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~ Abstract—Hartley's eight-point algorithm has maintained an of the generalized eigenproblem coincides with the estimate
important place in computer vision, notably as a means of generated by Hartley’s original method. Exploiting the cost
providing an initial value of the fundamental matrix for use in function, we propose an alternative explanation of the im-
iterative estimation methods. In this paper, a novel explanation d ' f f th lized eiaht-point alaorith
is given for the improvement in performance of the eight-point proved per ormar]ce 0_ _e normalized €ig fpolm E_igo” m,
a|gorithm that results from using normalized data. It is first based on a certain StatIStlca| mOdel Of da.ta. d|Str|but|0n. Under
established that the normalized algorithm acts to minimize a this model, the summands of the cost function underlying the
specific cost function. It is then shown that this cost function normalized eight-point algorithm turn out to be more balanced
is statistically better founded than the cost function associated in terms of spread than the summands of the cost function
with the nonnormalized algorithm. This augments the original derlvina the standard eight-point alqorithm. S fi f
argument that improved performance is due to the better underlying the standard eight-poin a_gprl m. summation _O
conditioning of a pivotal matrix. Experimental results are given More balanced terms leads to a statistically more appropriate
that support the adopted approach. This work continues a wider expression for minimization, and this in turn translates into
effort to place a variety of estimation techniques within a coherent 3 more accurate estimator. The proposed approach continues
framework. a line of research due to Torr [7], Dlich and Mester
Index Terms— Epipolar equation, fundamental matrix, eight-  [8], and Torr and Fitzgibbon [9], in which variants of the
point algorithm, data normalization normalized eight-point algorithm are analyzed statistically.
The work presented here also forms part of a wider effort
to place a variety of estimation techniques within a coherent

o framework (e.g., see [10], [11], [12], [13]).
N a landmark paper, Longuet-Higgins [1] proposed the

eight-point algorithm—a simple direct method for compu-
tation of theessential matrixThe algorithm extends straight-
forwardly to computation of thefundamental matrix the A 3D point in a scene perspectively projected onto the image
uncalibrated analogue of the essential matrix [2], [3]. Whilplane of a camera gives rise to Bnage pointrepresented by
simple and fast, the algorithm is very sensitive to noise & pair (m, mg) of coordinates, or equivalently, by the “ho-
the specification of the image coordinates serving as input imogeneous” vectorn = [m,m2, 1]7. A 3D point projected
computation and, as such, is of limited use. Many alternatieato the image planes of two cameras endowed with separate
methods have been advanced since Longuet-Higgins' proposalprdinate systems gives rise to a paicofresponding points
including more sophisticated and computationally intensiw&hen represented b, m’), this pair satisfies thepipolar
iterative algorithms [4], [5]. Hartley [6] discovered that theconstraint
accuracy of the eight-point algorithm can be greatly improved m'TFm =0, (1)
if, prior to applying the method, a simple normalization
of image data is performed. This fundamental modificatioihereF' = [f;;] is a3x3 fundamental matrix that incorporates
dramatically extended the applicability of the algorithm, andformation about the relative orientation and internal geome-
in particular, rendered it an excellent tool for generation dfy of the cameras [4], [5]. In addition to (1§ is subject to the
initial estimates for iterative methods. singularity constraint(or, equivalently, thegank-2 constraint
Hartley attributed the improved performance of the normal- det F — 0 @
ized eight-point algorithm to the better numerical conditioning '
of.a pivotal matrix used in solving an elge'nvalue'problem.. In Using z = [m1, ma, m}, m)]T as a compact descriptor
this paper, we analyze the normalized eight-point algorithgt the singleimage datum(rm, m’), the estimation problem
and offer a new insight into the working of the methodassociated with (1) and (2) can be stated as follows: Given a
A crucial observation is that the estimate produced by thgjiection {x1,...,z,} of image data and a meaningftbst
normalized eight-point algorithm can be identified with th@nctionthat characterizes the extent to which any particular
minimizer of a cost function. The minimizer can be directlyr fajls to satisfy the system of the copies of equation (1)
calculated by solving a generalized eigenvalue problem. gsociated withe = z; (i = 1, ..., n), find anestimateF' # 0
confirm experimentally that the estimate obtained as a solutiggtisfying (2) for which the cost function attains its minimum.
, _ . Since (1) and (2) do not change whdn is multiplied by
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with a particular cost function/ = J(F;xi,...,x,) is that A is the sum of the rank-1 matricas(x;)u(xz;)”, this
defined as theinconstrainedminimizer F' of J, is secured, generically, by the condition > 8, hence the

