical means for findinĝF ALS is conveniently derived
based on an alternative expression form′T Fm. For an
m × n matrix A = [a1, . . . ,an] with aj the jth column
vector of lengthm, denote byvec(A) the vectorizationof
A, i.e., the column vector of lengthmn defined byvec(A) =
[aT

1 , . . . ,aT
n ]T . Let θ = vec(F T ) and u(x) = vec(mm′T ).

Then, by applying standard rules for matrix operations [16],
we find that

m′T Fm = tr(m′T Fm) = tr(mm′T F )

= vec(F T )T vec(mm′T ) = θT u(x),
(4)

wheretr denotes trace. With this formula,JALS can be written
as

JALS(θ;x1, . . . ,xn) = ‖θ‖−2θT Aθ, (5)

where

A =
n∑

i=1

u(xi)u(xi)T (6)

and‖θ‖ = (θ2
1 + · · ·+θ2

9)
1/2. Now, using (5) to evolve a vari-

ational equation for the minimizer,̂θALS can be characterized
as an eigenvector ofA associated with the smallest eigenvalue
[10]. This eigenvector can be found in practice by performing
singular value decomposition(SVD) of the matrix

M = [u(x1), . . . ,u(xn)]T (7)

and taking for the desired output the right singular vector of
M associated with the smallest singular value (the minimum
right singular vector). In this form, the ALS estimator is
essentially identical to the eight-point algorithm of Longuet-
Higgins [1]. For θ̂ALS to be uniquely determined, the null
space ofA cannot be more than one-dimensional. Given

that A is the sum of the rank-1 matricesu(xi)u(xi)T , this
is secured, generically, by the conditionn ≥ 8, hence the
qualification “eight-point”.

IV. H ARTLEY ’ S APPROACH

Let m and m′ be thecentroids, or “centers of mass”, of
the mi and them′

i, respectively, defined by

m =
1
n

n∑
i=1

mi and m′ =
1
n

n∑
i=1

m′
i. (8)

Let m = [m1,m2, 1]T , m′ = [m′
1,m

′
2, 1]T , mi =

[m1,i,m2,i, 1]T , m′
i = [m′

1,i,m
′
2,i, 1]T (i = 1, . . . , n). Fol-

lowing Hartley [6], let us shift the image coordinate systems
to the respective centroids. In coordinates associated with the
transformed systems, the points of theith image datum can
be written[m1,i−m1,m2,i−m2, 1]T and[m′

1,i−m′
1,m

′
2,i−

m′
2, 1]T . Let

s =

(
1
2n

n∑
i=1

‖mi −m‖2
)1/2

=

(
1
2n

n∑
i=1

(m1,i −m1)2 + (m2,i −m2)2
)1/2

,

s′ =

(
1
2n

n∑
i=1

‖m′
i −m′‖2

)1/2

=

(
1
2n

n∑
i=1

(m′
1,i −m′

1)
2 + (m′

2,i −m′
2)

2

)1/2

.

(9)

Define thenormalizeddata as

m̃i = [(m1,i −m1)/s, (m2,i −m2)/s, 1]T ,

m̃′
i = [(m′

1,i −m′
1)/s′, (m′

2,i −m′
2)/s′, 1]T .

This definition ensures that the root mean square distance of
the m̃i to the origin of the corresponding coordinate system
is equal to

√
2 and, likewise, for them̃′

i. The normalized data
can be alternatively defined bỹmi = Tmi andm̃′

i = T ′m′
i,

where

T =

s−1 0 −s−1m1

0 s−1 −s−1m2

0 0 1

 ,

T ′ =

s′
−1 0 −s′

−1
m′

1

0 s′
−1 −s′

−1
m′

2

0 0 1

 .

Let x̃i = [m̃1,i, m̃2,i, m̃
′
1,i, m̃

′
2,i]

T . Denote by ̂̃F ALS the
minimizer of the ALS cost function seeded with the nor-
malized data, that is, the minimizer of the functionF 7→
JALS(F ; x̃1, . . . , x̃n). Let F 7→ F̃ be the mapping defined
by

F̃ = T ′−T
FT−1. (10)

Clearly, if m̃ = Tm and m̃′ = T ′m′, then m′T Fm =
m̃′T F̃ m̃. Accordingly, the image of̂̃F ALS by the inverse
mapping F̃ 7→ F can be viewed as a genuine estimate of
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F . We term this theHartley (HRT) estimateof F and write
F̂ HRT; it is explicitly given by

F̂ HRT = T ′T ̂̃F ALST . (11)

The introduction of F̂ HRT is motivated by the fact that
if the modified condition numberof a nonnegative definite
matrix defined as the ratio of the greatest to the second
smallest eigenvalues is large, then the two least eigenvalues are
relatively close to one another; this makes the corresponding
eigenvectors “wobbly”, whereby a small perturbation of the
matrix entries is conducive to a significant change of the eigen-
vectors, as these can fall anywhere within a vicinity of a two-
dimensional eigenspace associated with a virtual degenerate
eigenvalue. The matrix̃A =

∑n
i=1 u(x̃i)u(x̃i)T serving to

calculate ̂̃F ALS is, in practice, much better conditioned (in
the above sense) than the matrixA with which F̂ ALS is
calculated. As a result, Hartley’s method is better conditioned
(less sensitive to errors in data) and, in this sense, more
advantageous than the ALS method.

V. NORMALIZED ALGEBRAIC LEAST SQUARES

We now identify the Hartley estimate as a minimizer of a
cost function. To this end, we introduce

JNALS(F ;x1, . . . ,xn)

= ‖T ′−T
FT−1‖−2

F

n∑
i=1

(m′
i
T Fmi)2. (12)

The minimizer ofJNALS we call the normalized algebraic
least squares(NALS) estimateof F and write F̂ NALS. The
precise sense in which the expressions enteringJNALS are
normalized will be revealed later. We claim that

F̂ HRT = F̂ NALS. (13)

Indeed, if F̃ andF are related by (10), thenm′
i
T Fmi =

m̃′
i
T F̃ m̃i for eachi = 1, . . . , n, and so

JNALS(F ;x1, . . . ,xn) = ‖F̃ ‖−2
F

n∑
i=1

(m̃′
i
T F̃ m̃i)2

= JALS(F̃ ; x̃1, . . . , x̃n).

From this identity it follows that the functionF 7→
JNALS(F ;x1, . . . ,xn) attains a minimum at a particularF
precisely when the functioñF 7→ JALS(F̃ ; x̃1, . . . , x̃n) at-
tains a minimum at the imagẽF of this F by the mapping

F 7→ F̃ . In other words,T ′−T
F̂ NALST−1 = ̂̃F ALS, which,

clearly, is equivalent tôF NALS = T ′T ̂̃F ALST . Comparing
this with (11) establishes the claim.

The formula forJNALS can be rewritten similarly to that
for JALS. The starting point is the identity

‖T ′−T
FT−1‖2F = θT Cθ, (14)

whereC is the9× 9 matrix given by

C = T ′−1
T ′−T ⊗ T−1T−T . (15)

Here,⊗ stands for theKronecker product, or tensor product,
of matrices defined as follows: IfA = [aij ] is anm×n matrix

andB is a p× q matrix, thenA⊗B is themp× nq matrix
given by

A⊗B =

a11B . . . a1nB
...

...
am1B . . . amnB

 .

To establish (14), note that

‖T ′−T FT−1‖2F
= tr(T ′−T

FT−1(T ′−T
FT−1)T )

= tr(T ′−T
FT−1T−T F T T ′−1)

= tr(T ′−1
T ′−T

FT−1T−T F T )

= vec(F T )T (T ′−1
T ′−T ⊗ (T−1T−T )T ) vec(F T )

= vec(F T )T (T ′−1
T ′−T ⊗ T−1T−T ) vec(F T ).

In view of (14), we can rewrite (12) as

JNALS(θ;x1, . . . ,xn) =
θT Aθ

θT Cθ
. (16)

One consequence of this formula is thatθ̂NALS is a solution
of the generalized eigenvalue problem

Aθ = λCθ (17)

corresponding to the smallest eigenvalue. SinceA may be ill-
conditioned, solving the above eigenvector problem directly
requires a numerically stable method. Leedan and Meer [13]
proposed one such method which, when applied to the problem
under consideration, employsgeneralized singular value de-
composition(GSVD) of a pair of matrices(M ,N) satisfying
A = MT M andC = NT N . Numerical experiments show
(see later) that when this method is applied, the matricesA
and C, of which the first is typically ill-conditioned, lead
to a solution identical with the solution obtained using the
well-conditioned matrixÃ —in other words, equality (13) is
experimentally confirmed.

VI. T WO FORMULAE

To proceed smoothly later, we now present two formulae.
The first is the identity

u(xi)u(xi)T = m′
im

′
i
T ⊗mim

T
i (18)

resulting immediately from

vec(mim
′
i
T ) vec(mim

′
i
T )T

= (m′
i ⊗mi)(m′

i ⊗mi)T

= (m′
i ⊗mi)(m′

i
T ⊗mT

i )

= m′
im

′
i
T ⊗mim

T
i .