~ ualification “eight-point”.
F =argmin J(F;xq,...,x,). q ght-p
F#£0

Such an estimate can further be converted to a nearby rank-2 IV. HARTLEY’S APPROACH
fundamental matrix by applying one of a variety of methods Let m» andm’ be thecentroids or “centers of mass”, of
[4], [12]. In this paper, we shall confine our attention tehe m; and them/, respectively, defined by
the pivotal component of this overall process that determines n n
e>§c_lusively th_e ur_lc_onstrained minimizer, as this will prove ™= N Zmi and W’ — 1 Zm;. (8)
critical to rationalizing the Hartley method. For alternative
integratedapproaches to computing a constrained minimizer, - o .,

= [m,mo, 1|1, m' = [m),mh 1T, m; =
see the CFNS method [14], [15] or the Gold Standard Meth LIz, 2 1o 0002y 2l A0

[4]. ml'l,mgﬂ»,l]T, m, = [m’lyi,'méyi,l']T (= 1,..'.,n). Fol-

lowing Hartley [6], let us shift the image coordinate systems

lIl. ALGEBRAIC LEAST SQUARES to the respective centroids. In coordinates associated with the
transformed systems, the points of thih image datum can

A straightforward estimation method employs the cost fungg written[my ; — i, ma ; — iz, 1]7 and [m) , — Ty, mh; —

tion mh, 117, Let
1/2
JALS(F;mlv" -'Bn - HFHF2Z /TFmv (3) 1 n 2 /
s={ 502 Imi

with [|F|, = (3, 2)1/2 the Frobenius norm ofF. B 1/2
Here, mgTFmZ is the signedalgebraic distancebetween _ i Z(ml ) —W1)2 + (may _m2)2

the individual datuma; and the candidate matri¥. The m . ’
algebraic least squareALS) estimate F'aors, is defined as

n 1/2
the minimizer ofJ1s. R o — 1 Z |m, — 7|2
A practical means for findind”s1s is conveniently derived 2n !

)

based on an alternative expression fer'” Fm. For an n 1/2
m x n matrix A = [ai,...,a,] with a; the jth column _ iz(m/ T 4 (b — T .
vector of lengthm, denote byvec(A) the vectorizationof 2n &= BT

A, i.e., the column vector of lengtiun defined byvec(A) =

[a1Ta o ,aZ]T. Let 6 — vec(FT) and u(z) — vec(mm/7). Define thenormalizeddata as
Then, by applying standard rules for matrix operations [16], ;= [(my; —m1)/s, (s —ma)/s, 17,
we find that ’ :

m; = [(m}; —my) /s, (my,; —my) /s, 1"

m'TFm = tr(m/T Fm) = tr(mm/TF) _ o .
B FT\T Ty _ gT (4) This definition ensures that the root mean square distance of
= vec(F")" vec(mm™) = 8" u(z), the m; to the origin of the corresponding coordinate system
wheretr denotes trace. With this formulda s can be written is equal toy/2 and, likewise, for then,. The normalized data

as can be alternatively defined by; = Tm, andm, = T'm/,
Jars(6; 1, ..., x,) = 6] 7267 A6, (5) where
where (st 0 —sTim
n T T=|0 s' —simyl,
= Zu(mi)u(wi) (6) 0 0 1
i=1 -1 _1
s 0 =5 m
and||6]| = (63 +---+63)'/2. Now, using (5) to evolve a vari- T=| 0 o' _olm
ational equation for the minimizefx1,s can be characterized 0 0 1 2
as an eigenvector oA associated with the smallest eigenvalue B R
[1.0]. This eigenvector can .be found in practice by performinget 7z, — [1701,4, o4, 1704 5, 7 ;] 7. Denote by Fars the
singular value decompositiofBVD) of the matrix minimizer of the ALS cost function seeded with the nor-
M = [u(zy), ..., u(z,)]” @) malized data, that is, the minimizer of the functidn —