The second is derived starting from the observation that

T =

s−1 0 0
0 s−1 0
0 0 1

1 0 −m1

0 1 −m2

0 0 1

 .

This leads to

T−1 =

1 0 m1

0 1 m2

0 0 1

s 0 0
0 s 0
0 0 1
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and further

T−1T−T =

1 0 m1

0 1 m2

0 0 1

s2 0 0
0 s2 0
0 0 1

 1 0 0
0 1 0

m1 m2 1


=

s2 + m2
1 m1m2 m1

m2m1 s2 + m2
2 m2

m1 m2 1

 .

The latter identity can succinctly be written as

T−1T−T = s2I∗ + m mT ,

whereI∗ = diag(1, 1, 0). Analogously,

T ′−1
T ′−T = s′2I∗ + m′ m′T .

Introducing

C(s, s′,m,m′)

= (s′2I∗ + m′ m′T )⊗ (s2I∗ + m mT ) (19)

and taking into account (15), we finally obtain

C = C(s, s′,m,m′). (20)

VII. STATISTICAL JUSTIFICATION

To substantiate the normalized eight-point algorithm, we
shift the focus from matrices involved in the computation
of estimates (which may be well or ill-conditioned) to cost
functions. It is not a priori clear why JNALS should be
preferable toJALS. We now present some explanation based
on a statistical argument. Our reasoning will also provide the
promised justification of the label “normalized” for the terms
forming JNALS.

For eachi = 1, . . . , n, let ri be theith residualdefined as

ri = m′
i
T Fmi,

with F normalized for convenience. It is a fundamental ob-
servation that different residuals may carry different statistical
weight. Whenmi and m′

i are treated as sample values of
independent multivariate random variables, theri are sample
values of (typically) aheteroscedasticset of random variables,
i.e., with member variables having different variances. The
larger the variance of a particularri, the less reliable this
residual is likely to be, and the more it should be devalued.
Therefore, to account for heteroscedasticity, it is natural to
replace the simple cost function

∑n
i=1 r2

i , effectivelyJALS, by
the more complicated cost function

∑n
i=1 r2

i /var [ri], where
var [r] denotes the variance ofr. The latter function is closer
in form to a natural cost function derivable from the principle
of maximum likelihood (cf. [10], [17]). We show that under a
certain statistical model of data distribution,

∑n
i=1 r2

i /var [ri]
can be identified withJNALS.

Assume that, for eachi = 1, . . . , n, the observed location
mi is a realization of a random variablemi = m + ∆mi,
where m = [m1,m2, 1]T is a fixed, nonrandom location
and ∆mi = [∆m1,i,∆m2,i, 0]T is a random perturbation.
Likewise, assume thatm′

i is a realization of a random variable
m′

i = m′ + ∆m′
i with nonrandomm′ = [m′

1,m
′
2, 1]T

and random∆m′
i = [∆m′

1,i,∆m′
2,i, 0]T . Suppose that the

following conditions hold:

• ∆mi, ∆m′
j (i, j = 1, . . . , n) are independent;

• E [∆mi] = E [∆m′
i] = 0 for eachi = 1, . . . , n;

• there existσ > 0 andσ′ > 0 such that

E
[
∆mi(∆mi)T

]
= σ2I∗,

E
[
∆m′

i(∆m′
i)

T
]

= σ′2I∗
(21)

for eachi = 1, . . . , n.

Here,E denotes expectation. Note that, effectively,all themi

have common mean valuem and all the m′
i have common

mean valuem′. It is helpful to viewm andm′ as the centroids
of some individual “true” nonrandom locationsmi andm′

i that
are not explicitly introduced, but are present in the background.
An immediate upshot of this type of modeling is that the
random perturbations∆mi and ∆m′

i cannot be regarded as
small in typical situations—the magnitude of∆mi and∆m′

i

has to be big enough to account for the disparity betweenm
and themi, andm′ and them′

i.
Let ri = m′

i
T Fmi be the stochastic version of theith

residual. We calculate the variances

var [ri] = E
[
(m′

i
T Fmi)2

]
− (E

[
m′

i
T Fmi

]
)2

within our model. In so doing, we exploit an additional
assumption thatm andm′ are “true” locations bound byF ,
in the sense that

m′T Fm = θT vec(mm′T ) = 0. (22)

Writing

E
[
mim

′
i
T
]

= mm′T + E [∆mi]m′
i
T

+ miE
[
∆(m′

i)
T
]
+ E

[
∆mi(∆m′

i)
T
]
,

noting that

E [∆mi]m′
i
T = miE

[
(∆m′

i)
T
]

= 0

and that

E
[
∆mi(∆m′

i)
T
]

= E [∆mi]E
[
(∆m′

i)
T
]

= 0, (23)

which involves the independence of∆mi and ∆m′
i, we find

that
E
[
mim

′
i
T
]

= mm′T . (24)

Hence,

E
[
m′

i
T Fmi

]
= θT vec(E

[
mim

′
i
T
]
) = θT vec(mm′T ).

This jointly with (22) implies that

E
[
m′

i
T Fmi

]
= 0. (25)

Now, in view of (4) and (18),

E
[
(m′

i
T Fmi)2

]
= θT (E

[
m′

im
′
i
T ⊗mim

T
i

]
)θ.

By the independence of∆mi and∆m′
i,

E
[
m′

im
′
i
T ⊗mim

T
i

]
= E

[
m′

im
′
i
T
]
⊗ E

[
mim

T
i

]
.
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Furthermore, a calculation similar to that leading to (24), in
which (21) is used instead of (23), shows that

E
[
mim

T
i

]
= σ2I∗ + mmT ,

E
[
m′

im
′
i
T
]

= σ′2I∗ + m′m′T .

Recalling the definition (19), we obtain

E
[
mim

T
i ⊗m′

im
′
i
T
]

= C(σ, σ′,m,m′).

Consequently,

E
[
(m′

i
T Fmi)2

]
= θT C(σ, σ′,m,m′)θ,

which together with (25) yields

var [ri] = θT C(σ, σ′,m,m′)θ.

This final formula says, remarkably, that all the residuals
ri have common variancev = θT C(σ, σ′,m,m′)θ. Thus∑n

i=1 r2i /var [ri], the random version of the cost function
introduced earlier, can simply be written asv−1

∑n
i=1 r2i with

v−1 a common normalization of all the residuals. Treating (8)
and (9) as formulae forestimatesof the parametersm, m′,
σ, σ′ used in our statistical model, replacingC(σ, σ′,m,m′)
with C given by (20), and replacing the random residuals
ri with the nonrandom onesri, we arrive at the expression
(θT Cθ)−1

∑n
i=1 r2

i which, in view of (4), (6), and (16),
is identical with JNALS. In this way, JNALS is finally jus-
tified and its building blocks, the “algebraic least squares”
(θT Cθ)−1r2

i , are found to be appropriately normalized.

VIII. R ELATED WORK

A different approach to the validation of the eight-point
algorithm was earlier proposed by Mühlich and Mester [8].
It rests upon a statistical description of asmall stochastic
perturbation of a symmetric matrix that does not change the
mean value of the eigenvector associated with the minimum
eigenvalue. Applied to a measurement error model whereby
small noise is present inone image only, this result leads
to the development of a technique akin to Hartley’s method.
The conceptual framework for M̈uhlich and Mester’s work
is different from that underpinning the present paper in that
different noise models are used (in our model noise appears
in both images and is not necessarily small), and that different
statistical principles are invoked: M̈uhlich and Mester’s idea
is to search for an estimator that is unbiased to first order,
whereas the idea underlying our work is to search for an
estimator more resembling the maximum likelihood estimator.

Torr [7] proposed a simple modification of the nonnor-
malized eight-point algorithm, producing in practice improve-
ments similar to those of Hartley’s method. It is essentially
the ALS method with the matrixA replaced by the matrix
Aζ =

∑n
i=1 uζ(xi)uζ(xi)T , whereuζ(x) = vec(mζm

′
ζ
T ),

mζ = [m1,m2, ζ]T , with ζ the average of the coordinates of
the images’ centers (in pixels). Here, the third co-ordinateζ
serves to level the varying order of magnitude of the entries
of the u(xi) and, hence, to improve the conditioning ofA.