Jars(F;&,,...,&,). Let F — F be the mapping defined
and taking for the desired output the right singular vector ol

M associated with the smallest singular value (the minimum F=17"Tpr 1 (10)
right singular vector). In this form, the ALS estimator is .
essentially identical to the eight-point algorithm of LongueClearly, if i = Tm and m’ = T'm/, thenm/" Fm =

Higgins [1]. ForOALS to be uniquely determined, the nulli'? Fri. _Accordingly, the image ofFALs by the inverse
space of A cannot be more than one-dimensional. Givemapping I — F can be viewed as a genuine estimate of



F. We term this theHartley (HRT) estimateof F' and write and B is ap x ¢ matrix, thenA ® B is themp x ng matrix
Fygr; it is explicitly given by given by

ﬁ‘HRT = T/TFALsT. (11) anB ... a,B

. . =~ . . A® B =
The introduction of Fgrr is motivated by the fact that

if the modified condition numbeof a nonnegative definite amB ... am.B
matrix defined as the ratio of the greatest to the secofid establish (14), note that
smallest eigenvalues is large, then the two least eigenvalues arﬁ /T 112
_ = T FT |2
relatively close to one another; this makes the corresponding

eigenvectors “wobbly”, whereby a small perturbation of the =t(@ FT YT FT )

matrix entries is conducive to a significgn.t char_lg_e _of the eigen- _ tr(T/—TFT—lT—TFTT/—l)

vectors, as these can fall anywhere within a vicinity of a two- T

dimensional eigenspace associated with a virtual degenerate = tr(T" "T" " FT T " F")

eigenvalug. The matrixd = 37" | u(@;)u(z;)” serving to = vec(FO)(T' ' @ (T 'T~T)7) vec(FT)
calculate F o1 is, in practice, much better conditioned (in :VeC(FT)T(T/—lT/—T®T—1T—T)VeC(FT).

the above sense) than the matuk with which Farg is . _
calculated. As a result, Hartley’s method is better conditiondd view of (14), we can rewrite (12) as

(less sensitive to errors in data) and, in this sense, more 0T A0
advantageous than the ALS method. Inars(O; e, ..., xn) = prers (16)
V. NORMALIZED ALGEBRAIC LEAST SQUARES One consequence of this formula is thats s is a solution
We now identify the Hartley estimate as a minimizer of gf the generalized eigenvalue problem
cost function. To this end, we introduce A6 =)\C8 a7)

corresponding to the smallest eigenvalue. Sidceay be ill-

n conditioned, solving the above eigenvector problem directly

— ||T’_TFT‘1H;2 Z(mgTFm»z_ (12) requires a numerically stable method. Leedan and Meer [13]
Py proposed one such method which, when applied to the problem

under consideration, employgeneralized singular value de-

composition(GSVD) of a pair of matrice$ M, V) satisfying

A =M"M andC = N7 N. Numerical experiments show

(see later) that when this method is applied, the matrides

R R and C, of which the first is typically ill-conditioned, lead

Furt = FnaLs. (13) to a solution identical with the solution obtained using the

Indeed, if &' and F are related by (10), them!” Fm, — well-conditioned matrixA —in other words, equality (13) is
rh’-TFrh-, for eachi — 1 . and so ' g ! experimentally confirmed.

Inars(Fixi,. .., x,)

The minimizer of Jxars we call thenormalized algebraic
least squaregNALS) estimateof F' and write Fiyars. The
precise sense in which the expressions entetiR@rs are
normalized will be revealed later. We claim that

VI. Two FORMULAE

To proceed smoothly later, we now present two formulae.

Inars(Fs @, .. @n) = |[F72 Y (mT Fring)?
=l The first is the identity

:JALs(F;.’il,...,fi}n). T , . T
From this identity it follows that the functionF — w@u(@:) =mim; © mim, (18)
JInars(Fixy,...,x,) attains a minimum at a particuldr resulting immediately from
precisely when the functiod — Jars(F;&.,...,&,) at-
tains a minimum at the imag#' of this F by the mapping , ,
F — F'. In other Words,T’fTI?‘NALST:1 = Forg, which, - (mf ® mi)(mff mi)T
clearly, is equivalent taFxars = T'" FarsT. Comparing = (m; @ m;)(m;” @m;)
this with (11) establishes the claim. =m/m;T @ mym].
The formula for Jyars can be rewritten similarly to that o sacond is derived starting from the observation that
for Jars. The starting point is the identity ~
T e o st 0 0] [t 0 —m
|T" " FT ||z =6 C8, (14) T=0 st 0|01 —my
0o o 1/|o o 1

vec(m;miT) vec(m;m,T)T

T

whereC is the9 x 9 matrix given by

1, This leads to
c=7"'7""er'T " 15 ]
® ( ) 1 0 m s 0 0
Here,® stands for theKronecker producgtor tensor product T =10 1 m2| [0 s O
of matrices defined as follows: A = [a;;] is anm xn matrix 0 0 0 01




and further and randomAm; = [Am];, Amj;,0]". Suppose that the

10 m] [s2 0 0 1 0 0 following conditions hold:
T T=10 1 ma| |0 2 0[]0 1 0 e Am;, Am/ (i,j =1,...,n) are independent;
0 0 1 0 0 1| |m me 1 o E[Am;] = E[Am}] =0 for eachi =1,...,n;
38 +m? mm, ™ « there exists > 0 and¢’ > 0 such that
= | momy  s*+m5 Mo . E [Am;(Am;)T] = 02T,
Lt mo 1 E [Am{(Am{)T] — I (21)
The latter identity can succinctly be written as .

for eachi =1,...,n.

T'7 7 =1 + mm’, Here, E denotes expectation. Note that, effectivelly, the m;

have common mean valua and all the m;, have common

whereI" = diag(1,1,0). Analogously, mean valuan’. It is helpful to viewm andm’ as the centroids

T — 2 v T of some individual “true” nonrandom locations; andm; that
are not explicitly introduced, but are present in the background.
Introducing An immediate upshot of this type of modeling is that the
random perturbationd\m; and Am) cannot be regarded as
C(s,s',m,m’) small in typical situations—the magnitude &fm; and Am/,

= (*1"+mmT)® (s*I* + mm”) (19) has to be big enough to account for the disparity betwiaen
and them;, andm’ and them,.

Let r, = m/’Fm; be the stochastic version of thigh
C =C(s,s,m,m). (20) residual. We calculate the variances

and taking into account (15), we finally obtain

VII. STATISTICAL JUSTIFICATION varln] =€ [(mgTFmi)z} S [m;TFmiDQ

v\}githin our model. In so doing, we exploit an additional
ﬁlssumption thaim andm’ are “true” locations bound by,

n the sense that

To substantiate the normalized eight-point algorithm,
shift the focus from matrices involved in the computatio
of estimates (which may be well or ill-conditioned) to cos
functions. It is nota priori clear why Jxaps should be w7 Fm = 67 vecmm’”) = 0. (22)
preferable toJars. We now present some explanation based
on a statistical argument. Our reasoning will also provide thWriting
promised justification of the label “normalized” for the terms

T — T —T
forming Jxaws. E[mim;"] =mm™ + E[Am;] ;]

K2

For eachi = 1,...,n, letr; be theith residual defined as +m;E [A(m)T] + E [Am;(Am})T],
r; = miT Fm,, noting that
with F' normalized for convenience. It is a fundamental ob- E[Am;|m,T = mE [(Am;)T] =0

servation that different residuals may carry different statistical
weight. Whenm, and m/ are treated as sample values ofnd that
independent multivariate random variables, there sample , ,

valu£s of (typically) eheteroscedastiset of random variabFI)es, E [Ami(Ami)T] =E[Am,]E [(Ami)T] =0, (23)
i.e., with member variables having different variances. Thghich involves the independence &fm; and Am!, we find
larger the variance of a particulas, the less reliable this that
residual is likely to be, and the more it should be devalued.
Therefore, to account for heteroscedasticity, it is natural to
replace the simple cost function;_, 7, effectively Jars, by Hence,