Yet another variation on the eight-point algorithm has
recently been advanced by Torr and Fitzgibbon [9]. The
estimator developed by these authors has the property that

if a coordinate system is subjected to a Euclidean transforma-
tion in one or both of the two underlying images, then the
fundamental matrix estimate obtained from the transformed
corresponding points is exactly the result of an application
of the same transformation(s) to the estimate based on the
original corresponding points. The estimate produced by this
method turns out to be the solution of the familiar general-
ized eigenvalue problem (17) corresponding to the smallest
eigenvalue, withC taken to beI∗ ⊗ I∗. Interestingly, since

(ss′)−2C(s, s′,m,m′)

= (I∗ + s′
−2

m′ m′T )⊗ (I∗ + s−2m mT )

converges to I∗ ⊗ I∗ as ‖m mT ‖/s2 → ∞ and
‖m′ m′T ‖/s′

2 → ∞ and since the eigenvector defined in
(17) is not affected by multiplication ofC by a scalar factor,
it follows that the Torr–Fitzgibbon technique can be viewed as
a limit case of the NALS method for some image data configu-
rations. The outcomes of the two methods become increasingly
indiscernible whenever‖m mT ‖ � s2 and‖m′ m′T ‖ � s′

2,
which happens, for example, when the centroids of the image
points are close to the origins of the respective image frames
(so that‖m mT ‖ ∼ 1 and‖m′ m′T ‖ ∼ 1) and the spread of
the points around the centroids is significant (so thats2 � 1
ands′

2 � 1).

IX. EXPERIMENTAL RESULTS

To assess whether the theoretical identityF̂ HRT = F̂ NALS

holds in practice, a series of simulations were run using
synthetic data. The simulations were based on a set of “true”
pairs of corresponding points generated by selecting a realistic
stereo camera configuration, randomly choosing many 3D
points, and projecting the 3D points onto two image planes.
Image resolution was chosen to be1000× 1000 pixels.

Two tests were conducted, each comprising10, 000 trials.
At each trial:

• the “true” corresponding points were perturbed by homo-
geneous Gaussian jitter to produce noisy points;

• three fundamental matrices were generated from the noisy
corresponding points using the nonnormalized algebraic
least-squares method (ALS), the normalized algebraic
least-squares method (NALS), and Hartley’s method
(HRT);

• and the estimates were compared in the way described
below.

The standard deviation of the noise was fixed atσ = 1.0 pixels
(tests run with other levels of noise produced similar results).

In our experiments, the ALS estimate was computed by
performing SVD of M given in (7) and taking the min-
imum right singular vector. Similarly, the Hartley estimate
was computed by performing SVD of the matrix̃M =
[u(x̃1), . . . ,u(x̃n)]T and applying the back transformation
prescribed by (11) to the minimum right singular vector (a
standard SVD-correction step to produce a usable, rank-2
fundamental matrix before back-transforming was ignored).
The NALS estimate was computed by employing Leedan–
Meer’s method based on the GSVD of(M ,N), with M
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Fig. 1. Histograms of values ofd1 (upper left),d2 (upper right),d3 (lower left), andd4 (lower right) for 10, 000 tests.

given by (7) andN = (s′I∗+em′T )⊗ (sI∗+emT ), where
e = [0, 0, 1]T .

In the first test, comparison of the estimates involved
calculating two distancesd1 = min ‖F̂ HRT ± F̂ NALS‖F

and d2 = min ‖F̂ HRT ± F̂ ALS‖F , with F̂ HRT, F̂ NALS,
and F̂ ALS having unit Frobenius norm. The first of these
measures quantifies the discrepancy between the HRT and
NALS estimates, the second informally gauges the significance
of the values of the first. All results are plotted in Fig. 1.
The histogram ofd1 values shows that̂F HRT andF̂ NALS are
almost identical, with all values ofd1 less than1.5× 10−14.
The significance of this may be gauged by noting that thed2

histogram, capturing differences between the HRT and ALS
estimates, exhibits values that are all greater than1.5× 10−3.

The second test involved calculating the signed dis-
tances d3 = JAML(F̂ HRT) − JAML(F̂ NALS) and d4 =
JAML(F̂ HRT)− JAML(F̂ ALS), where

JAML(F ) =
n∑

i=1

(m′
i
T Fmi)2

mT
i FI∗F T mi + m′

i
T F T I∗Fm′

i

is the approximated maximum likelihood cost function com-
monly underlying more sophisticated iterative methods, associ-
ated with the default covarianceI∗ (e.g., see [10], [12], [17]).
The d3 histogram exhibits extremely small values centered
on zero, confirming once again the practical equivalence of
estimatesF̂ HRT and F̂ NALS. In contrast, thed4 histogram
shows differences in̂F HRT and F̂ ALS that are very much
larger.

X. CONCLUSION

A novel explanation has been presented for the improvement
in performance of the normalized eight-point algorithm that
results from using normalized data. It relies upon identifying a
cost function that the algorithm effectively seeks to minimize.
The advantageous character of the cost function is justified

within a certain statistical model. The explanation avoids mak-
ing any direct appeal to problem conditioning. Experimental
results are presented that support the proposed approach.
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