3

the more complicated cost function;_, r?/var [r;], where o . o o
var [r] denotes the variance of The latter function is closer ~ E [mi" Fm;] = 6" vec(E [m;m;"]) = " vec(mm
in form to a natural cost function derivable from the principlerhis jointly with (22) implies that

of maximum likelihood (cf. [10], [17]). We show that under a

| =mm'". (24)

T).

certain statistical model of data distributiop,;_, r?/var [r;] E[m/"Fm,] = 0. (25)
can be identified with/xars. o
Assume that, for each = 1,...,n, the observed location Now, in view of (4) and (18),
m,; is a realization of a random variabla; = m + Am,, T 5 T ;T T
where m = [m;,my, 1]7 is a fixed, nonrandom location E[(mi" Fm;)*] = 0" (E [mim;" @ mym/])6.

and Am; = [Am;;, Amy;,0]7 is a random perturbation. By the independence akm; and Am/,
Likewise, assume thah is a realization of a random variable '
m, = m + Am/ with nonrandomm’ = [}, 1]7 E[m/m,” @ mym]] =E [mim,"] ® E [m;m]].

7



Furthermore, a calculation similar to that leading to (24), iifi a coordinate system is subjected to a Euclidean transforma-
which (21) is used instead of (23), shows that tion in one or both of the two underlying images, then the
fundamental matrix estimate obtained from the transformed
corresponding points is exactly the result of an application
E [QOQT] =0’ I +mm7’. of the same transformation(s) to the estimate based on the
original corresponding points. The estimate produced by this
method turns out to be the solution of the familiar general-
= C(o,0',m,m). ized eigenvalue problem (17) corresponding to the smallest
eigenvalue, withC' taken to bel* @ I'*. Interestingly, since

E[mm]] =" + mm’,

Recalling the definition (19), we obtain
/T]

%

T /
E[m;m] @ mim

Consequently,
E[(m,"Fm,)?] = 0"C(0,0’,m,m)6, (ss)2C(s,s',m,m)
which together with (25) yields —(I'+ " "m'm7T) @ (I" + s >mm")
var [r;] = 01 C(0,0’,m, m’)#. converges toI* @ I as |mm’|/s> — oo and

o _ im'm'T||/s'*> — oo and since the eigenvector defined in

This final formula says, remar;ably, that all /the residual 7) is not affected by multiplication of' by a scalar factor,
ri nhaveé- common variance = 6" C(o,0’,m,m")6. Thus j; fo|lows that the Torr—Fitzgibbon technique can be viewed as
>_j— ¥i/var[ri], the random version of the cost function, jimit case of the NALS method for some image data configu-
introduced earlier, can simply be written ﬂ$1 Siati With  yations. The outcomes of the two methods become increasingly
v~ a common normallzat|pn of all the residuals. Treating (§)discernible whenevefmm? || < s? and||m’ m'T|| < §2
and (9) as formulae foestimatesof the parametersn, ml’, which happens, for example, when the centroids of the image
o, o’ used in our statistical model, replaciig(o, o’,m,m’)  y5ints are close to the origins of the respective image frames
with'C given by (20), and replacing' the random residya%o that||[mm? || ~ 1 and |7 T || ~ 1) and the spread of
ri j‘f‘”th the nonrandom ones;, we arrive at the expressionyhe points around the centroids is significant (so #fas> 1
(67 CO)~' 7" 77 which, in view of (4), (6), and (16), gnq¢? > 1).
is identical with Jxaps. In this way, Jyars is finally jus-
tified and its building blocks, the “algebraic least squares”
(67C8)~'r2, are found to be appropriately normalized. IX. EXPERIMENTAL RESULTAS R
To assess whether the theoretical idenfityyrr = FnaLs

VIIl. RELATED WORK holds in practice, a series of simulations were run using

A different approach to the validation of the eight—poin?ynthetic data. The_ simulfations were based on a set of “tr_ue_”
algorithm was earlier proposed byiMlich and Mester [8]. pairs of corresponding points generated by selecting a realistic

It rests upon a statistical description ofsmall stochastic stereo camera configuration, randomly choosing many 3D

perturbation of a symmetric matrix that does not change {R@INts, and pr.OJectlng the 3D points onto two'|mage planes.
mean value of the eigenvector associated with the minimdmage resolution was chosen to be0o x 10(_)0 pixels. i
eigenvalue. Applied to a measurement error model whereby WO tests were conducted, each comprisitig000 trials.
small noise is present ibne image only, this result leads”t ach tral:

to the development of a technique akin to Hartley’s method. s the “true” corresponding points were perturbed by homo-
The conceptual framework for dhlich and Mester's work geneous Gaussian jitter to produce noisy points;

is different from that underpinning the present paper in thate three fundamental matrices were generated from the noisy
different noise models are used (in our model noise appears corresponding points using the nonnormalized algebraic
in both images and is not necessarily small), and that different least-squares method (ALS), the normalized algebraic
statistical principles are invoked: iMilich and Mester’s idea least-squares method (NALS), and Hartley’s method
is to search for an estimator that is unbiased to first order, (HRT);

whereas the idea underlying our work is to search for ane and the estimates were compared in the way described
estimator more resembling the maximum likelihood estimator. ~ below.

Torr [7] proposed a simple modification of the nonnorThe standard deviation of the noise was fixed at 1.0 pixels
malized eight-point algorithm, producing in practice improveftests run with other levels of noise produced similar results).
ments similar to those of Hartley's method. It is essentially In our experiments, the ALS estimate was computed by
the ALS method with the matrixA replaced by the matrix performing SVD of M given in (7) and taking the min-
Ae =30 ue(mi)uc(z;)T, whereu, (z) = vec(mcm’CT), imum right singular vector. Similarly, the Hartley estimate
m¢ = [m1, ma, ()T, with ¢ the average of the coordinates ofvas computed by performing SVD of the matridd =
the images’ centers (in pixels). Here, the third co-ordinate [u(z:),...,u(z,)]T and applying the back transformation
serves to level the varying order of magnitude of the entrigsescribed by (11) to the minimum right singular vector (a
of the u(x;) and, hence, to improve the conditioning Af  standard SVD-correction step to produce a usable, rank-2

Yet another variation on the eight-point algorithm haBindamental matrix before back-transforming was ignored).
recently been advanced by Torr and Fitzgibbon [9]. ThEhe NALS estimate was computed by employing Leedan—
estimator developed by these authors has the property thter's method based on the GSVD M, N), with M
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given by (7) andV = (s'I* +em'") @ (sI* +em’ ), where within a certain statistical model. The explanation avoids mak-

e =10,0,1]7. ing

any direct appeal to problem conditioning. Experimental

In the first test, comparison of the estimates involversults are presented that support the proposed approach.

calculating two distances/; = min||Frrr + Fyavsl|r
and do = min|Furr + Favs|s With Farr, FxaLs,
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NALS estimates, the second informally gauges the significance
of the values of the first. All results are plotted in Fig. 1.
The histogram ofi; values shows thak'grr and Fyars are
almost identical, with all values af; less thanl.5 x 10714,
The significance of this may be gauged by noting thatdhe
histogram, capturing differences between the HRT and AL¥
estimates, exhibits values that are all greater than< 1073,

The second test involved calculating the signed dis-
tancesds = Jamrn(Furr) — Jamn(Fnavs) and dy

(1]

[3]
JamL(Furr) — Jamr(Favs), where
d (m!T Fm,)?
J F) = L
ane(F) Lzzl mIFI'F'm; + m/TF 1" Fm), 4]

is the approximated maximum likelihood cost function com-5]
monly underlying more sophisticated iterative methods, assoc[ié]
ated with the default covariandg (e.g., see [10], [12], [17]).

The ds histogram exhibits extremely small values centered?]
on zero, confirming once again the practical equivalence of

estimatesF'yrt and Fnavs. In contrast, thed, histogram 8]
shows differences inF'ygr and F'arg that are very much
larger.

[l

X. CONCLUSION

A novel explanation has been presented for the improvem
in performance of the normalized eight-point algorithm that
results from using normalized data. It relies upon identifying a
cost function that the algorithm effectively seeks to minimiz&l]
The advantageous character of the cost function is justified
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